# Multi-Task and Goal-Conditioned Reinforcement Learning

CS 224R

### Reminders

### 5/17:

### Homework 3 is due; Homework 4 is out

### Key learning goals:

- Familiarity with multi-task learning challenges
- Hindsight relabeling in goal-conditioned RL

### The Plan

Recap

Multi-task imitation and policy gradients

Multi-task Q-learning

Goal-conditioned RL

Multi-task Q-learning

Goal-conditioned RL

### The Plan

### Recap

Multi-task imitation and policy gradients

## Recap: CS224R so far

Fundamentals:

- Imitation  $\bullet$
- On-policy, off-policy and offline RL
- Model-free and model-based RL
- Reward functions  $\bullet$

Next two weeks:

- $\bullet$
- Go beyond single task  $\bullet$

#### Biggest challenge so far?

#### **Sample complexity**

Amortize the data complexity across many tasks/scenarios

### The Plan

Recap

Multi-task imitation and policy gradients

Multi-task Q-learning

Goal-conditioned RL

# Multi-task imitation learning

27

256

Max



 $\mathbf{o}_t$ 





Images: Bojarski et al. '16, NVIDIA









### How to optimize multi-task IL?

 $\min_{\theta} - E_{(\mathbf{s},\mathbf{a})\sim\mathcal{D}} \log \pi_{\theta}(\mathbf{a}|\mathbf{s})$ 



### How to optimize multi-task IL?

Same as supervised learning! Same architectures, stratified sampling, etc.

**Data**: Given trajectories collected by an expert

"demonstrations"  $\mathcal{D} := \{(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T)\}$ 

 $\min_{\theta} \mathcal{L}(\theta, \mathcal{D}) \longrightarrow \min_{\theta} \sum_{i=1}^{I} \mathcal{L}(\theta, \mathcal{D}_i)$ 



## How to specify a task?



Jang et al. BC-Z. CoRL 2021



## How to specify a task?

| Skill      | Held-out tasks<br>(no demos during training)                                                                                                                               | Lang-conditioned performance                                                   |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| pick-place | <ul><li>'place sponge in tray'</li><li>'place grapes in red bowl'</li><li>'place apple in paper cup'</li></ul>                                                             | 82% (9.2)<br>75% (10.8)<br>33% (12.2)                                          |
| pick-wipe  | 'wipe tray with sponge'                                                                                                                                                    | 0% (0)                                                                         |
| pick-place | <ul> <li>'place banana in ceramic bowl'</li> <li>'place bottle in red bowl'</li> <li>'place grapes in ceramic bowl'</li> <li>'mlace bottle in table surface'</li> </ul>    | 75% (9.7)<br>75% (9.7)<br>70% (10.3)                                           |
|            | 'place white sponge in purple bowl'<br>'place white sponge in tray'<br>'place apple in ceramic bowl'<br>'place bottle in purple bowl'                                      | 30% (11.2)<br>45% (11.2)<br>40% (11.0)<br>20% (8.9)<br>20% (8.9)               |
|            | 'place banana in ceramic cup'<br>'place banana on white sponge'<br>'place metal cup in red bowl'                                                                           | 0% (0)<br>0% (0)<br>0% (0)                                                     |
| asp        | <ul> <li>'pick up grapes'</li> <li>'pick up apple'</li> <li>'pick up towel'</li> <li>'pick up pepper'</li> <li>'pick up bottle'</li> <li>'pick up the red bowl'</li> </ul> | 65% (10.7)<br>55% (11.2)<br>42.8% (18.7)<br>35% (10.7)<br>30% (10.3)<br>0% (0) |
| ck-drag    | 'drag grapes across the table'                                                                                                                                             | 14% (13.2)                                                                     |
| ick-wipe   | <ul><li>'wipe table surface with banana'</li><li>'wipe tray with white sponge'</li><li>'wipe ceramic bowl with brush'</li></ul>                                            | 10% (6.7)<br>0% (0)<br>0% (0)                                                  |
| ush        | 'push purple bowl across the table'<br>'push tray across the table'<br>'push red bowl across the table'                                                                    | 30% (10.3)<br>25% (9.7)<br>0% (0)                                              |
|            | Holdout Task Overall                                                                                                                                                       | 32%                                                                            |

