Practical Deep RL Implementation Techniques

CS 224R

Reminders

Today:HomeworWed next week:Project pr

- Homework 1 due, Homework 2 out
- Project proposal due

- Recap & finish Q learning
 - Q learning tricks
 - Improving Q learning
- Case studies: games, robotics

Key learning goals:

- Practical Q learning implementation tricks
- Understanding the landscape of Q learning algorithms

The Plan

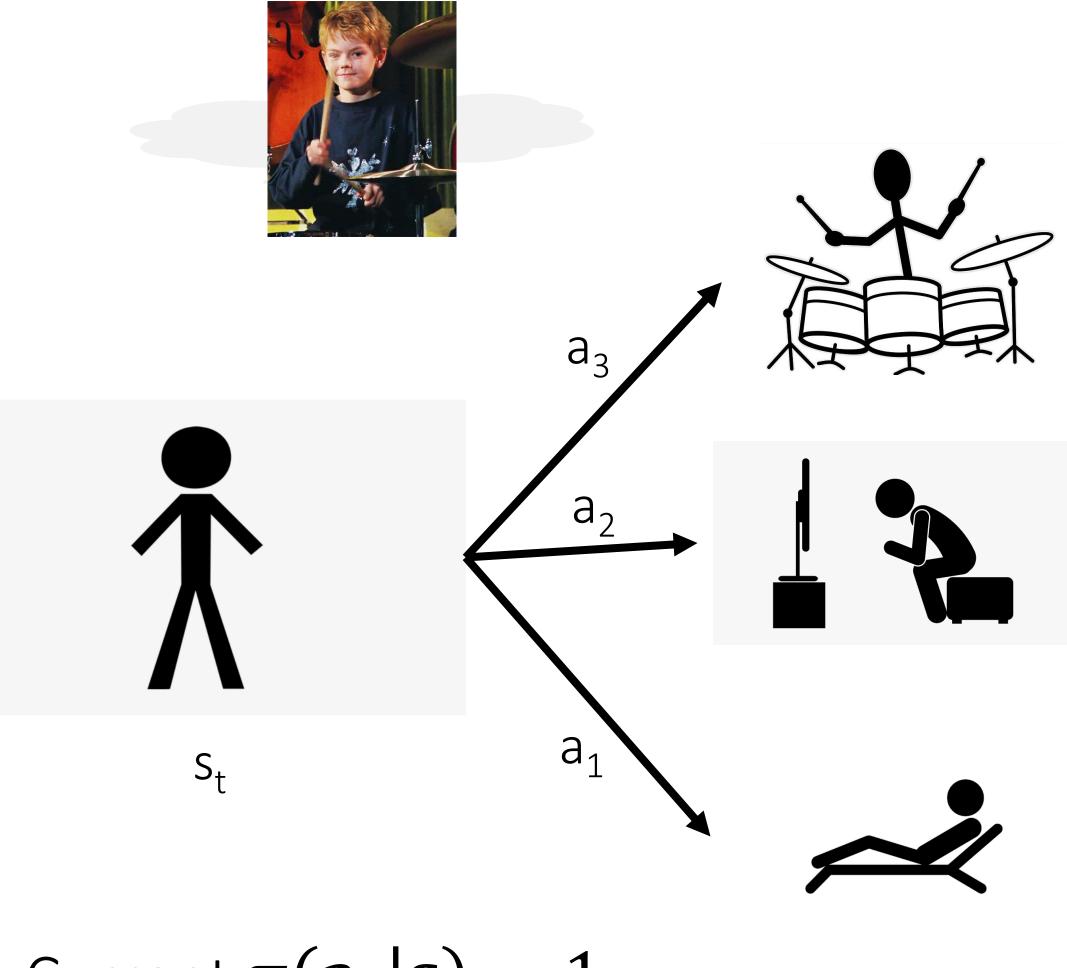
The Plan

- Recap & finish Q learning
 - Q learning tricks
 - Improving Q learning

Case studies: games, robotics

Value-Based RL

Value function: $V^{\pi}(\mathbf{s}_t) = ?$ Q function: $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = ?$ Advantage function: $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = ?$



Current $\pi(\mathbf{a}_2|\mathbf{s}) = 1$

Reward = 1 if I can play it in a month, 0 otherwise

How can we improve the policy?

