
CS224R Spring 2023 Homework 3
Offline RL
Due 5/17/2023

SUNet ID:
Name:

Collaborators:
By turning in this assignment, I agree by the Stanford honor code and declare that all of
this is my own work.

Overview

Goals: In this assignment you will implement two offline reinforcement learning algo-
rithms: Implicit Q-Learning and Conservative Q-Learning. You’ll be experimenting with
different hyper-parameters and offline datasets that have been provided to you. Data col-
lection is one of the most practical problems with applying Deep RL, and it’s a common
practice to try different exploration strategies for a given problem. In this assignment, we
provide with you Random and RandomNetwork Distillation based exploration strategies
for you to compare the quality of the collected data.

You will then have the opportunity to train and tune these agents in a variety of envi-
ronments in theMuJoCo physics simulator (https://mujoco.org/). We provide the code
for generating the offline datasets as part of the assignment. Your objectives are as follows:

1. Implement and train the Conservative Q-Learning and the Implicit Q-Learning al-
gorithms for Offline Reinforcement Learning.

2. Experiment with the key hyperparameters for each algorithm and explore how they
affect performance of your RL agents.

3. Analyze differences between the quality of different offline data samples provided
to you.

Submitting the PDF: Fill in your responses in the answer{} tags provided in the Tex tem-
plate. Submit all the requested values in tables, and put in all requested plots/images as
Tex figures. You should also include all your reasoning and text responses in the PDF.
Submitting theCode andExperimentRuns: In order to turn in your code and experiment
logs, create a folder that contains the following:

• data/ folder with all logged runs corresponding to both problem 1 and 2. Note:
Please remove any redundant run folders, and only keep your best run for each
hyper-parameter configuration in the data/ folder. Remove any empty/incomplete
logs that correspond to interrupted/failed runs.

1

https://mujoco.org/

• cs224r/ folder with all the .py files, with the same names and directory structure as
the original homework repository.

Zip and submit the folder on Gradescope.
Gradescope: Submit both the PDF and the code and experiment runs in the appropriate
assignment on Gradescope. An autograder will be provided to evaluate the performance
of your policies from the generated tensorboard files.
Use of GPT/Codex/Copilot: For the sake of deeper understanding on implementing im-
itation learning methods, assistance from generative models to write code for this home-
work is prohibited.

Codebase

We provide you with offline transitions dataset D. Assuming your replay buffer has been
populated with the offline dataset trajectories, your goal is to implement the correspond-
ing reinforcement learning algorithms.

For each problem, we provide you with the files that you need to complete. Sections
that need to be filled have been marked with TODO tags.

For this assignment, you can use the EC c4.4xlarge AWS instance (the instance you
used for homework 2 part1). Please follow the AWS Guide for the set-up instructions.
Here are the installation steps once you’re on the instance. Instructions for creating the
cs224r conda environment can be followed from homework 1.

conda activate cs224r
sudo apt-get install swig
pip install -r requirements.txt
pip install -e .

2

https://docs.google.com/document/d/1MpTh0BejM8Z9cQq5iCd3xUIm3mxM7viiZQIdtqkxKXw/edit?usp=sharing

Preliminaries

Environments: In this assignment, we’ll be working with the Pointmass environment.
The goal for the Pointmass environment is to navigate a gridworld of varying difficul-

ties: easy, medium and hard to reach the ‘goal’ location. Sample environments for each
difficulty have been visualized in Figure 1

Figure 1: Visualization of the Point mass enivorment with varying difficulty levels for
navigation and reaching the goal.

Offline datasets: For offline RL, we have provided you with a set of exploration strate-
gieswhich are used to populate the replay buffer. These trajectories then serve as the train-
ing dataset for your offline RL algorithms. In this assignment, you’ll experiment with two
exploration strategies (i) a Random E-Greedy strategy and (ii) Random Network Distil-
lation (RND) algorithm.

The RND algorithm, aims at encouraging exploration by asking the exploration policy
to more frequently undertake transitions where the prediction error of a random neural
network function is high. Formally, let f ∗

θ (s
′) be a randomly chosen vector-valued function

represented by a neural network. RND trains another neural network, f̂ϕ (s′) to match the
predictions of f ∗

θ (s
′) under the distribution of datapoints in the buffer, as shown below:

ϕ∗ = argmin
ϕ

Es,a,s′∼D[
∥∥∥f̂ϕ (s′)− f ∗

θ (s
′)
∥∥∥︸ ︷︷ ︸

Eϕ(s′)

] (1)

If a transition (s, a, s′) is in the distribution of the data buffer, the prediction error Eϕ(s′)
is expected to be small. n the other hand, for all unseen state-action tuples it is expected
to be large. To utilize this prediction error as a reward bonus for exploration, RND trains
two critics – an exploitation critic, QR(s, a), and an exploration critic, QE(s, a), where the
exploitation critic estimates the return of the policy under the actual reward function and
the exploration critic estimates the return of the policy under the reward bonus. In prac-
tice, we normalize error before passing it into the exploration critic, as this value can vary
widely in magnitude across states leading to poor optimization dynamics.

