CS224R Spring 2023 Homework 1

Imitation Learning
Due 4/19/2023
SUNet ID:
Name:
Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all of
this is my own work.

Note: As an update to the course policy, TA-approved Ed answers and posts will receive
extra credit. The total possible extra credit you may receive is up to 2% of your grade.

Overview

Goals: In this assignment you will experiment with two common methods of imitation
learning: behavior cloning and DAgger. You will then have the opportunity to train and
tune your agents in a variety of environments in the MuJoCo physics simulator (https:
//mujoco.org/). In lieu of a human demonstrator, we will provide demonstrations from
a pre-trained expert policy.

1. Implement and train an imitation learning agent that can learn from expert data.

2. Analyze the shortcomings of behavior cloning and how DAgger can address some
of these issues.

3. Experiment with hyperparameters and explore how they affect performance.

Submitting the PDF: Make a PDF report containing: Table 1 for a table of results from
Question 1.2, Figure 1 for Question 1.3, and Figure 2 with results from Question 2.2 as
well as the requested brief explanations.

Submitting the Code and Experiment Runs: In order to turn in your code and experiment
logs, create a folder that contains the following:

o A folder named data with experiments for both the behavioral cloning (sub-problem
1, not sub-problem 2) exercise and the DAgger exercise. Note that you can include
multiple runs per exercise if you'd like, but you must include at least one run (of
any task/environment) per exercise. These folders can be copied directly from the
cs224r/data folder into this new folder. Important: Disable video logging for the
runs that you submit, otherwise the files size will be too large! You can do this by
setting the flag —video log freq -1


https://mujoco.org/
https://mujoco.org/

e A README file that lists the commands (with clear hyperparameters) that we need
in order to run the code and produce the numbers that are in your figures/tables.
The following command is an example:

To generate the numbers for Question 1 Subproblem 1, run:
python cs224r/scripts/run hwl.py \

--expert policy file cs224r/policies/experts/Ant.pkl \
--env_name Ant-v4 --exp name bc_ant --n_iter 1 \
—-—expert_data cs224r/expert_data/expert_data Ant-v4.pkl

e The cs224r folder with all the .py files, with the same names and directory structure
as the original homework repository.

Gradescope: Submit both the PDF and the code and experiment runs in the appropriate
assignment on Gradescope. An autograder will be provided to evaluate the performance
of your policies from the generated tensorboard files. Note: the autograder score will
only consist of 50% of your homework grade. The consistency of the code and tensor-
board files will be checked after submission.

Use of GPT/Codex/Copilot: For the sake of deeper understanding on implementing im-
itation learning methods, assistance from generative models to write code for this home-
work is prohibited.



Sample File Submission

As an example, the unzipped version of your submission should result in the following
file structure. Make sure that the submit.zip file is below 15MB and that the experiment
log folders include the prefix q1_and g2..

submit.zip
+— data

— ql_bc_Ant

Levents.out.tfevents...

— q2_dagger_Ant

Levents.out.tfevents...

- ...

— cs224r

L agents

tbcagent.py

— policies

L.

— . ..

*— README . md



Codebase

////,P //;olicieS/MLP_policy.p;:qﬁ\\

agents/bc_agent.py infrastructure/bec

trainer.py

® actor \ _/ -
® replay buffer |//Finfrastructure/replay ﬂ\ :

buffer.py B

(L

< : 2/

We have provided you with starter code for this homework. A simplistic diagram of its
structure is shown above. In the agents directory, you will define your main behavior
cloning agent. This agent will contain contain references to its policy (or actor) and re-
play buffer. This agent will be fed into the RL trainer, which will contain its training loop.

We recommend that you read the files in the following order. Your task is to fill in the
blanks labeled TODO.

e scripts/run hwl.py (read-only file)
e infrastructure/bc_trainer.py

e agents/bc_agent.py (read-only file)
e policies/MLP_policy.py

e infrastructure/replay buffer.py

e infrastructure/utils.py

e infrastructure/pytorch utils.py



Problem 1: Behavior Cloning

1. Run behavioral cloning (BC) and report results on two tasks: the Ant environment,
where a behavioral cloning agent should achieve at least 30% of the performance of
the expert, and one environment of your choosing where it does not. A policy that
achieves greater than 30% of the expert on the Ant task will receive full credit on the
autograder. Here is how you can run the Ant task:

python cs224r/scripts/run_hwl.py \
——expert_policy_file cs224r/policies/experts/Ant.pkl \
-—env_name Ant-v4 --exp_name bc_ant --n_iter 1 \
——expert_data cs224r/expert_data/expert_data_Ant-v4.pkl \
--video_log_freq -1

When providing results, report the mean and standard deviation of your policy’s
return over multiple rollouts in a table, and state which task was used. When com-
paring one that is working versus one that is not working, be sure to set up a fair
comparison in terms of network size, amount of data, and number of training itera-
tions.

Note: What “report the mean and standard deviation” means is that your eval batch
size should be greater than ep_len, such that you're collecting multiple rollouts when
evaluating the performance of your trained policy. For example, if ep_len is 1000
and eval_batch_size is 5000, then you'll be collecting approximately 5 trajectories
(maybe more if any of them terminate early), and the logged Eval_AverageReturn
and Eval_StdReturn represents the mean/std of your policy over these 5 rollouts.

Tip: To generate videos of the policy, remove the flag --video_log_freq -1. How-
ever, this is slower, and so you probably want to keep this flag on while debugging.

Include your table here.

2. Experiment with one set of hyperparameters that affects the performance of the be-
havioral cloning agent, such as the amount of training steps, the amount of expert
data provided, or something that you come up with yourself. For one of the tasks
used in the previous question, show a graph of how the BC agent’s performance
varies with the value of this hyperparameter. State the hyperparameter and a brief
rationale for why you chose it. The plot should contain clearly labeled axes.

Include your chosen hyperparameter, plot, and rationale here.



Problem 2: DAgger

1. Once you've filled in all of the TODO commands, you should be able to run DAgger.

python cs224r/scripts/run_hwl.py \
——expert_policy_file cs224r/policies/experts/Ant.pkl \
--env_name Ant-v4 --exp_name dagger_ant --n_iter 10 \
--do_dagger \
——expert_data cs224r/expert_data/expert_data_Ant-v4.pkl \
--video_log_freq -1

2. Run DAgger and report results on the two tasks you tested previously with behav-
ioral cloning (i.e., Ant + another environment). Report your results in the form of
a learning curve, plotting the number of DAgger iterations vs. the policy’s mean re-
turn, with error bars to show the standard deviation. Include the performance of
the expert policy and the behavioral cloning agent on the same plot (as horizontal
lines that go across the plot). State which task you used, and any details regarding
network architecture, amount of data, etc. (as in the previous section).

Include the plots of the two tasks here.



