# **Reinforcement Learning:** MDPs and Policy Gradients

CS 224R

## Reminders

Since Wednesday: Homework 1 is out Next Monday: Project survey due 4/19:

- Homework 1 due, Homework 2 out

Policy gradients

Variance reduction

### Key learning goals:

- The basic definitions of reinforcement learning
- Understanding the policy gradient algorithm

## The Plan

Reinforcement learning problem

Variance reduction

## The Plan

Reinforcement learning problem

Policy gradients

# Sequential decision making problem

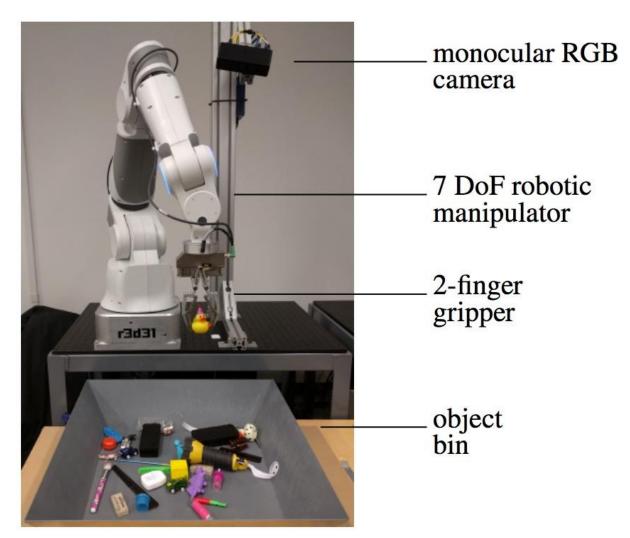
There are multiple actions to be taken

Each one of them influences the future

We'll capture them in a form of a policy

How do we evaluate a policy?

How do we optimize a policy for the desired outcome?





### object classification



### supervised learning

#### iid data

#### large labeled, curated dataset

well-defined notions of success

### object manipulation



### sequential decision making

#### action affects next state

### how to collect data? what are the labels?

what does success mean?

