Reinforcement Learning on Legged Robots

Jie Tan Google DeepMind

CS 224R Deep Reinforcement Learning May 10, 2023 @ Stanford University

Today's Class

- 1. State-of-the-art of learning legged locomotion via Deep RL?
- 2. Two approaches to apply Deep RL on real robots
 - a. Train in the real world
 - b. Sim-to-real transfer

Goal

- Understand challenges of applying RL in the real world
- Understand the root causes of sim-to-real gap
- Learn the most popular sim-to-real transfer methods

Reinforcement Learning for Legged Robots State-of-the-Art

RL Training in the Real World

Learning to Walk via Deep Reinforcement Learning, Haarnoja et al., RSS 2019 Learning to Walk in the Real World with Minimal Human Effort, Ha et al., CoRL 2020

RL in Simulation and Sim-to-Real Transfer

Sim-to-Real: Learning Agile Locomotion For Quadruped Robots, Tan et al., RSS 2018

RL in Simulation and Sim-to-Real Transfer

Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning, Rudin et al., CoRL 2021

Fast Adaptation to New Environments

RMA: Rapid Motor Adaptation for Legged Robots, Kumar et al., RSS 2021

Style

Fast and Efficient Locomotion via Learned Gait Transitions, Yang et al., CoRL 2021

Learning Agile Robotic Locomotion Skills by Imitating Animals, Peng et al., RSS 2020

Testing the capabilities on obstacle avoidance along the way

Learning robust perceptive locomotion for quadrupedal robots in the wild, Miki et al., Science Robotics 2022

How to learn locomotion?

Approach 1 Directly train in the real world Approach 2 Learn in simulation and sim-to-real transfer

Learning in real world

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills. Peng et al., SIGGRAPH 2018

Learning in real world

Learning in real world

Data efficiency
Human supervision
Safety

2x real time

Initial Exploration

Problem Setup

Observations:

[8 motor angles, roll, pitch, prev_action] * last 6 timesteps

Action:

8 desired motor angles

Reward function:
$$r_{\mathbf{w}}(\mathbf{s}, \mathbf{a}) = [w_1, w_2]^T \cdot \mathbf{R}_0^{-1}(\mathbf{x}_t - \mathbf{x}_{t-1}) + w_3(\theta_t - \theta_{t-1}) - 0.001 |\ddot{\mathbf{a}}|^2$$

Soft Actor Critic

$$\max_{\pi \in \Pi} \mathbb{E}_{\tau \sim \rho_{\pi}} \left[\sum_{t=0}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

s.t. $\mathbb{E}_{\rho_{\pi}} \left[-\log \left(\pi_{t}(\cdot | \mathbf{s}_{t}) \right) \right] \geq \mathcal{H}$

Safety-Constrained SAC: Formulation

$$\max_{\pi \in \Pi} \mathbb{E}_{\tau \sim \rho_{\pi}} \left[\sum_{t=0}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
Safety Constraints
s.t. $\mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim \rho_{\pi}} \left[f_{s}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \ge 0, \forall t$
 $\mathbb{E}_{\rho_{\pi}} \left[-\log \left(\pi_{t}(\cdot | \mathbf{s}_{t}) \right) \right] \ge \mathcal{H}$

where

$$f_s(\mathbf{s}_t, \mathbf{a}_t) = \min(\hat{p} - |p_t|, \hat{r} - |r_t|)$$

Safety-Constrained SAC: Formulation

$$\max_{\pi \in \Pi} \mathbb{E}_{\tau \sim \rho_{\pi}} \left[\sum_{t=0}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

s.t. $\mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim \rho_{\pi}} \left[f_{s}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \geq 0, \forall t.$
 $\mathbb{E}_{\rho_{\pi}} \left[-\log \left(\pi_{t}(\cdot | \mathbf{s}_{t}) \right) \right] \geq \mathcal{H}$

where

$$f_s(\mathbf{s}_t, \mathbf{a}_t) = \min(\hat{p} - |p_t|, \hat{r} - |r_t|)$$

Solving CMDP: Lagrangian Method

$$\max_{\pi} \min_{\lambda \geq 0} \mathbb{E}_{\pi \sim
ho_{\pi}} \left[\sum_{t=0}^{T} r(s_t, a_t) + \lambda f_s(s_t, a_t)
ight]$$

$$\max_{\pi} \min_{\lambda \geq 0} \mathbb{E}_{\pi \sim
ho_{\pi}} \left[\sum_{t=0}^{T} r(s_t, a_t) + \lambda f_s(s_t, a_t)
ight]$$

Safety-Constrained SAC: Evaluation

Learning on challenging terrains

Memory foam

Rubber mat with crevices

How to learn locomotion?

Approach 1

Directly train in the real world

Approach 2

Learn in simulation and sim-to-real transfer

Why Sim-to-Real?