#### Jang et al. BC-Z. CoRL 2021

#### ows non-zero success for '28 hold-out tasks

erage 32% success er all 28 tasks

#### "Push purple bowl across the table"



#### "Place bottle in tray"





# Scaled-up version: Robotics Transformer (RT-1)





(a) RT-1 takes images and natural language instructions and outputs discretized base and arm actions. Despite its size (35M parameters), it does this at 3 Hz, due to its efficient yet high-capacity architecture: a FiLM (Perez et al., 2018) conditioned EfficientNet (Tan & Le, 2019), a TokenLearner (Ryoo et al., 2021), and a Transformer (Vaswani et al., 2017).

Brohan et al. RT-1, 2022

| SECH IDSKS | UIISEEII IASKS | บเรเเลบเบเร | Dackyrounus |
|------------|----------------|-------------|-------------|
|            |                |             | <b>-</b>    |

Tasks



### What is a reinforcement learning task?

Reinforcement learningaction spacedynamicsA task: $\mathcal{T}_i \triangleq \{S_i, \mathcal{A}_i, p_i(\mathbf{s}_1), p_i(\mathbf{s}' | \mathbf{s}, \mathbf{a}), r_i(\mathbf{s}, \mathbf{a})\}$  $\uparrow$  $\uparrow$  $\uparrow$  $\uparrow$ stateinitial statereward

space distribution

An alternative view:

A task identifier is

 $\mathcal{T}_i \triangleq \{\mathcal{S}_i, \mathcal{A}_i, p_i(\mathbf{s}_1), p(\mathbf{s}' | \mathbf{s}, \mathbf{a}), r(\mathbf{s}, \mathbf{a})\}$ 

reward

part of the state: 
$$\mathbf{s} = (\overline{\mathbf{s}}, \mathbf{z}_i)$$
  
original state  
 $\{\mathcal{T}_i\} = \left\{ \bigcup S_i, \bigcup \mathcal{A}_i, \frac{1}{N} \sum_i p_i(\mathbf{s}_1), p(\mathbf{s}' | \mathbf{s}, \mathbf{a}), r(\mathbf{s}, \mathbf{a}) \right\}$ 

It can be cast as a standard Markov decision process!



## The goal of multi-task reinforcement learning



### Multi-task RL

The same as before, except: a task identifier is part of the state:  $\mathbf{s} = (\overline{\mathbf{s}}, \mathbf{z}_i)$ e.g. one-hot task ID language description 

What is the reward? The same as before Or, for goal-conditioned RL:  $r(\mathbf{s}) = r(\overline{\mathbf{s}}, \mathbf{s}_g) = -d(\overline{\mathbf{s}}, \mathbf{s}_g)$ Distance function d examples: - Euclidean  $\ell_2$ - sparse 0/1

# Multi-task (RL) benefits

Cross-task generalization

Easier exploration



#### Pertsch et al. SPiRL

# Multi-task (RL) benefits

Cross-task generalization

Easier exploration

Sequencing for long-horizon tasks



Gupta et al. Relay Policy Learning

# Multi-task (RL) benefits

- Cross-task generalization
- Easier exploration
- Sequencing for long-horizon tasks
- Reset-free learning
- Per-task sample-efficiency gains



### Multi-task RL benchmark: Meta-World

### Train







coffee push







pick place







#### Test



bin picking



box close



door lock



door unlock



[Meta-World, Yu<sup>\*</sup>, Quillen<sup>\*</sup>, He<sup>\*</sup>, et al., CoRL 2019]



### Meta-world: why poor results?

### Methods

Multi-task PPO Multi-task TRPO Task embeddings Multi-task SAC Multi-task multi-head SA

- Exploration?
- Data scarcity?
- Model capacity?