## Terminology & notation

 $\mathbf{s}_t$  – state



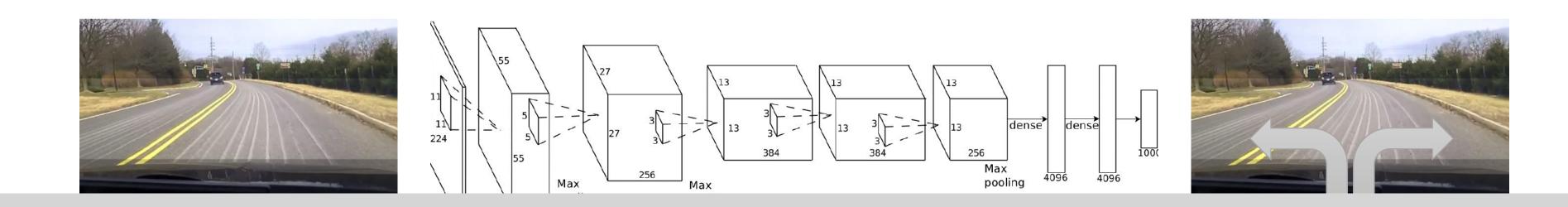
#### $\mathbf{o}_t$ – observation

#### Slide adapted from Sergey Levine

#### $\mathbf{o}_t$ – observation

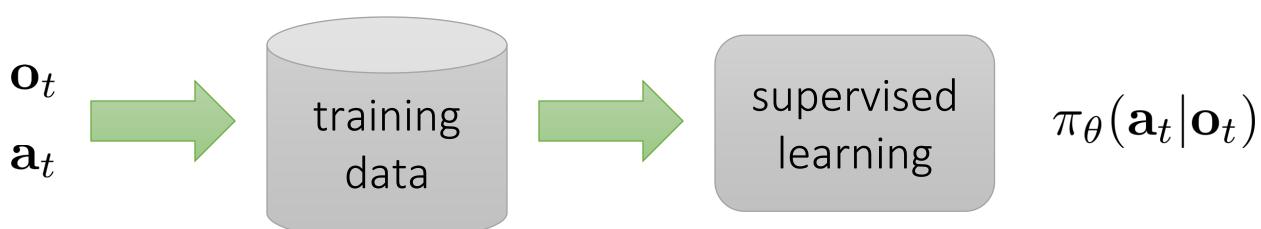
 $\mathbf{s}_t$  – state

# Imitation Learning



# Imitation Learning vs Reinforcement Learning?

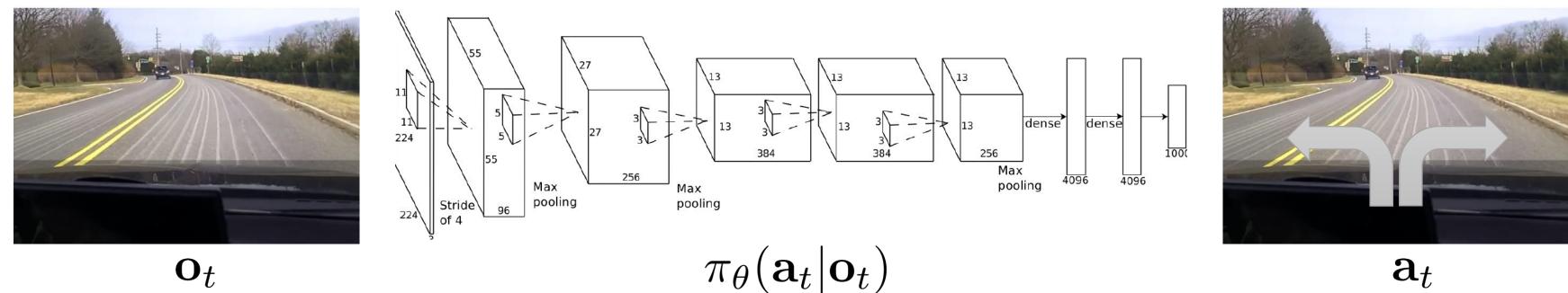




Images: Bojarski et al. '16, NVIDIA



## Reward functions



 $\mathbf{o}_t$ 

#### which action is better or worse?

#### $r(\mathbf{s}, \mathbf{a})$ : reward function

tells us which states and actions are better



high reward

#### Slide adapted from Sergey Levine

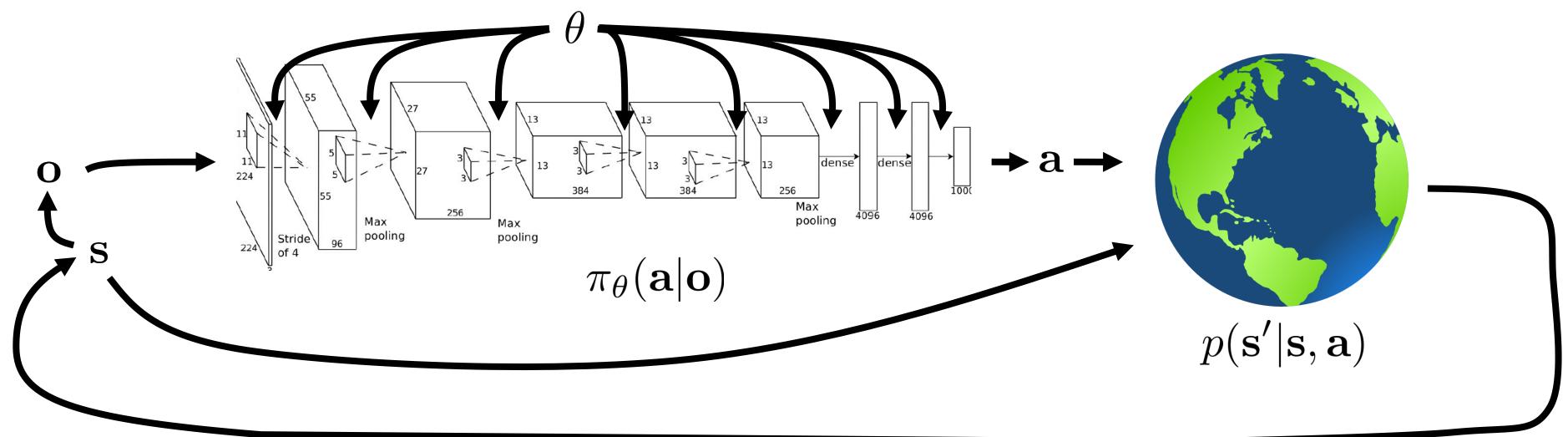
 $\mathbf{a}_t$ 

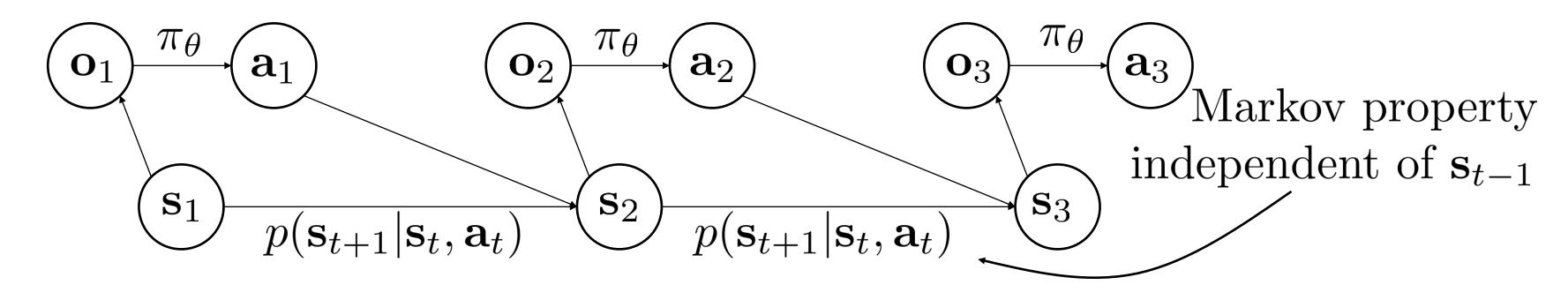
#### $\mathbf{s}, \mathbf{a}, r(\mathbf{s}, \mathbf{a}), \text{ and } p(\mathbf{s'}|\mathbf{s}, \mathbf{a}) \text{ define}$ Markov decision process



