Reinforcement Learning
on Legged Robots

Jie Tan
Google DeepMind

CS 224R Deep Reinforcement Learning
May 10, 2023 @ Stanford University



Today’s Class

1. State-of-the-art of learning legged locomotion via Deep RL?

2. Two approaches to apply Deep RL on real robots

a. Train in the real world
b. Sim-to-real transfer

Goal

e Understand challenges of applying RL in the real world
e Understand the root causes of sim-to-real gap
e Learn the most popular sim-to-real transfer methods






Reinforcement Learning for Legged Robots
State-of-the-Art



RL Training in the Real World
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Learning to Walk via Deep Reinforcement Learning, Haarnoja et al., RSS 2019
Learning to Walk in the Real World with Minimal Human Effort, Ha et al., CoRL 2020



https://sites.google.com/corp/view/minitaur-locomotion/
https://arxiv.org/abs/2002.08550

RL in Simulation and Sim-to-Real Transfer

Sim-to-Real: Learning Agile Locomotion For Quadruped Robots, Tan et al., RSS 2018



https://arxiv.org/pdf/1804.10332.pdf

RL in Simulation and Sim-to-Real Transfer

Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning, Rudin et al., CoRL 2021



https://arxiv.org/abs/2109.11978

Fast Adaptation to New Environments

RMA: Rapid Motor Adaptation for L egaed Robots, Kumar et al., RSS 2021



https://ashish-kmr.github.io/rma-legged-robots/
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Fast and Efficient Locomotion via Learned Gait Transitions, Yang et al., CoRL 2021



https://docs.google.com/file/d/1o11rkcfzjI2yxvKXe0hvVJHrD_05UCrd/preview
https://arxiv.org/abs/2104.04644

Style

Learning Agile Robotic Locomotion Skills by Imitating Animals, Peng et al., RSS 2020



https://xbpeng.github.io/projects/Robotic_Imitation/index.html
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https://arxiv.org/abs/2109.05603
https://arxiv.org/abs/2109.05603
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https://www.science.org/doi/10.1126/scirobotics.abk2822
https://www.science.org/doi/10.1126/scirobotics.abk2822
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How to learn locomotion?

Approach 1

Directly train in the real world




Learning in real world

X Data efficiency o Humanoid: Walk
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DeepMimic: Example-Guided Deep Reinforcement
Learning of Physics-Based Character Skills, Peng et al.,
SIGGRAPH 2018



https://xbpeng.github.io/projects/DeepMimic/index.html
https://xbpeng.github.io/projects/DeepMimic/index.html
https://xbpeng.github.io/projects/DeepMimic/index.html

Learning in real world

X Data efficiency
$¢ Human supervision




Learning in real world

X Data efficiency
$¢ Human supervision

¢ Safety
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Problem Setup

Observations:

[

8 motor angles,
roll,
pitch,
prev_action

] * last 6 timesteps

Action:

8 desired motor angles

Reward function: 7y (s,a) =|[w1,ws]” - Ry (x¢ — x¢_1) H{ws(0: — 6:—1)|—[0.001]4?

Learning to Walk in Real World with Minimal Human Efforts, Ha et al., CoRL, 2020



Soft Actor Critic

7 &
max Erp, > r(se,a)

s.t. E,, [—log(me(-]se))] > H

Learning to Walk in Real World with Minimal Human Efforts, Ha et al., CoRL, 2020



Safety-Constrained SAC: Formulation

- T .

maI)I( ]E,Wp?r E T'(St, at) / Safety Constraints
TE

Lt=0

S.t. | E(s, a:)~px [fs(St,a¢)] >0, ‘v’t‘
E,. [~ log (m(-[s:)] > H

where
fs(8¢,ar) = min(p — |pe|, 7 — |r¢|)

Learning to Walk in Real World with Minimal Human Efforts, Ha et al., CoRL, 2020



Safety-Constrained SAC: Formulation

max K.
mell TR

S.t. E(St,at)NPﬂ- [fs(s¢,a¢)] >0, Vi. A
E, [ log (me( - ls))] = M

where

fs(st,a:) = min(p — |Pt|a"‘ - |"'t|)

- T -
Z r(st,at)
| t=0 2

Learning to Walk in Real World with Minimal Human Efforts, Ha et al., CoRL, 2020



Solving CMDP: Lagrangian I\/Iethod

I
T
maxE. ., [Z (s, at):l —
t=0

well —
S.t. ]E(St,at)’vpn [Z fs(st7 at)] Z 0

M’ﬂ

maxminlE,._,

mmmm >0

t

I
o

’I”(St, at) -} )\fs(sz‘n a't)]