3

https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2110.06169

Problem 1: Implicit Q-Learning

1. In this problem, you’ll implement the Implicit Q-Learning (IQL) method for offline
RL. The actor update for IQL incorporates the advantage function similar to the
actor update in the Advantage-Weighted Actor Critic (AWAC) algorithm. This an
advantage-weighted negative log likelihood loss function:

Lπ(ψ) = −Es,a∼B

[
log πψ(a | s) exp

(
1

λ
Aπk(s, a)

)]
(2)

where B represents samples sampled from the dataset (behavior policy that was
used to collect the data).
The actor update in AWAC corresponds to weighted maximum likelihood, where
the targets are updated by reweighting the state-action pairs observed in the current
dataset by the predicted advantages from the learned critic. The Q function is learnt
with a Temporal Difference (TD) loss. The objective function is given below:

ED
[(
Q(s, a)− (r(s, a) + γEs′,a′

[
Qϕk−1

(s′, a′))
])2] (3)

IQL modifies the actor critic update to use expectile regression. The expectile τ of a
random variable X is defined as:

argmin
mτ

Ex∼X [Lτ2 (x−mτ)] (4)

Lτ2(µ) = |τ − 1{µ ≤ 0}| (5)

That is for τ > 0.5, this asymmetric loss function downweights the contributions of
x values smaller thanmτ , while giving more weights to large values as visualized in
Figure 2.
The offline dataset might contain different outcomes from similar states; in standard
Q learning, we would want the critic to learn the expected value for any particular
state-action pair. IQL, instead of learning the expected value, learns a given per-
centile. Our goal is to predict an upper expectile of the TD targets that approximate
high values of r(s, a) + γ ∗ Qθ(s

′, a′) which are present in the support of the offline
dataset.
To perform this expectile regression, we need a separate parametric value function
Vϕ. This is allows the optimization process to be differentiable, since optimizingwith
a single parametric q-function implies incorporating the transition dynamics as s′ ∼
p(·|s, a). (Note the expectation over (s′, a′) in Equation 3. Finally, the critic is only

4

https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2006.09359

Figure 2: Expectile loss function visualized for different values of τ .

updated with actions that were seen in the offline dataset, and not on any out of
distribution (unseen) sampled actions. This leads to the following loss functions:

LV (ϕ) = E(s,a)∼D [Lτ2 (Qθ(s, a)− Vϕ(s))] (6)

LQ(θ) = E(s,a,s′)∼D

[
(r(s, a) + γVϕ (s

′)−Qθ(s, a))
2
]

(7)

Fill in the TO-DOs in:

• cs224r/critics/iql_critic.py

• cs224r/agents/iql_agent.py

Experiment with τ = 0.5, 0.9 on the PointmassEasy-v0 and report the eval average
return and standard deviation for both cases. You can look at the final eval trajec-
tories under the saved logs to qualitatively observe your agent’s performance. The
code would run for 50,000 iterations and would roughly take at most an hour to fin-
ish. Attach the eval_last_traj.png image denoting your agent’s last trajectory for
each run. Which τ value performs better and why?

5

python cs224r/scripts/run_iql.py --env_name Pointmass{}-v0 \
--exp_name iql_tau_{}_rnd --use_rnd \
--num_exploration_steps=20000 \
--unsupervised_exploration \
--awac_lambda=1 \
--iql_expectile={}

Answer:

2. Compare the learnt policies for the RND and Random exploration on the
PointmassMedium-v0 environment using the best τ value from the previous runs.
Report the eval average return and standard deviation. What does the performance
gap between the two exploration strategies indicate about the collected data in case
of offline RL?
Remove the –use_rnd flag to run with random exploration:

python cs224r/scripts/run_iql.py --env_name Pointmass{}-v0 \
--exp_name iql_tau_{}_random \
--num_exploration_steps=20000 \
--unsupervised_exploration \
--awac_lambda=1 \
--iql_expectile={}

Attach the eval_last_traj.png image denoting your agent’s last trajectory for each
run.
Answer:

6

Problem 2: Conservative Q-Learning

1. In this problem, you’ll be implementing the Conservative Q-Learning (CQL) algo-
rithm. The goal of CQL is to prevent overestimation of the policy value. The overall
CQL objective is given by the standard TD error objective augmented with the CQL
regularizer weighted by α : α

[
1
N

∑N
i=1 (log (

∑
a exp (Q (si, a)))−Q (si, ai))

]
.

Fill in the TODOs in the following files:
• cs224r/critics/cql_critic.py

Once you’ve filled in all of the TODO commands, you should be able to run CQL
with the following command -

python cs224r/scripts/run_cql.py --env_name Pointmass{}-v0 \
--exp_name cql_alpha_{}_rnd \
--use_rnd --unsupervised_exploration \
--offline_exploitation --cql_alpha={}

You can look at the final eval trajectories under the saved logs to qualitatively ob-
serve your agent’s performance. The codewould run for 50,000 iterations andwould
roughly take about an hour to finish. Attach the eval_last_traj.png image denot-
ing your agent’s last trajectory for each run.
Experiment with α = 0, 0.1 on the PointmassMedium-v0 and report the Eval average
return and standard deviation for both cases on the PointmassMedium-v0 environ-
ment. What does α = 0.0 signify in terms of the algorithm? Explain the difference
in obtained performance gap based on α.
Answer:

2. Compare the learnt policies for the RND and Random exploration on the
PointmassMedium-v0 environment with α = 0.1 by reporting the eval average return
and standard deviation. Remove the –use_rnd flag to run with random exploration:

python cs224r/scripts/run_cql.py --env_name Pointmass{}-v0 \
--exp_name cql_alpha_{}_random \
--unsupervised_exploration \
--offline_exploitation --cql_alpha={}

Attach the eval_last_traj.png image denoting your agent’s last trajectory for each
run.
Answer:

7

https://arxiv.org/abs/2006.04779