low reward

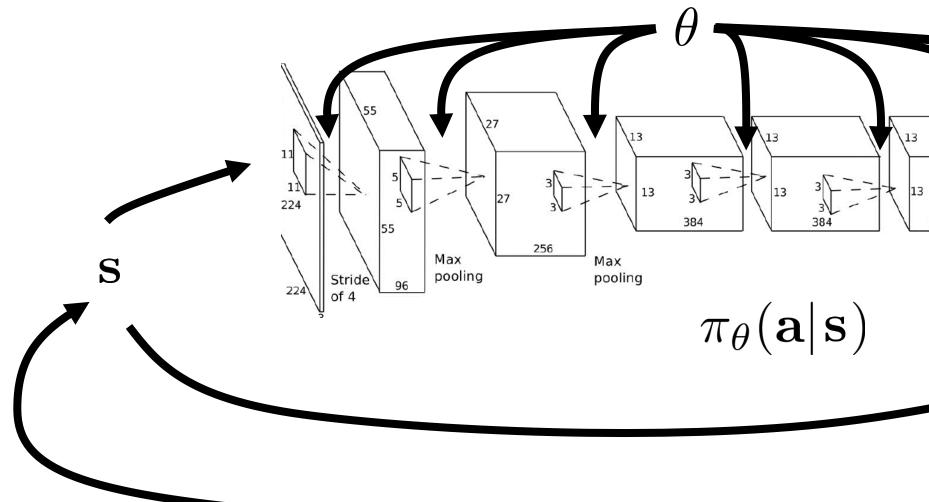
# The goal of reinforcement learning

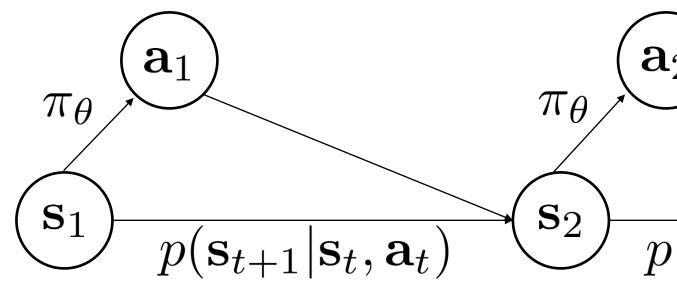






#### The goal of reinforcement learning 3 dense 256 Max pooling Max Max $\mathbf{S}$ pooling pooling 224 Stride of 4 $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ $p(\mathbf{s}'|\mathbf{s},\mathbf{a})$ $\mathbf{a}_2$ $\mathbf{a}_3$ $\mathbf{a}_1$ Markov property $\pi_{\theta}$ $\pi_{\theta}$ $\pi_{\theta}$ independent of $\mathbf{s}_{t-1}$ $\mathbf{S}_3$ $\mathbf{s}_1$ $\mathbf{s}_2$ $p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)$





T $\theta^{\star} = \arg\max_{\theta} E_{\tau \sim \pi_{\theta}(\tau)} \left| \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right|$  $\pi_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$ t=1 $\pi_{\theta}(\tau)$ 

# What is a reinforcement learning task?

R

Supervised learning

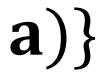
data generating distributions, loss

#### A task: $\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y}|\mathbf{x}), \mathcal{L}_i\}$

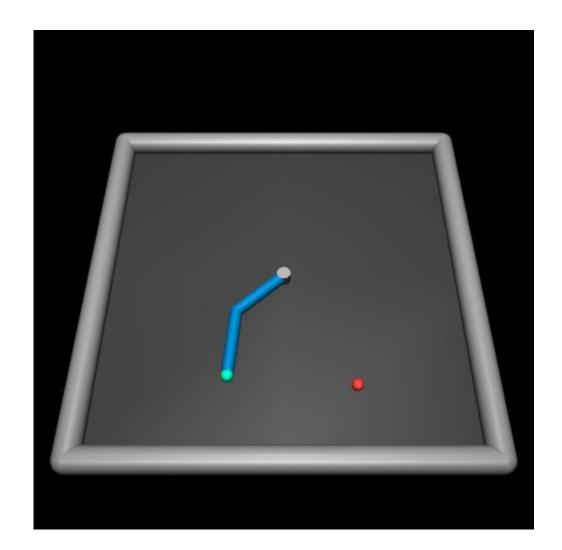
Reinforcement learning  
action space dynamics  

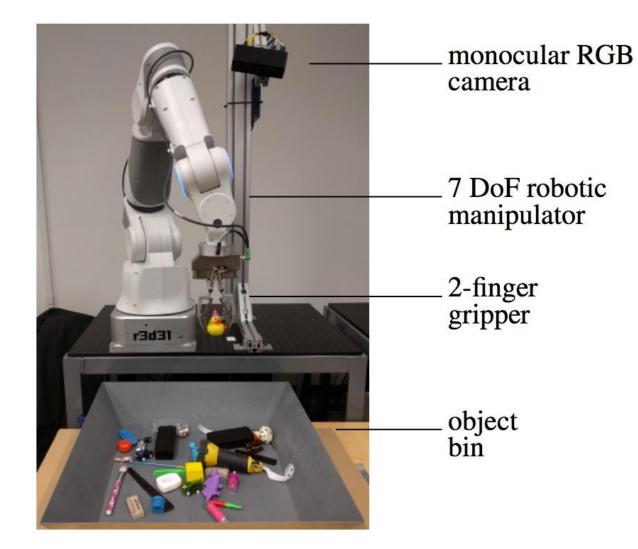
$$\downarrow$$
  $\downarrow$   $\downarrow$   $\downarrow$   
A task:  $\mathcal{T}_i \triangleq \{S_i, \mathcal{A}_i, p_i(\mathbf{s}_1), p_i(\mathbf{s}' | \mathbf{s}, \mathbf{a}), r_i(\mathbf{s}, \mathbf{s}, \mathbf{s}), r_i(\mathbf{s}, \mathbf{s}), r$ 

much more than the semantic meaning of task!



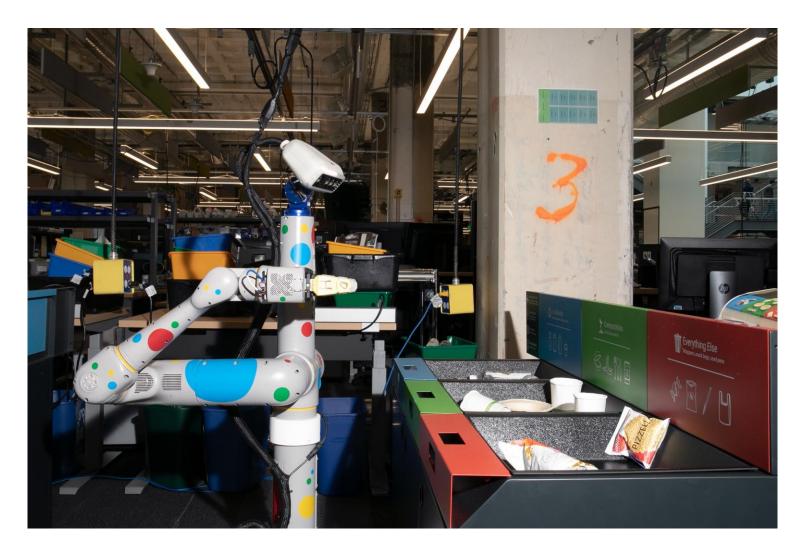
# Examples of actions and states in RL





| State: | pos and vels of all joints | camera    |
|--------|----------------------------|-----------|
|        | goal position              | height-te |