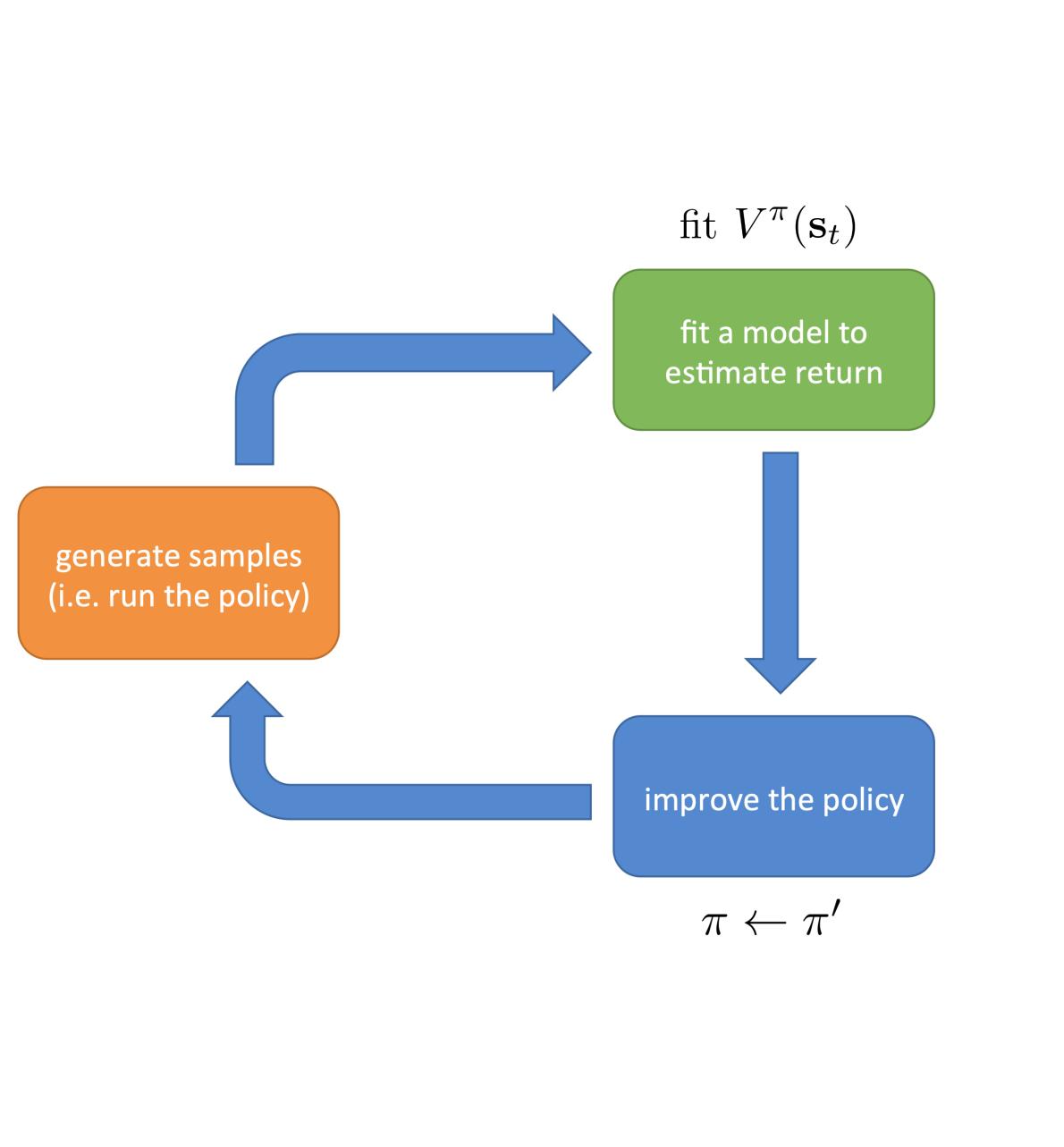
Policy Iteration

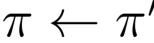
policy iteration algorithm: 1. evaluate $A^{\pi}(\mathbf{s}, \mathbf{a})$ 2. set $\pi \leftarrow \pi'$

$$\pi'(\mathbf{a}_t | \mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg \max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

as before: $A^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')] - V^{\pi}(\mathbf{s})$

Slide adapted from Sergey Levine





Value Iteration

$$\begin{aligned}
&\text{policy if} \\
&\text{C} \quad 1. e \\
&\text{C} \quad 2. s \\
&\text{arguma} \\
&A^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')] - V^{\pi}(\mathbf{s}) \\
&\text{arguma} \\
&\text{a$$

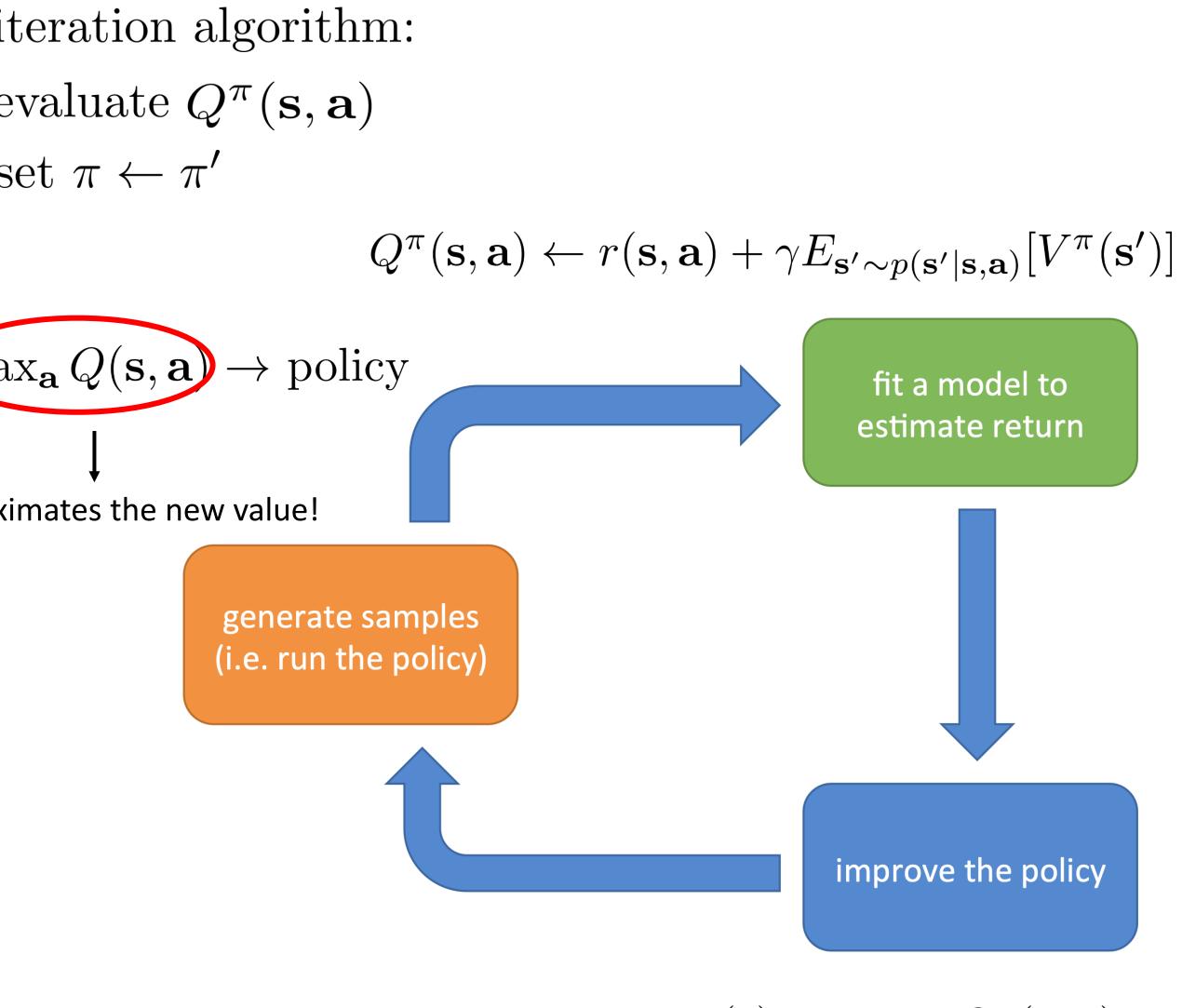
skip the policy and compute values directly!