Real world

- Slow
- Unsafe
- Expensive
- Human supervision

Simulation

- Fast
- Safe
- Cheap
- Scalable

What's the sim-to-real gap?

Dynamics:

Perception:

What are the causes of sim-to-real gap?

- Unmodeled dynamics
- Wrong simulation parameters
- Inaccurate contact models
- Latency
- Actuator dynamics
- Noise
- Stochastic real environment
- Numerical accuracy

Trend on Sim-to-Real

How to overcome sim-to-real gap?

- Improve simulation
 - System identification
 - Sim-to-Real: Learning Agile Locomotion For Quadruped Robots
 - Simulation-Based Design of Dynamic Controllers for Humanoid Balancing
- Improve policy
 - Domain randomization
 - Sim-to-Real Transfer of Robotic Control with Dynamics Randomization
 - Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience
 - Domain adaptation
 - Learning Agile Robotic Locomotion Skills by Imitating Animals
 - Rapid Motor Adaptation for Legged Robots

System Identification
System Identification

System Identification

- How to measure Mass?
- How to measure Center of Mass?
- How to measure Motor Damping (viscous friction)?
 - Spin the motor to a specific speed
 - Remove power
 - Record the data: motor speed vs. time
 - Fit the data based on physical equation about motor damping: $\tau_{d} = k\omega$
 - Find out motor damping coefficient k

Actuator dynamics and latency are two important causes of sim-to-real gap.

[Sim-to-Real: Learning Agile Locomotion For Quadruped Robots, RSS 2018]

Actuator Model

[Sim-to-Real: Learning Agile Locomotion For Quadruped Robots, RSS 2018]

[Sim-to-Real: Learning Agile Locomotion For Quadruped Robots, RSS 2018]

• Limitations

- Disassemble the robot
- Decide what parameters to identify
- Design experiments for individual parameters
- Lots of manual work

Automatic System Identification

Measure sim-to-real discrepancy

$$\boldsymbol{\theta} = \arg\min\left(\frac{1}{n}\sum_{i=1}^{n}\int_{0}^{T+1}||\tilde{\mathbf{q}}_{i}(t)-\mathbf{q}_{i}(t;\boldsymbol{\theta})||_{\mathbf{W}}^{2}\mathrm{d}t\right)$$

- Optimize the physics parameters
 - <u>Covariance Matrix Adaptation-Evolution Strategy</u>

Ground truth physical parameter: Latency = 5ms Actuator strength = 10nm

Automatic System Identification

Limitations

- Manual selection of physical parameters needed
- Do not work if sim and real trajectory diverge too quickly
- Not account for unmodeled dynamics
- Physical parameters overfit

Domain Randomization

Domain Randomization

• Original objective: reward maximization

$$\mathbb{E}_{\tau \sim p(\tau|\pi)} \left[\sum_{t=0}^{T-1} r(s_t, a_t) \right]$$

Domain Randomization

• Original objective: reward maximization

$$\mathbb{E}_{\tau \sim p(\tau|\pi)} \left[\sum_{t=0}^{T-1} r(s_t, a_t) \right]$$

• New objective with domain randomization

$$\mathbb{E}_{\mu \sim \rho_{\mu}} \left[\mathbb{E}_{\tau \sim p(\tau \mid \pi, \mu)} \left[\sum_{t=0}^{T-1} r(s_t, a_t) \right] \right]$$
Physical parameters

Memory (LSTM) in sim-to-real

our method

no randomization during training

• Limitations

- Trade optimality for robustness
- Careful tuning needed for the range of randomization

our method

feedforward policy (no LSTM)

• Limitations

- Trade optimality for robustness
- Careful tuning needed for the range of randomization

• Limitations

- Trade optimality for robustness
- Careful tuning needed for the range of randomization

Domain Adaptation vs. Domain Randomization

Dog Pace

No Randomization

Randomization

Domain Adaptation (Ours)

Domain Adaptation vs. Domain Randomization

Dog Spin

No Randomization

Randomization

Domain Adaptation (Ours)

- Limitations
 - The latent space may not contain the optimal vector for the real world
 - Policy is not updated: Performance does not necessarily improve with more real data
 - Adaptation is slow (requires a few episodes)

Domain Adaptation: Rapid Motor Adaptation (RMA)

[RMA: Rapid Motor Adaptation for Legged Robots, RSS 2021]

Domain Adaptation: Rapid Motor Adaptation (RMA)

[RMA: Rapid Motor Adaptation for Legged Robots, RSS 2021]

Domain Adaptation: Rapid Motor Adaptation (RMA)

[RMA: Rapid Motor Adaptation for Legged Robots, RSS 2021]

Discuss: Does sim-to-real solve everything?

• Some physical phenomena are difficult to model

Discuss: Does sim-to-real solve everything?

- Some physical phenomena are difficult to model
- Impossible to capture the diversity of real-world scenarios

Sim-to-Real: A Complete Picture

Questions?