Action: joint angles/torques end-effector pose



image

to-bottom

gripper closedness

camera image + height-to-bottom initial image

end-effector pose + gripper

base movement





Policy gradients

Variance reduction

## The Plan

Reinforcement learning problem

# Sequential decision making problem

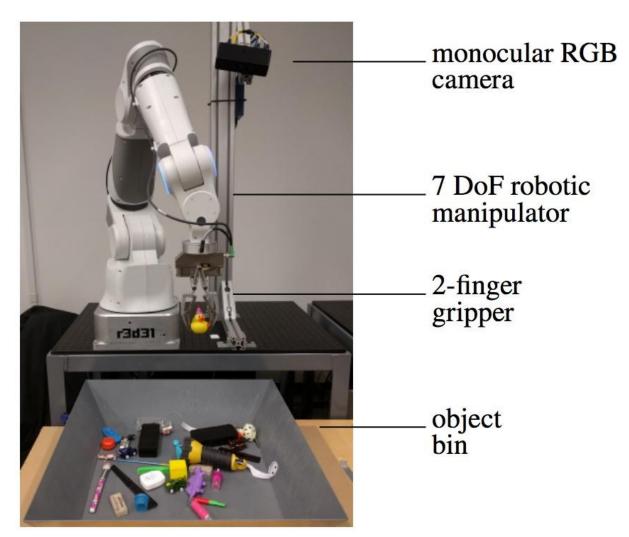
There are multiple actions to be taken

Each one of them influences the future

We'll capture them in a form of a policy

How do we evaluate a policy?

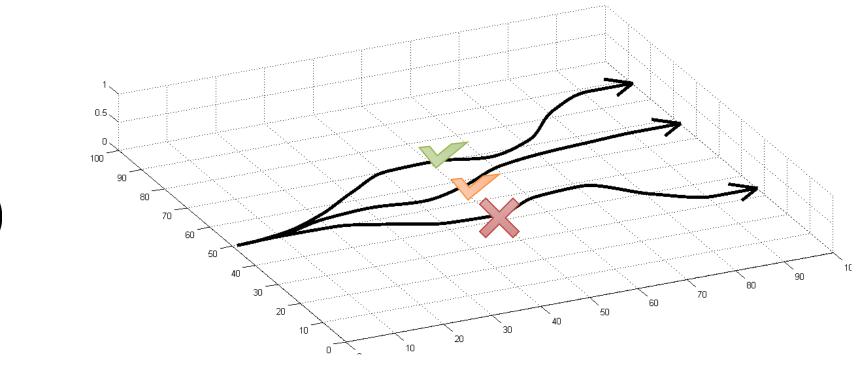
How do we optimize a policy for the desired outcome?

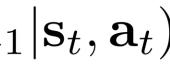


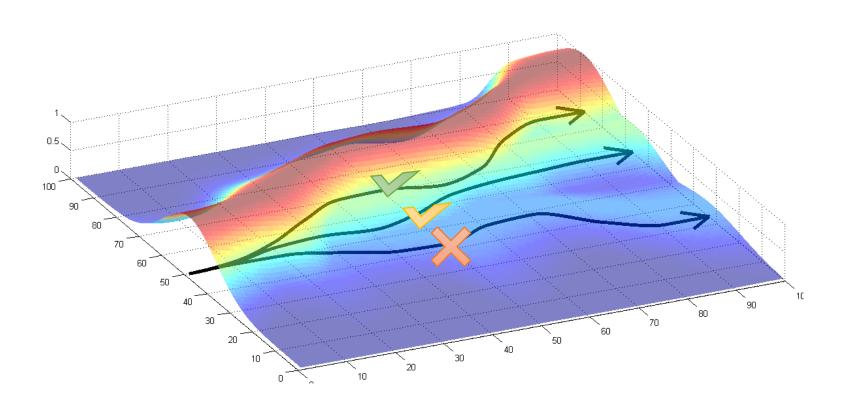


# What is our objective?

 $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) \qquad \sum_t r(\mathbf{s}_t, \mathbf{a}_t)$  $\pi_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$ t=1 $\pi_{\theta}(\tau)$  $J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$ What is the resulting outcome?







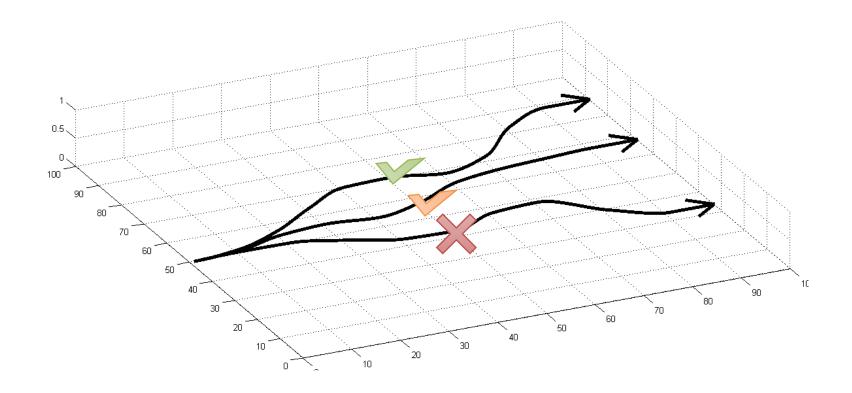
## Evaluating the objective

$$\theta^{\star} = \arg \max_{\theta} E_{\tau \sim \pi_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

$$J(\theta)$$

$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t})$$

Slide adapted from Sergey Levine



#### $\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$

#### sum over samples from $\pi_{\theta}$



### The anatomy of a reinforcement learning algorithm

generate samples (i.e. run the policy) compute  $\hat{Q} = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}$  (MC policy gradient) fit  $Q_{\phi}(\mathbf{s}, \mathbf{a})$  (actor-critic, Q-learning) estimate  $p(\mathbf{s}'|\mathbf{s}, \mathbf{a})$  (model-based)