value iteration algorithm:

1. set
$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')]$$

2. set $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$

Slide adapted from Sergey Levine



 $V^{\pi}(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})$

Qlearning

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg \max_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}, \mathbf{a}) \\ 0 \text{ otherwise} \end{cases}$$

value iteration algorithm:

$$\square 1. \text{ set } Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')]$$

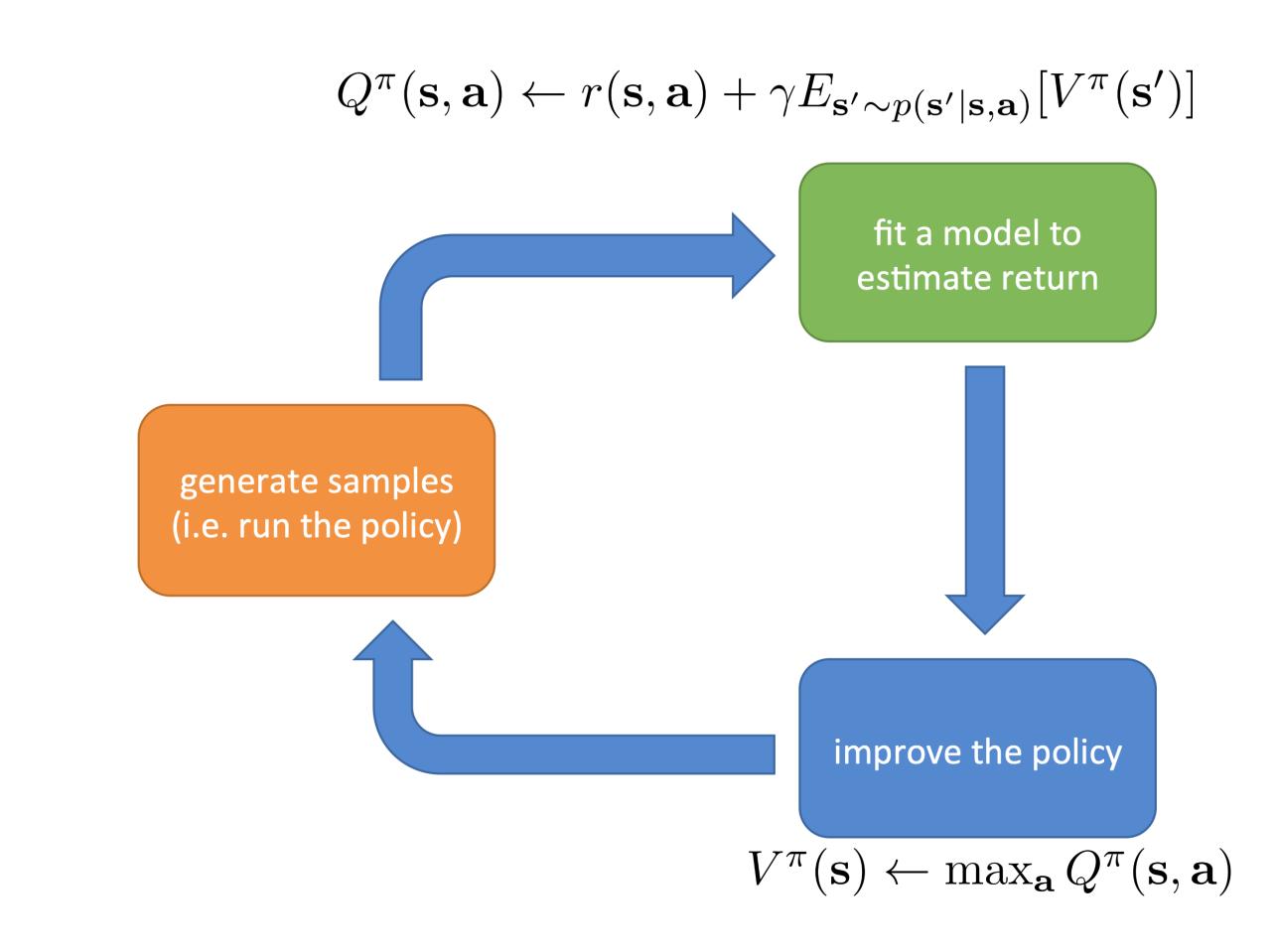
2. set $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$

fitted Q iteration algorithm:

1. set
$$\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma E[V_\phi(\mathbf{s}'_i)]$$

2. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$

 $Q^*(\mathbf{s}_t, \mathbf{a}_t) = E_{\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)}$



approxiate $E[V(\mathbf{s}'_i)] \approx \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$

doesn't require simulation of actions!

$$\left[r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \max_{\mathbf{a}'} Q^*(\mathbf{s}_{t+1}, \mathbf{a}') \right]$$

Value-Based RL: Definitions

 $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right]$: total reward from taking \mathbf{a}_t in \mathbf{s}_t

 $V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$: total reward from \mathbf{s}_t

If you know Q^{π} , you can use it to improve π .

 $\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg \max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$

For the optimal policy π^* : $Q^*(\mathbf{s}_t, \mathbf{a}_t) = E_{\mathbf{s}_t}$

"how good is a state-action pair"

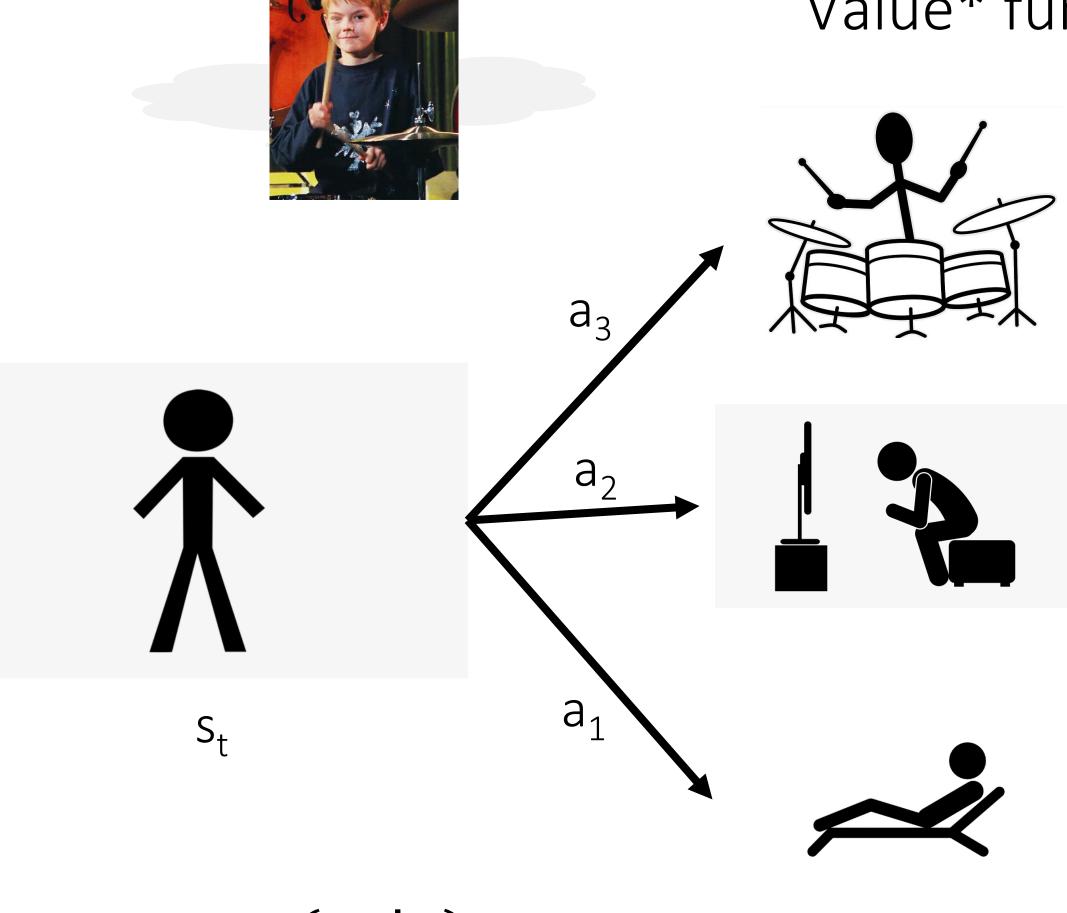
"how good is a state"

$$_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_{t},\mathbf{a}_{t}) \left[r(\mathbf{s}_{t},\mathbf{a}_{t}) + \gamma \max_{\mathbf{a}'} Q^{*}(\mathbf{s}_{t+1},\mathbf{a}') \right]$$

Bellman equation

Value-Based RL

Value function: $V^{\pi}(\mathbf{s}_t) = ?$ Q function: $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = ?$ Q* function: $Q^*(\mathbf{s}_t, \mathbf{a}_t) = ?$ Value* function: $V^*(\mathbf{s}_t) = ?$



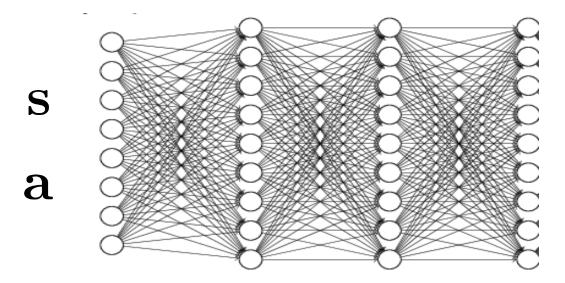
Current $\pi(\mathbf{a}_2|\mathbf{s}) = 1$