ﬂ Lagrangian —0 > 0
T
T .
max min[E, r(St,a st a
E - TNP [ZT St)at +)\fs St,at):l A>0 T~ Pr tz—; () t fS t)
t=0 =

— 00 <0

Il :
max r/{1>1(r)1£(7r, A) mg}rilzlgl £, LZ; T(S¢, Q) %%t)]

Learning to Walk in Real World with Minimal Human Efforts, Ha et al., CoRL, 2020
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Learning to Walk in Real World with Minimal Human Efforts, Ha et al., CoRL, 2020



M»a

maxminlE,.,

T A0 r St’a't +)‘fs(3t7a't)

t=0

_C_w %@Ne\

Pseudocode \

Randomly initialize 71, set A\ = 0
Roll out policy 7T oL
Calculate policy gradient 55—

7r—7r+a—

on
. oL Gradient
Calculate gradient )N <+——  escent for
A, = max(O \ — ,3 [') <«—— Lagrangian

Go to 2 multiplier/

Learning to Walk in Real World with Minimal Human Efforts, Ha et al., CoRL, 2020



Falls

Safety-Constrained SAC: Evaluation
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Learning to Walk in Real World with Minimal Human Efforts, Ha et al., CoRL, 2020

Reward
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Learning on challenging terrains

Memory foam Rubber mat with crevices

Learning to Walk in Real World with Minimal Human Efforts, Ha et al., CoRL, 2020



How to learn locomotion?

Approach 2

Learn in simulation and sim-to-real
transfer




Why Sim-to-Real?

Real world

Slow

Unsafe

Expensive

Human supervision

Simulation

Fast
Safe
Cheap
Scalable



What's the sim-to-real gap?

Dynamics:




What are the causes of sim-to-real gap?

Unmodeled dynamics

Wrong simulation parameters
Inaccurate contact models
Latency

Actuator dynamics

Noise

Stochastic real environment
Numerical accuracy




Trend on Sim-to-Real
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How to overcome sim-to-real gap?

e Improve simulation
o System identification

m Sim-to-Real: Learning Agile Locomotion For Quadruped Robots

m Simulation-Based Design of Dynamic Controllers for Humanoid Balancing
e |mprove policy
o Domain randomization

m Sim-to-Real Transfer of Robotic Control with Dynamics Randomization

m Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World

Experience
o Domain adaptation

B Learning Agile Robotic Locomotion Skills by Imitating Animals

m Rapid Motor Adaptation for Legged Robots



https://arxiv.org/abs/1804.10332
https://www.cc.gatech.edu/~bboots3/files/Simulation_based_design.pdf
https://xbpeng.github.io/projects/SimToReal/2018_SimToReal.pdf
https://arxiv.org/pdf/1810.05687.pdf
https://arxiv.org/pdf/1810.05687.pdf
https://xbpeng.github.io/projects/Robotic_Imitation/2020_Robotic_Imitation.pdf
https://arxiv.org/abs/2107.04034

System ldentification



System Identification

Chassis

Motor &
bracket




System ldentification

e How to measure Mass?
e How to measure Center of Mass?

e How to measure Motor Damping (viscous friction)?

Spin the motor to a specific speed

Remove power

Record the data: motor speed vs. time

Fit the data based on physical equation about motor damping: 7=k
Find out motor damping coefficient k

o O O O O



Actuator dynamics and latency are two important causes of sim-to-real gap.

[Sim-to-Real: Learning Agile Locomotion For Quadruped Robots, RSS 2018]



https://arxiv.org/pdf/1804.10332.pdf

Actuator Model

Analytical models Neural network models

Rigid-body

simulation
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[Sim-to-Real: L earning Aqgile Locomotion For [Learning agile and dynamic motor skills for
Quadruped Robots, RSS 2018] legged robots, Science Robotics 2019]
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https://arxiv.org/pdf/1804.10332.pdf
https://arxiv.org/pdf/1804.10332.pdf
https://arxiv.org/pdf/1901.08652.pdf
https://arxiv.org/pdf/1901.08652.pdf
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[Sim-to-Real: Learning Agile Locomotion For Quadruped Robots, RSS 2018]



https://arxiv.org/pdf/1804.10332.pdf

Reinforcement Learning

T l Optimal policy
manual system , . :
identification Physics Simulation Robot Deployment
Limitations

o Disassemble the robot

o Decide what parameters to identify

o Design experiments for individual parameters
o Lots of manual work



Reinforcement Learning

T '

Physics Simulation

Initial guess of
physics parameters

[Simulation-based design of dynamic controllers for humanoid balancing, IROS 2016]



https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7759424

Reinforcement Learning

T l Optimal policy

Initial guess of

) Physics Simulation Robot Deployment
physics parameters

[Simulation-based design of dynamic controllers for humanoid balancing, IROS 2016]



https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7759424

Simulation-based design of dynamic controllers for humanoid balancing, IROS 2016



https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7759424

Reinforcement Learning }

T !