 $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$  (policy gradient)  $\pi(\mathbf{s}) = \arg \max Q_{\phi}(\mathbf{s}, \mathbf{a}) \text{ (Q-learning)}$ optimize  $\pi_{\theta}(\mathbf{a}|\mathbf{s})$  (model-based)



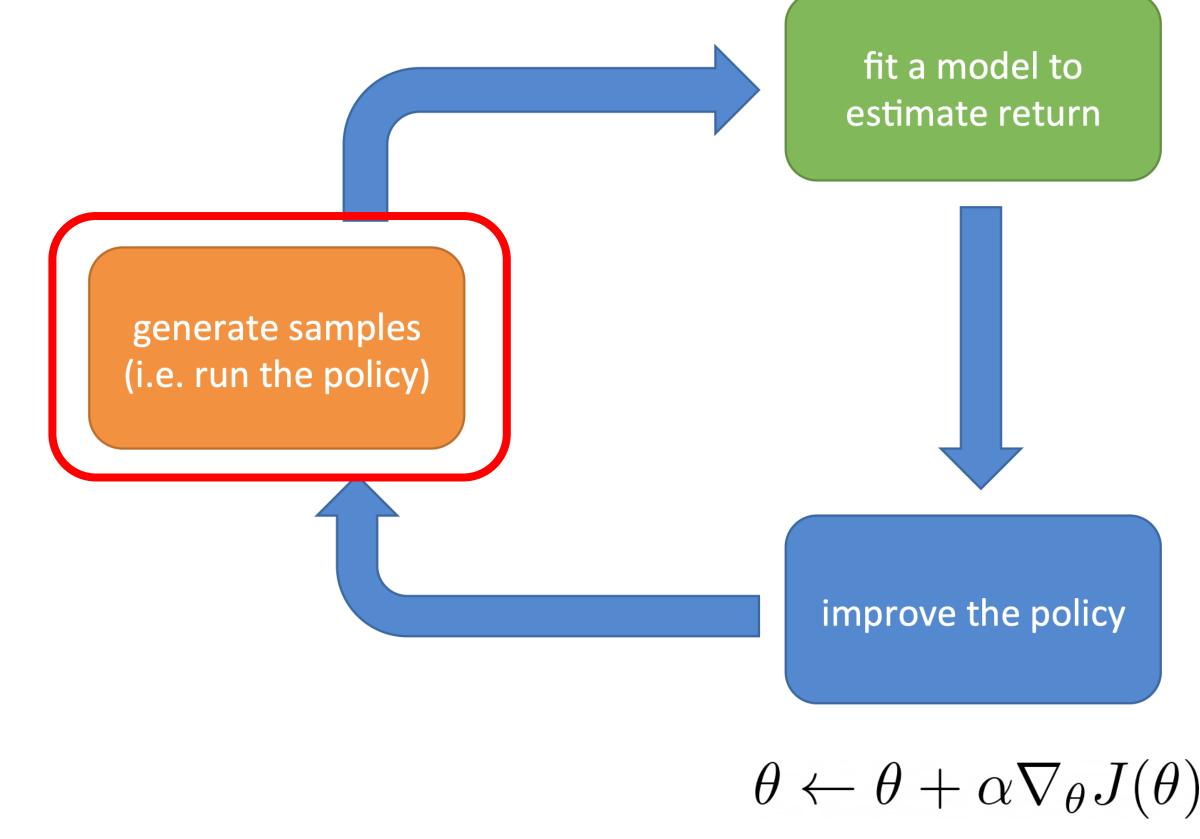
## Why is there so many RL algorithms?

Different tradeoffs!

- Continuous vs discrete actions
- Is it easier to learn the environment or the policy?
- Sample complexity

Off or on policy algorithms:

- **Off policy**: able to improve the policy without generating new samples from that policy
- On policy: each time the policy is changed, even a little bit, we need to generate new samples



## Direct policy differentiation

$$\theta^{\star} = \arg \max_{\theta} E_{\tau \sim \pi_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

$$J(\theta)$$

$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)] = \int \pi_{\theta}(\tau)r(\tau)d\tau$$
$$\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t})$$
$$\nabla_{\theta}J(\theta) = \int \underline{\nabla_{\theta}\pi_{\theta}(\tau)}r(\tau)d\tau = \int \pi_{\theta}(\tau)\nabla_{\theta}\log\tau$$

#### Slide adapted from Sergey Levine

# a convenient identity $\pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) = \pi_{\theta}(\tau) \frac{\nabla_{\theta} \pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \nabla_{\theta} \pi_{\theta}(\tau)$

### $\log \pi_{\theta}(\tau) r(\tau) d\tau = E_{\tau \sim \pi_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)]$



## Direct policy differentiation

$$\begin{aligned} \theta^{\star} &= \arg \max_{\theta} J(\theta) \\ J(\theta) &= E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)] \\ \nabla_{\theta} J(\theta) &= E_{\tau \sim \pi_{\theta}(\tau)}[\nabla_{\theta} \log \pi_{\theta}(\tau)r(\tau)] \\ &\downarrow \\ \nabla_{\theta} \int (\theta) &= E_{\tau \sim \pi_{\theta}(\tau)}[\nabla_{\theta} \log \pi_{\theta}(\tau)r(\tau)] \\ &\downarrow \\ \nabla_{\theta} \int \left[ \log r(\mathbf{s}_{1}) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t}) + \log p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \\ \nabla_{\theta} J(\theta) &= E_{\tau \sim \pi_{\theta}(\tau)} \left[ \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t}) \right) \left( \sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right] \end{aligned}$$



# Evaluating the policy gradient

recall: 
$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right] \approx \frac{1}{N} \sum_{i}^{N} \sum_{t}^{N} \left[ \sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right] = \sum_{i}^{N} \sum_{t}^{N} \sum_{i}^{N} \sum_{i}^{N}$$