Reward = 1 if I can play it in a month, 0 otherwise

Fitted Q-iteration Algorithm

full fitted Q-iteration algorithm:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy 2. set $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 3. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$



 $Q_{\phi}(\mathbf{s}, \mathbf{a})$ parameters ϕ

> We can **reuse data** from previous policies! an off-policy algorithm using replay buffers

Important notes:

Slide adapted from Sergey Levine

Algorithm hyperparameters dataset size N, collection policy iterations Kgradient steps S

Result: get a policy $\pi(\mathbf{a}|\mathbf{s})$ from $\underset{\mathbf{a}}{\operatorname{argmax}}Q_{\phi}(\mathbf{s},\mathbf{a})$

Q learning animation

Q-learning

Bellman equation: $Q^*(\mathbf{s}_t, \mathbf{a}_t) = E_{\mathbf{s}_{t+1}}$

Pros:

- + More sample efficient than on-policy methods
- + Can incorporate off-policy data (including a fully offline setting)
- + Can updates the policy even without seeing the reward
- + Relatively easy to parallelize

Cons:

- Lots of "tricks" to make it work
- Potentially could be harder to learn than just a policy

$$\sim p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t) \left[r(\mathbf{s}_t,\mathbf{a}_t) + \gamma \max_{\mathbf{a}'} Q^*(\mathbf{s}_{t+1},\mathbf{a}') \right]$$

The Plan

Recap

- Q learning tricks
- Improving Q learning

Case studies: games, robotics

Q-learning

fitted Q iteration algorithm:

- 1. set $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 2. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{y}_i\|^2$

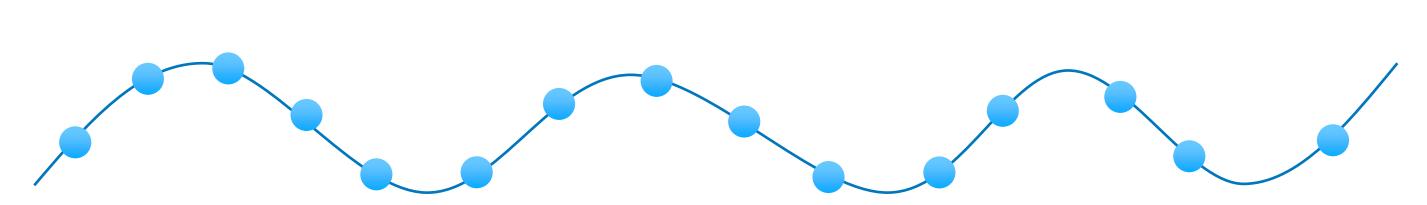
Questions:

- Is this a gradient descent algorithm?
- Is this algorithm off or on policy?
- What could be potential problems with it?

Correlated samples in online Q-learning

online Q iteration algorithm:

1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ 2. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$



- sequential states are strongly correlated
- target value is always changing

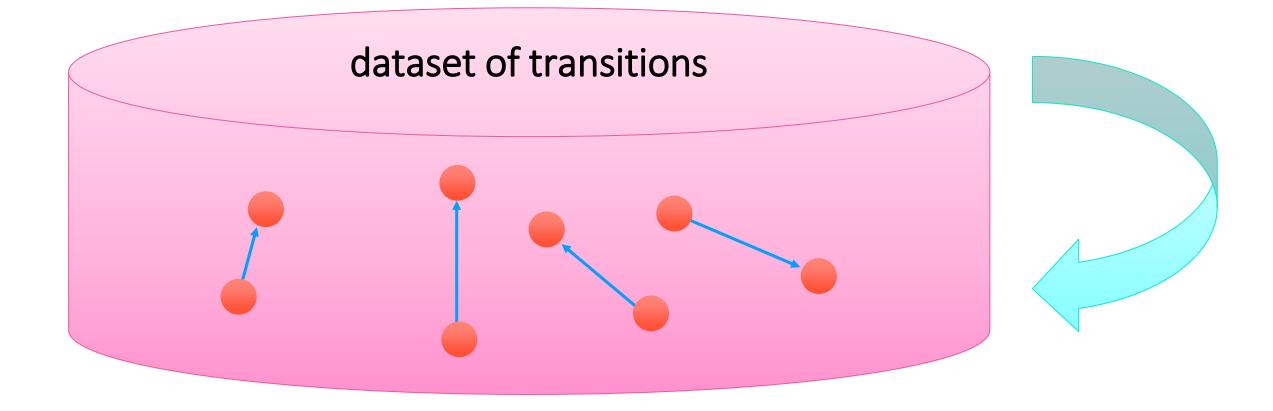
Solution: replay buffers

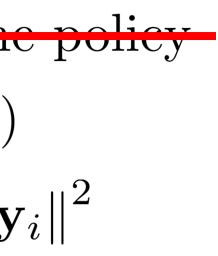
online Q iteration algorithm:

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ 2. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{y}_i\|^2$

full fitted Q-iteration algorithm:

1. collect dataset $\{(s_i, a_i, s'_i, r_i)\}$ using some policy $K \times \begin{cases} 2. \text{ set } \mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_\phi(\mathbf{s}_i', \mathbf{a}_i') \\ 3. \text{ set } \phi \leftarrow \arg \min_\phi \frac{1}{2} \sum_i \|Q_\phi(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2 \end{cases}$





any policy will work!