Optimal policy

Initial guess of

: Physics Simulation
physics parameters

Simulation parameters T

System Identification

Robot Deployment

Trajectories
in sim

L
J

Trajectories
On robot

[Simulation-based design of dynamic controllers for humanoid balancing, IROS 2016]



https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7759424

Reinforcement Learning }
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) Physics Simulation
physics parameters

Simulation parameters T

System ldentification

Robot Deployment

Trajectories
in sim

L
}

Trajectories
On robot

[Simulation-based design of dynamic controllers for humanoid balancing, IROS 2016]



https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7759424

Automatic System ldentification

e Measure sim-to-real discrepancy

0

1) fTH
= argmi EZ i ﬂflz‘(t)]—[%(t;eau%vdt
i—1

e Optimize the physics parameters

(@)

Covariance Matrix Adaptation-Evolution Strateqy



https://link.springer.com/chapter/10.1007/3-540-32494-1_4

Latency

Ground truth physical
parameter:

Latency = 5ms

Actuator strength = 10nm

Actuator
strength



Latency
Randomly sampled
physical parameter:
Latency = 1ms
Actuator strength = 2Nm

Sim trajectory:

—
time

Real trajectory:

I/\/

—
time

state

Actuator
s strength
Loss: 3 [ 11t - a(tO) et |
=1



Latency

Actuator
strength



Latency

Actuator
strength
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Latency

Actuator
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[Simulation-based design of dynamic controllers for humanoid balancing, IROS 2016]



https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7759424

Automatic System ldentification

Initial guess of
physics parameters

Simulation

e Limitations
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Trajectories
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J

Manual selection of physical parameters needed
Do not work if sim and real trajectory diverge too quickly
Not account for unmodeled dynamics
Physical parameters overfit



Domain Randomization



Domain Randomization

e Oiriginal objective: reward maximization

T—-1
IE7'~p('r|7r) [Z T(St, at)]
t=0

[Sim-to-Real Transfer of Robotic Control with Dynamics Randomization, ICRA 2018]



https://xbpeng.github.io/projects/SimToReal/2018_SimToReal.pdf

Domain Randomization

e Oiriginal objective: reward maximization

T-1
IETrvp(’r|7r) [Z T(Sty at)]
t=0

e New objective with domain randomization

T-1 Parameter Range
Link Mass [0.25,4]x default mass of each link
MLEP ]ETNP("'|‘“' Z T(St’ at) Joint Damping [0.2,20] x default damping of each joint
H t=0 Puck Mass [0.1,0.4]kg
Puck Friction [0.1,5
: Puck Damping [0.01,0.2]Ns/m

Physical parameters Table Height [0.73,0.77)m
Controller Gains [0.5, 2] x default gains
Action Timestep A [125,1000]s~*

[Sim-to-Real Transfer of Robotic Control with Dynamics Randomization, ICRA 2018]



https://xbpeng.github.io/projects/SimToReal/2018_SimToReal.pdf

Memory (LSTM) in sim-to-real

128 128 128

=:> " \;e:w:»o I
- :?@

Layer # 1 2 3 4 5
\—

[Sim-to-Real Transfer of Robotic Control with Dynamics Randomization, ICRA 2018]



https://xbpeng.github.io/projects/SimToReal/2018_SimToReal.pdf

our method no randomization
during training
e Limitations

o Trade optimality for robustness
o  Careful tuning needed for the range of randomization

[Sim-to-Real Transfer of Robotic Control with Dynamics Randomization, ICRA 2018]



https://xbpeng.github.io/projects/SimToReal/2018_SimToReal.pdf

our method feedforward policy
(no LSTM)

Limitations
o Trade optimality for robustness
o  Careful tuning needed for the range of randomization

[Sim-to-Real Transfer of Robotic Control with Dynamics Randomization, ICRA 2018]



https://xbpeng.github.io/projects/SimToReal/2018_SimToReal.pdf

Can we use a small
amount of real data
to mitigate these

limitations? \

e Limitations
o Trade optimality for robustness
o  Careful tuning needed for the range of randomization



Domain Adaptation



Domain Adaptation

Mass Inertia

Motor Strength

Motor Friction

[Learning Adile Robotic Locomotion Skills by Imitating Animals, RSS 2020]



https://xbpeng.github.io/projects/Robotic_Imitation/index.html

Domain Adaptation

Mass

Inertia

Motor Strength
Ll, — | Motor Friction
Latency
Lateral Friction
Etc...