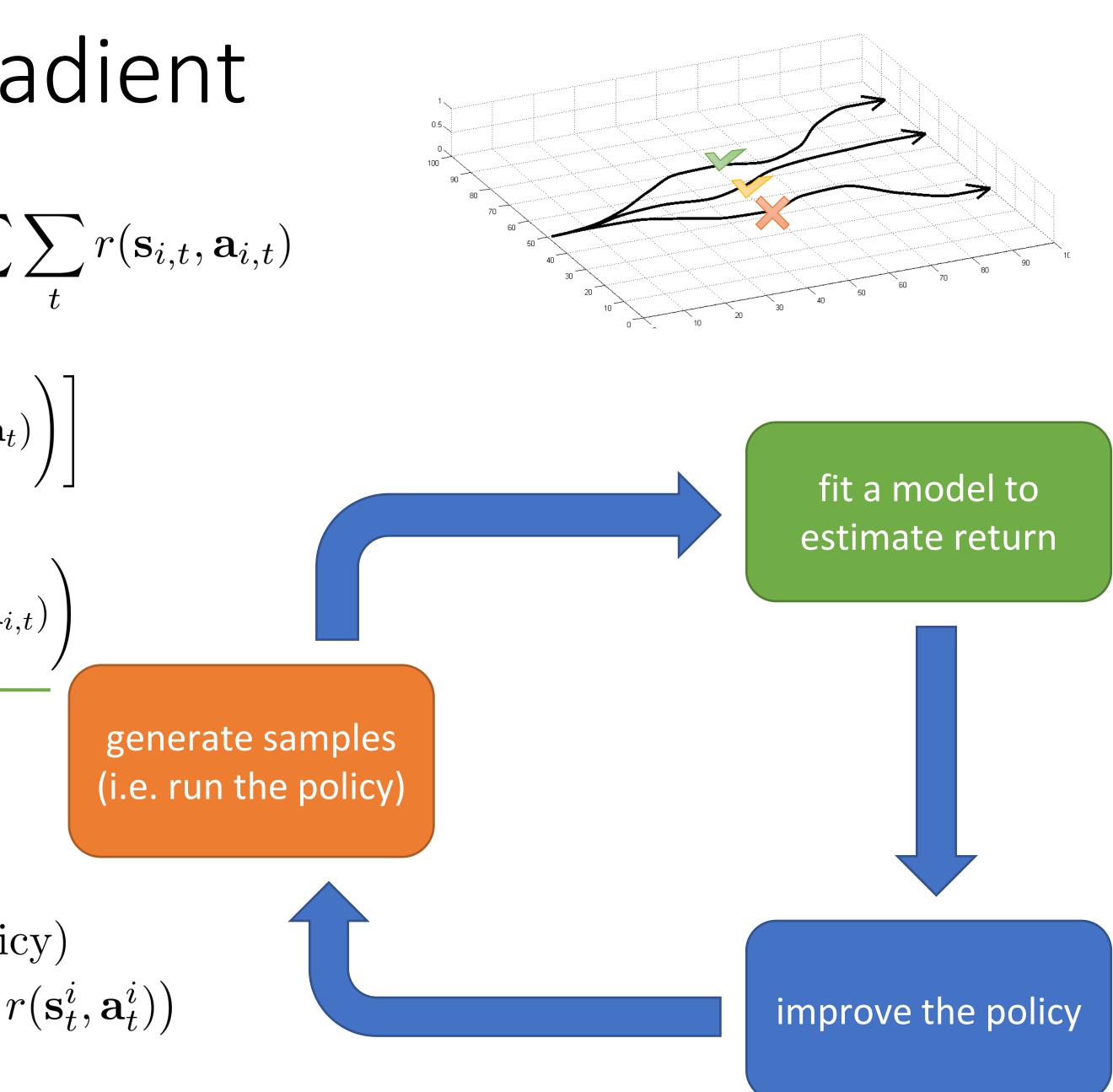
$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[ \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left( \sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right] \left( \sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right) \left( \sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \left( \sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left( \sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

 $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ 

REINFORCE algorithm:

1. sample  $\{\tau^i\}$  from  $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$  (run the policy) 2.  $\nabla_{\theta} J(\theta) \approx \sum_i \left( \sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^i | \mathbf{s}_t^i) \right) \left( \sum_t r(\mathbf{s}_t^i, \mathbf{a}_t^i) \right)$ 3.  $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ 