just load data from a buffer here

Fitted Q-iteration

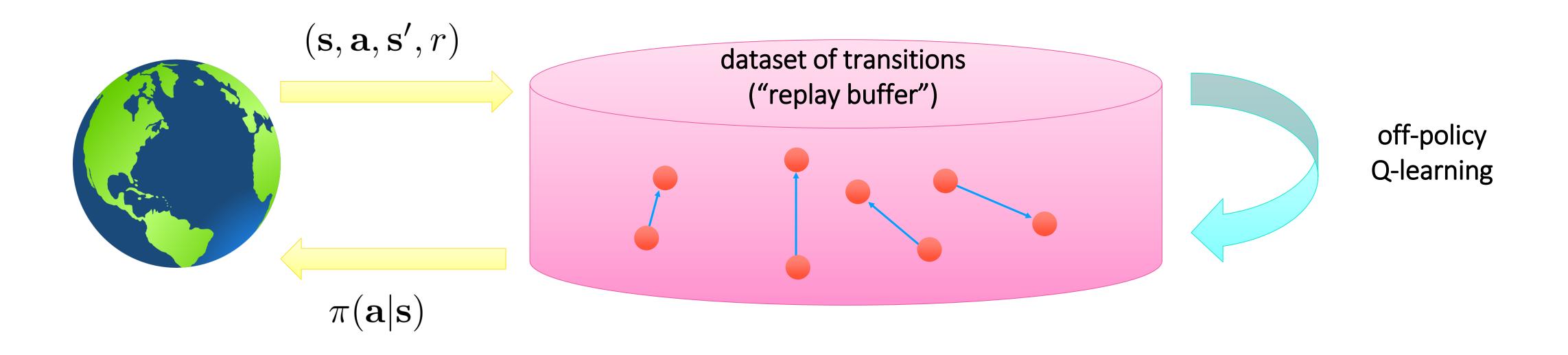
Solution: replay buffers

Q-learning with a replay buffer:

- 1. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ from \mathcal{B}
- 2. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) \mathbf{y}_{i}\|^{2}$

but where does the data come from?

need to periodically feed the replay buffer...



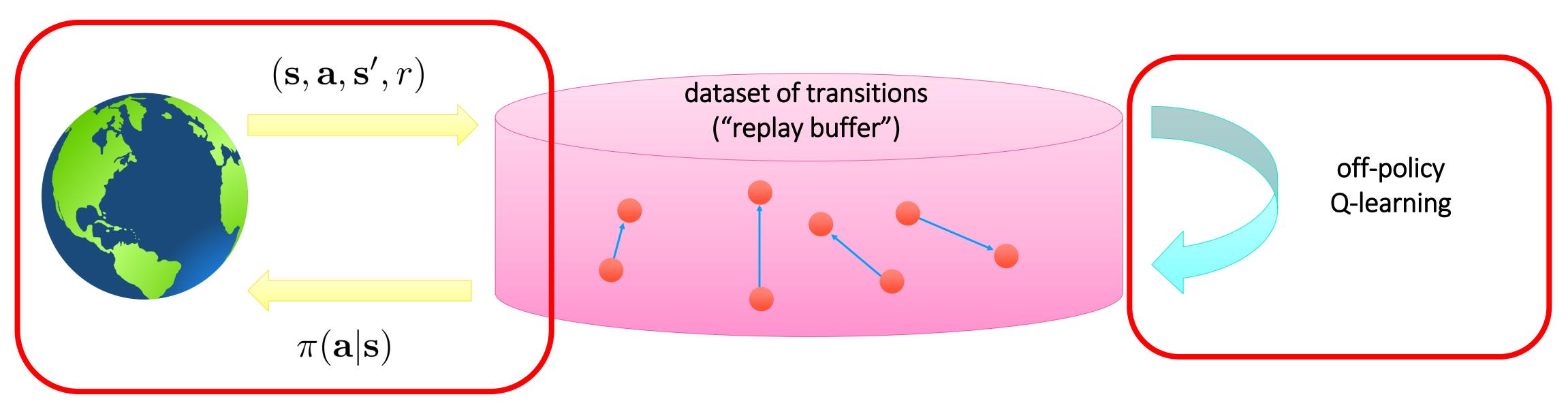
+ samples are no longer correlated

+ multiple samples in the batch (low-variance gradient)

Putting it together

full Q-learning with replay buffer:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add it to \mathcal{B} 2. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ from \mathcal{B} 3. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$ $K \times$



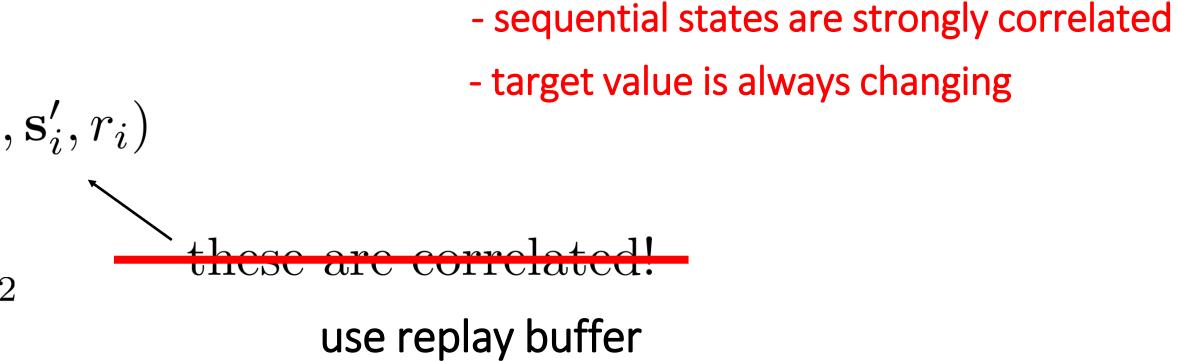
K = 1 is common, though larger K more efficient

Target Networks

What's wrong?

online Q iteration algorithm:

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$
 - 2. $\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$
 - 3. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) \mathbf{y}_{i}\|^{2}$

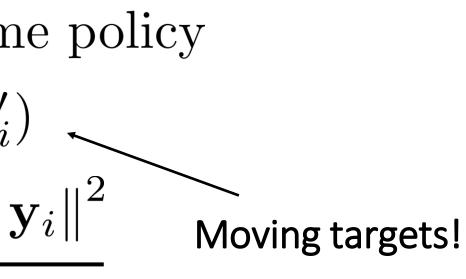


Q-Learning and Regression

full fitted Q-iteration algorithm:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy $K \times \overset{2}{} \overset{\text{set } \mathbf{y}_i}{} \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i') \\ 3. \text{ set } \phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$

perfectly well-defined, stable regression

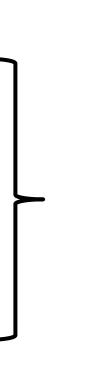


Q-Learning with target networks

Q-learning with replay buffer and target network: 1. save target network parameters: $\phi' \leftarrow \phi$ 2. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add it to \mathcal{B} $N \times \mathbf{s}_{K \times}$ 3. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ from \mathcal{B} 4. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i ||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}_i)]||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}_i)]||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i)||$

$$) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_i, \mathbf{a}'_i)] \|^2$$

targets don't change in inner loop!



supervised regression

"Classic" deep Q-learning algorithm (DQN)

"classic" deep Q-learning algorithm:

1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$, add it to \mathcal{B} 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly 3. compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$ 4. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_j ||Q_{\phi}(\mathbf{s}_j, \mathbf{a}_j) - y_j||^2$ 5. update ϕ' : copy ϕ every N steps