Optimization challenge?

|    | MT10                       | MT50                                |  |
|----|----------------------------|-------------------------------------|--|
|    | 25%<br>29%<br>30%<br>30 5% | 8.98%<br>22.86%<br>15.31%<br>28.83% |  |
| AC | 88%                        | 35.85%                              |  |

✓ All tasks are solvable individually
 ✓ Plenty of samples
 ✓ Plenty of capacity

## Multi-task (RL) difficulties



Yu et al. PCGrad. NeurIPS '20



## Multi-task RL algorithms

- Policy:  $\pi_{\theta}(\mathbf{a}|\mathbf{\bar{s}}) \longrightarrow \pi_{\theta}(\mathbf{a}|\mathbf{\bar{s}}, \mathbf{z}_{i})$
- Q-function:  $Q_{\phi}(\mathbf{\overline{s}}, \mathbf{a}) \rightarrow Q_{\phi}(\mathbf{\overline{s}}, \mathbf{a}, \mathbf{z}_i)$
- Analogous to multi-task supervised learning
- If it's still a standard Markov decision process,
- then, why not apply standard **RL algorithms**? You can! You can often do better.
  - What is different about **reinforcement learning**?
    - The data distribution is controlled by the agent!
  - Should we share data in addition to sharing weights?

Multi-task Q-learning

Goal-conditioned RL

### The Plan

Recap

Multi-task imitation and policy gradients

### An example

Task 1: passing







What if you accidentally perform a good pass when trying to shoot a goal?

\*and\* Relabel experience with task 1 ID & reward and store. Store experience as normal. "hindsight relabeling" "hindsight experience replay" (HER)



# Multi-task RL with relabeling

1. Collect data  $\mathcal{D}_k = \{(\mathbf{s}_{1:T}, \mathbf{a}_{1:T}, \mathbf{z}_i, r_{1:T})\}$  using some policy

2. Store data in replay buffer  $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_k$ 

3. Perform hindsight relabeling:

+ +a. Relabel experience in  $\mathcal{D}_k$  for task  $\mathcal{T}_i$ :  $\mathcal{D}'_{k} = \{(\mathbf{s}_{1:T}, \mathbf{a}_{1:T}, \mathbf{z}_{j}, r'_{1:T}\} \text{ where } r'_{t} = r_{j}(\mathbf{s}_{t})$ b. Store relabeled data in replay buffer  $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}'_k$ 4. Update policy using replay buffer  ${\cal D}$ 

When can we apply relabeling?

- reward function form is known, evaluatable
- dynamics consistent across goals/tasks
- using an off-policy algorithm\*

Kaelbling. Learning to Achieve Goals. IJCAI '93 Andrychowicz et al. Hindsight Experience Replay. NeurIPS '17

< — Which task  $T_i$  to choose?

- randomly
- task(s) in which the
  - trajectory gets high reward
- other

Eysenbach et al. Rewriting History with Inverse RL Li et al. Generalized Hindsight for RL Kalashnikov et al. MT-Opt Yu et al. Conservative Data-Sharing





Another example:

#### Task 1: close a drawer



Can we use episodes from drawer opening task for drawer closing task?

How does that answer change for Q-learning vs Policy Gradient?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left( \sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$





## Example of multi-task Q-learning: MT-Opt





Fine-tunes in 1 day

#### Kalashnikov et al. MT-Opt. CoRL '21



80% avg improvement over baselines across all the ablation tasks (4x improvement over single-task)

~4x avg improvement for tasks with little data

Fine-tunes to a new task (to 92% success)