[Learning Agile Robotic Locomotion Skills by Imitating Animals, RSS 2020]



https://xbpeng.github.io/projects/Robotic_Imitation/index.html

Domain Adaptation

[,L:> Encoder :>Z

[Learning Agile Robotic Locomotion Skills by Imitating Animals, RSS 2020]



https://xbpeng.github.io/projects/Robotic_Imitation/index.html

Domain Adaptation

JL [ >| Encoder ﬁzﬁ

[Learning Agile Robotic Locomotion Skills by Imitating Animals, RSS 2020]



https://xbpeng.github.io/projects/Robotic_Imitation/index.html

Domain Adaptation

g > Policy :>a

[Learning Agile Robotic Locomotion Skills by Imitating Animals, RSS 2020]



https://xbpeng.github.io/projects/Robotic_Imitation/index.html

Domain Adaptation

g > Policy :>a

T=1
z* =argmax E,__,(r|rz) [Z 'ytrt]
“ t=0

[Learning Agile Robotic Locomotion Skills by Imitating Animals, RSS 2020]



https://xbpeng.github.io/projects/Robotic_Imitation/index.html

Domain Adaptation vs. Domain Randomization

Dog Pace

No Randomization Randomization Domain Adaptation (Ours)



Domain Adaptation vs. Domain Randomization

Dog Spin

No Randomization Randomization Domain Adaptation (Ours)

e Limitations
o The latent space may not contain the optimal vector for the real world
o Policy is not updated: Performance does not necessarily improve with more real data
o Adaptation is slow (requires a few episodes)



Domain Adaptation: Rapid Motor Adaptation (RMA)

A) Training in Simulation =~ e

e

Mass, COM, Friction Base Policy (1) [F=5  is FIEE
Terrain Height (e) —»| Env Factor Encoder () |—» ' G 2y
Motor Strength . ! :

*Trainable Modules in Red

Physics Simulation

[RMA: Rapid Motor Adaptation for Legged Robots, RSS 2021]



https://arxiv.org/pdf/2107.04034.pdf

Domain Adaptation: Rapid Motor Adaptation (RMA)

A) Training in Simulation =~ cco e

Phase1

Mass, COM, Friction Base Policy (1) =%
Terrain Height (e) —»| Env Factor Encoder () |—> '
Motor Strength ' '

A ' H

5 4
* ]
r

*Trainable Modules in Red Regress
Phase 2

( X—51,9_5 )=

¢ Adaptation Module (¢) —>
( xpa, J»

[RMA: Rapid Motor Adaptation for Leqgged Robots, RSS 2021]



https://arxiv.org/pdf/2107.04034.pdf

Domain Adaptation: Rapid Motor Adaptation (RMA)

A) Training in Simulation ey .

Phase 1

Mass, COM, Friction
Terrain Height (e)
Motor Strength

Base Policy ()

*Trainable Modules in Red

Phase 2

—»| Env Factor Encoder () |—»
A

Regress

¥

( X—51,9_5

)

Adaptation Module (¢) =

[ X101

)

B) Deployment

( Xi—s0 at—Sl

Base Policy ()

[ X at 1

Adaptatlon Module (¢ '
10 Hz

[RMA: Rapid Motor Adaptation for Leqgged Robots, RSS 2021]



https://arxiv.org/pdf/2107.04034.pdf

SRR



http://www.youtube.com/watch?v=nBy1piJrq1A&t=7

Discuss: Does sim-to-real solve everything?

e Some physical phenomena are difficult to model




Discuss: Does sim-to-real solve everything?

e Some physical phenomena are difficult to model
e Impossible to capture the diversity of real-world scenarios




Sim-to-Real: A Complete Picture

It forward off-policy

_ B I\

if fallen

\ il /

policy

[Rudin et al., 2021] [RMA, Kumar et al., 2021] [Smith et al., 2022]



Questions?