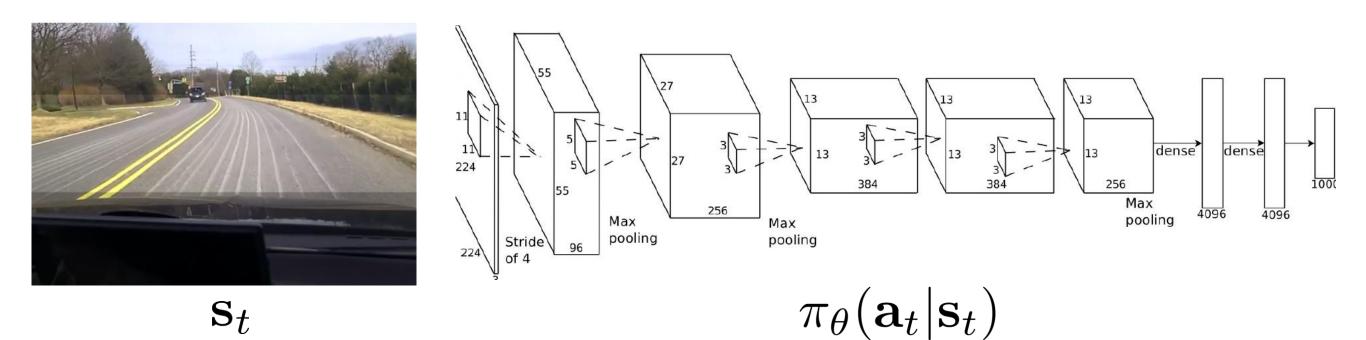


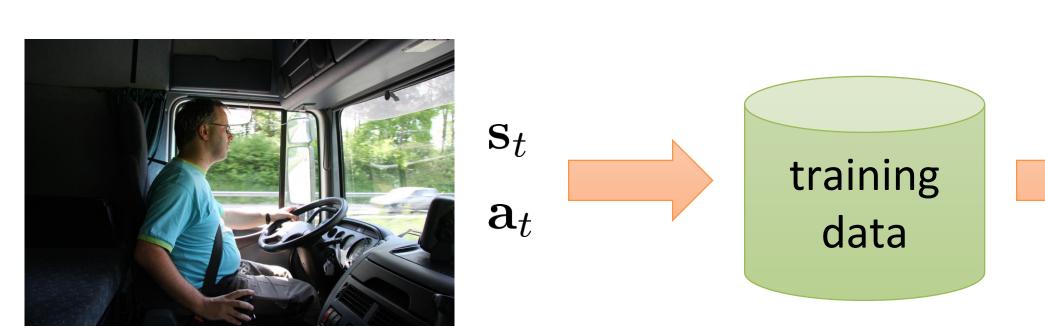
# Comparison to maximum likelihood

policy gradient: 
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left( \sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

maximum likelihood:

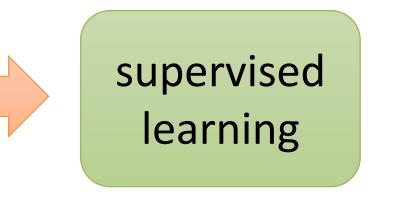
$$\nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right)$$











 $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ 

# What did we just do?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left( \sum_{t=1}^{T} r(\mathbf{s}_{i,t}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \underbrace{\nabla_{\theta} \log \pi_{\theta}(\tau_{i}) r(\tau_{i})}_{T} \qquad \text{maxim}$$
$$\sum_{t=1}^{T} \nabla_{\theta} \log_{\theta} \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t})$$

good stuff is made more likely bad stuff is made less likely

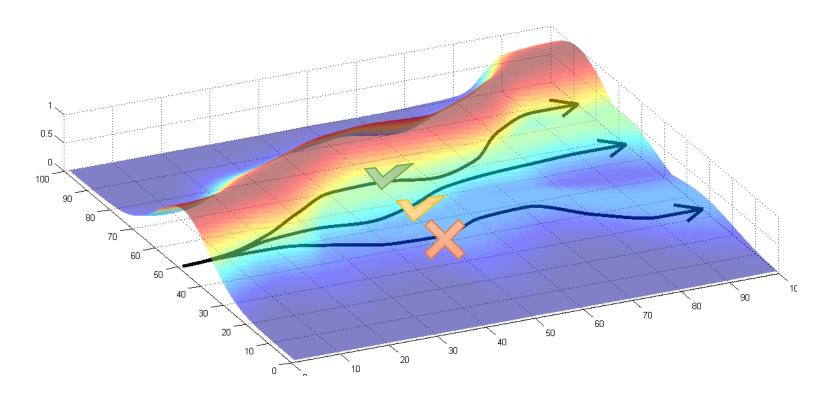
simply formalizes the notion of "trial and error"! REINFORCE algorithm:

1. sample 
$$\{\tau^i\}$$
 from  $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$  (run it on the  $2$ .  $\nabla_{\theta} J(\theta) \approx \sum_i \left( \sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^i | \mathbf{s}_t^i) \right) \left( \sum_t \pi_{\theta} \int_{\theta} d\theta + \alpha \nabla_{\theta} J(\theta) \right)$ 

Slide adapted from Sergey Levine

 $(t,t,\mathbf{a}_{i,t})$ 

# num likelihood: $\nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_i)$



e robot)  $r(\mathbf{s}_t^i, \mathbf{a}_t^i))$ 

# Policy Gradients

policy gradient:  $\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[ \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}) \right) \right] = E_{\tau \sim \pi_{\theta}(\tau)} \left[ \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}) \right) \right] \right]$ 

#### **Pros:**

- + Simple
- + Easy to combine with existing multi-task algorithms

#### Cons:

- Produces a **high-variance** gradient
- Requires **on-policy** data
  - Cannot reuse existing experience to estimate the gradient!
    - Importance weights can help, but also high variance

$$_{t}|\mathbf{s}_{t})\right)\left(\sum_{t=1}^{T}r(\mathbf{s}_{t},\mathbf{a}_{t})\right)$$

- Can be mitigated with **baselines** (used by all algorithms in practice), trust regions