Multi-task Q-learning

**Goal-conditioned RL** 

### The Plan

Recap

Multi-task imitation and policy gradients

# Goal-conditioned RL with hindsight relabeling

1. Collect data  $\mathcal{D}_k = \{(\mathbf{s}_{1:T}, \mathbf{a}_{1:T}, \mathbf{s}_q, r_{1:T})\}$  using some policy

2. Store data in replay buffer  $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_k$ 

3. Perform hindsight relabeling:

+ +

a. Relabel experience in  $\mathcal{D}_k$  using last state as goal:  $\mathcal{D}'_{k} = \{(\mathbf{s}_{1:T}, \mathbf{a}_{1:T}, \mathbf{s}_{T}, r'_{1:T}\} \text{ where } r'_{t} = -d(\mathbf{s}_{t}, \mathbf{s}_{T})\}$ 

b. Store relabeled data in replay buffer  $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}'_k$ 

4. Update policy using replay buffer  $\mathcal{D}$ 

Result: exploration challenges alleviated

Kaelbling. Learning to Achieve Goals. IJCAI '93 Andrychowicz et al. Hindsight Experience Replay. NeurIPS '17



# Goal-conditioned RL with hindsight relabeling

1. Collect data  $\mathcal{D}_k = \{(\mathbf{s}_{1:T}, \mathbf{a}_{1:T}, \mathbf{s}_g, r_{1:T})\}$  using some policy

2. Store data in replay buffer  $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_k$ 

3. Perform hindsight relabeling:

+ +

a. Relabel experience in  $\mathcal{D}_k$  using last state as goal:  $\mathcal{D}'_{k} = \{(\mathbf{s}_{1:T}, \mathbf{a}_{1:T}, \mathbf{s}_{T}, r'_{1:T}\} \text{ where } r'_{t} = -d(\mathbf{s}_{t}, \mathbf{s}_{T})\}$ 

b. Store relabeled data in replay buffer  $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}'_k$ 

4. Update policy using replay buffer  $\mathcal{D}$ 

Result: exploration challenges alleviated

Kaelbling. Learning to Achieve Goals. IJCAI '93 Andrychowicz et al. Hindsight Experience Replay. NeurIPS '17

<— Other relabeling strategies?</p> use any state from the trajectory

# Hindsight relabeling for goal-conditioned RL



The red ball denotes the goal position.

Kaelbling. Learning to Achieve Goals. IJCAI '93 Andrychowicz et al. Hindsight Experience Replay. NeurIPS '17

### Example: goal-conditioned RL, simulated robot manipulation

### Can we use this insight for better learning?

If the data is optimal, can we use supervised imitation learning?

- 1. Collect data  $\mathcal{D}_k = \{(\mathbf{s}_{1:T}, \mathbf{a}_{1:T})\}$  using some policy 2. Perform hindsight relabeling:
  - a. Relabel experience in  $\mathcal{D}_k$  using last state as goal:  $\mathcal{D}'_{k} = \{(\mathbf{s}_{1:T}, \mathbf{a}_{1:T}, \mathbf{s}_{T}, r'_{1:T}\} \text{ where } r'_{t} = -d(\mathbf{s}_{t}, \mathbf{s}_{T})\}$

b. Store relabeled data in replay buffer  $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}'_k$ 

3. Update policy using supervised imitation on replay buffer  ${\cal D}$ 

Eysenbach, Kumar, Gupta, RL is supervised learning on optimized data. BAIR blogpost, 2020 Ghosh, Gupta et al. Learning to Reach Goals via Iterated Supervised Learning. ICLR '21

### Collect data from "human play", perform goal-conditioned imitation.





### Goal

Lynch, Khansari, Xiao, Kumar, Tompson, Levine, Sermanet. Learning Latent Plans from Play. '19



### Single Play-LMP policy

### Key learning goals:

- Familiarity with multi-task learning challenges
- Hindsight relabeling in goal-conditioned RL

### MTRL challenges:

- Optimization challenges  $\bullet$
- Data sharing challenges  $\bullet$

### Recap

### **Goal-conditioned RL:**

- An instance of MTRL
- Hindsight relabeling can help with • exploration and learning



Guest lecture by Jie Tan from Google

Can policies transfer between environments?

- Can we use that for training agents in sim and
- transferring their behavior to real?