The Plan

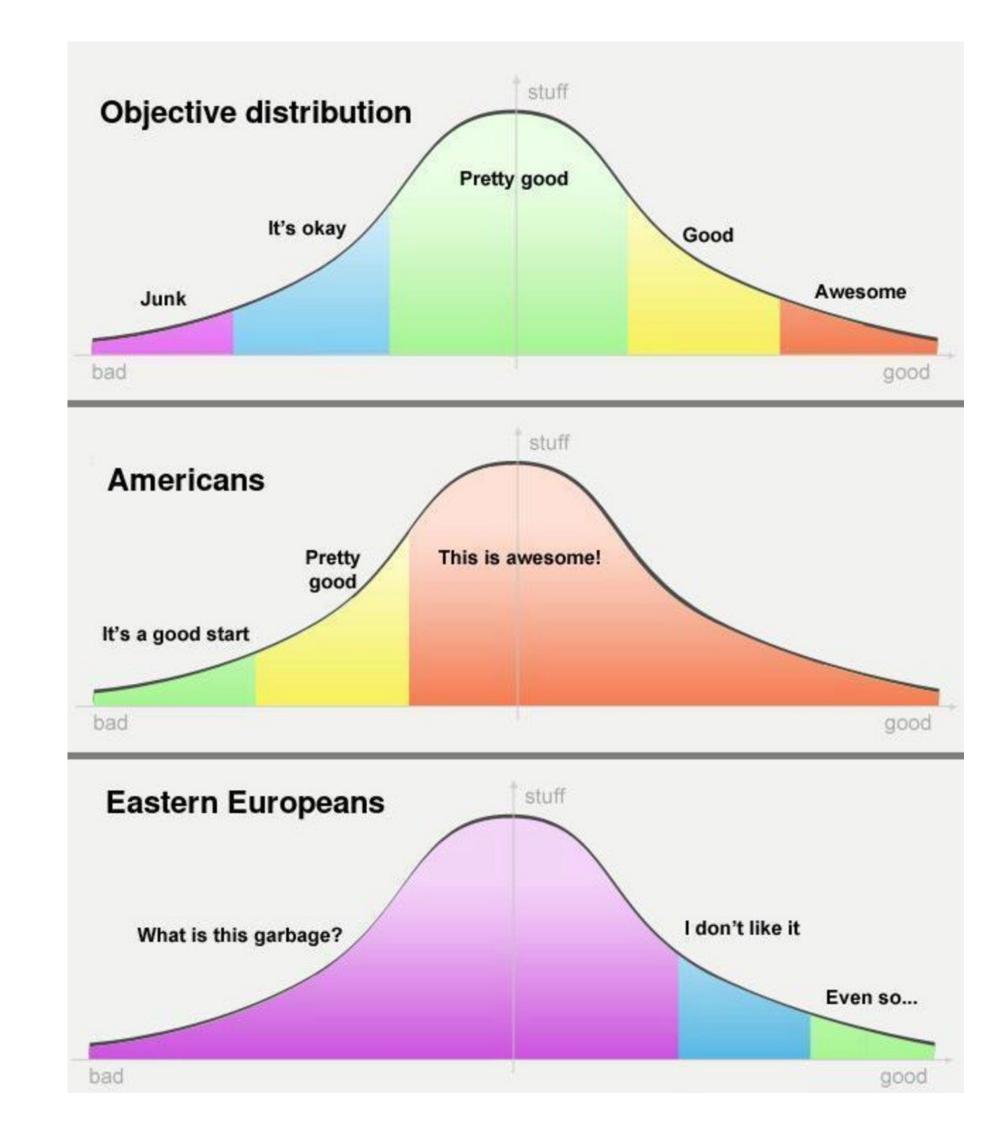
Policy gradients

Variance reduction

Reinforcement learning problem

# Variance of the gradient estimator

policy gradient:  $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{\tau} \nabla_{\theta} \log \pi_{\theta}(\tau_{i}) r(\tau_{i})$  $\sum_{t=1} \nabla_{\theta} \log_{\theta} \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t})$ 





## Small way to reduce variance

policy gradient:  $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}, \mathbf{b}_{i}) \right)$ 

 $\frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i},$ 

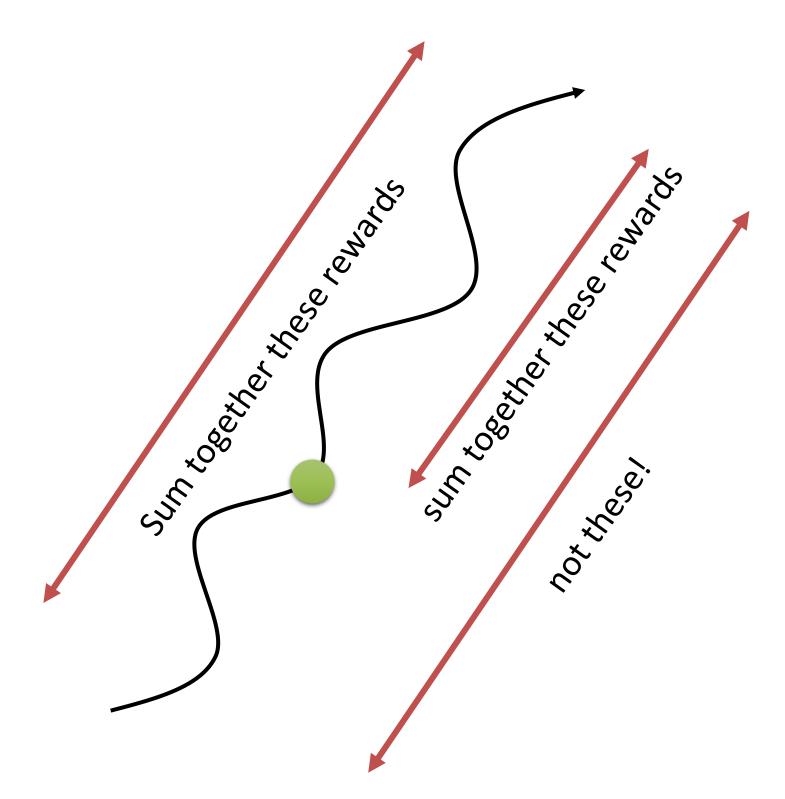
 $\frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{I} \nabla_{\theta} \log \pi_{\theta} (\mathbf{a}_{i})$ 

$$_{i,t}|\mathbf{s}_{i,t})$$
  $\left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})\right)$ 

$$\sum_{i,t} |\mathbf{s}_{i,t}| \left( \sum_{t'=1}^{T} r(\mathbf{a}_{i,t'}, \mathbf{s}_{i,t'}) \right)$$

$$\sum_{i,t} |\mathbf{s}_{i,t}| \left( \sum_{t'=t}^{T} r(\mathbf{a}_{i,t'}, \mathbf{s}_{i,t'}) \right)$$

$$Reward "to go"$$



### Key learning goals:

- The basic definitions of reinforcement learning
- Understanding the policy gradient algorithm

### **Definitions:**

- State, observation, policy, reward function, trajectory
- Off-policy and on-policy RL algorithms

### Recap

### PG algorithm:

- Making good stuff more likely & bad • stuff less likely
- On-policy RL algorithm lacksquare
- High variance grad estimator





#### Can we reduce variance even more?

Implementing policy gradient in practice

Applications of policy gradient:

• Case studies: RLHF in LLMs, Robotics, Games