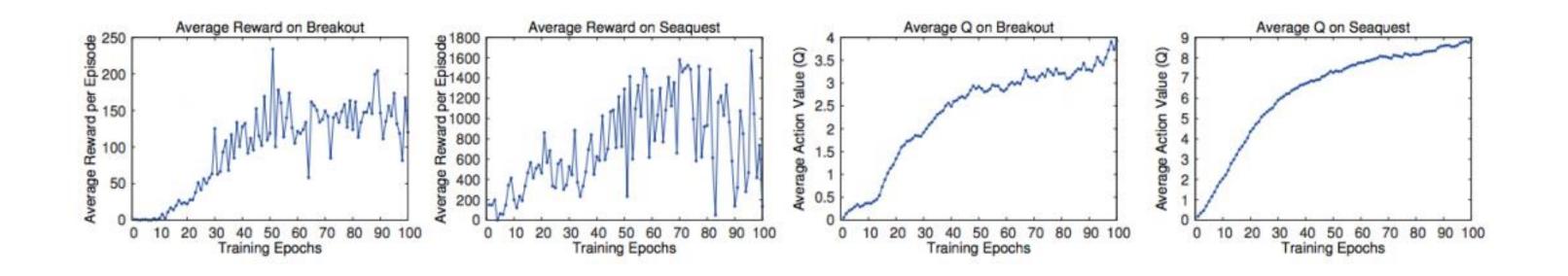
The Plan

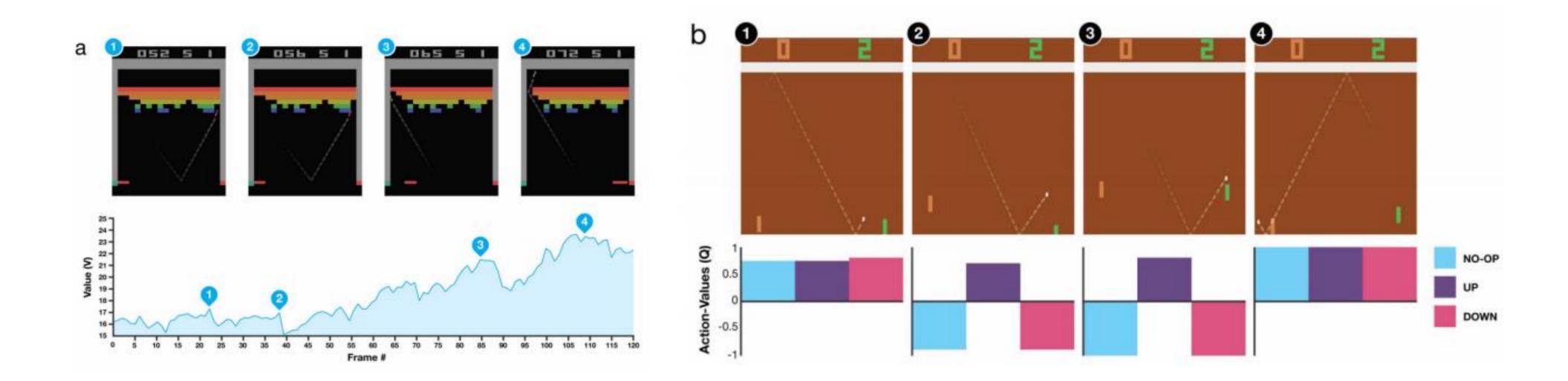
Recap

- Q learning tricks
- Improving Q learning

Case studies: games, robotics

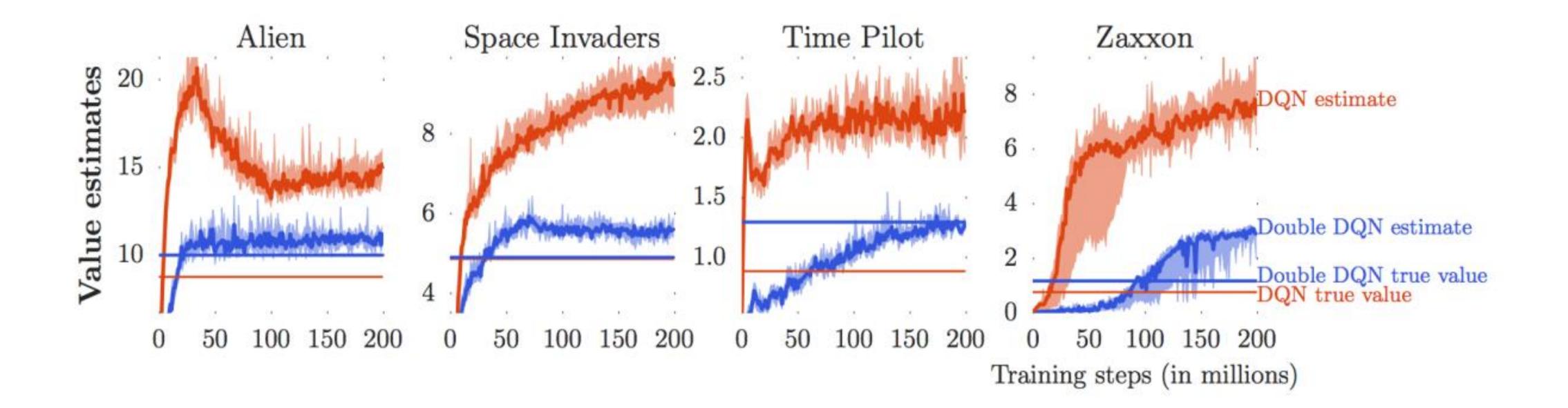
Are the Q-values accurate?





As predicted Q increases, so does the return

Are the Q-values accurate?



Overestimation in Q-learning

target value $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$

imagine we have two random variables: X_1 and X_2 $E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$ $Q_{\phi'}(\mathbf{s}', \mathbf{a}')$ is not perfect – it looks "noisy" hence $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}')$ overestimates the next value! note that $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$ value also comes from $Q_{\phi'}$ action selected according to $Q_{\phi'}$

this last term is the problem

Double Q-learning

 $E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$

note that $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = Q_{\phi'}(\mathbf{s}', \arg\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$ value also comes from $Q_{\phi'}$ action selected according to $Q_{\phi'}$

idea: don't use the same network to choose the action and evaluate value! "double" Q-learning: use two networks:

$$\mathcal{Q}_{\phi'}(\mathbf{s}',\mathbf{a}'))$$

- if the noise in these is decorrelated, the problem goes away!

- here is no problem

Double Q-learning in practice

where to get two Q-functions?

just use the current and target networks!

standard Q-learning: $y = r + \gamma Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'})$

double Q-learning: $y = r + \gamma Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}', \mathbf{a}'))$

just use current network (not target network) to evaluate action still use target network to evaluate value!

$$Q_{\phi'}(\mathbf{s}',\mathbf{a}'))$$

Multi-step returns

Q-learning target: $y_{j,t} = r_{j,t} + \gamma \max_{\mathbf{a}_{j,t+1}} Q_{\phi'}(\mathbf{s}_{j,t+1})$

these are the only values that matter if $Q_{\phi'}$ is bad

where does the signal come from?

remember this? $\nabla_{\theta} J(\theta) \approx$ Actor-critic:

Policy gradient: $\nabla_{\theta} J(\theta) \approx$

can we construct multi-step targets, like in actor-critic?

 $y_{j,t} = \sum_{t'=t}^{t+N-1} \gamma^{t-t'} r_{j,t'} + \gamma^N \max_{\mathbf{a}_{j,t+N}} Q_{\phi'}(\mathbf{s}_{j,t+N}, \mathbf{a}_{j,t+N}) \quad \bullet \text{ Does it still work off-policy?}$

N-step return estimator

$$\mathbf{s}_{j,t+1}, \mathbf{a}_{j,t+1})$$

$$\mathbf{g}_{i} \quad \text{these values are important if } Q_{\phi'} \text{ is good}$$

$$\mathbf{Q}\text{-learning does this: max bias, min variance}$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\left(r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right) + \text{lower variance} (\text{due to critic}) - \text{not unbiased (if the critic is not perfect)}$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) - b \right) + \text{no bias} - \text{higher variance (because single-sample estimate)}$$

Q-learning with N-step returns

$$y_{j,t} = \sum_{t'=t}^{t+N-1} \gamma^{t-t'} r_{j,t'} + \gamma^N \max_{\mathbf{a}_{j,t+N}} Q_{\phi'}(\mathbf{s}_{j,t+N}, \mathbf{a}_{j,t+N})$$

this is supposed to estimate $Q^{\pi}(\mathbf{s}_{j,t}, \mathbf{a}_{j,t})$ for π

$$\pi(\mathbf{a}_t | \mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg \max_{\mathbf{a}_t} Q_\phi(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

we need transitions $\mathbf{s}_{j,t'}, \mathbf{a}_{j,t'}, \mathbf{s}_{j,t'+1}$ to come from π for t' - t < N - 1(not an issue when N = 1)

- how to fix?
- ignore the problem
 - often works very well
- cut the trace dynamically choose N to get only on-policy data works well when data mostly on-policy, and action space is small
- importance sampling

For more details, see: "Safe and efficient off-policy reinforcement learning." Munos et al. '16

+ less	biased targe	t values w	hen Q-valu	ies are i	naccurate

+ typically faster learning, especially early on

- only actually correct when learning on-policy

why?

Aside: exploration with Q-learning

online Q iteration algorithm

1. take some action \mathbf{a}_i and observe: $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ 2. set $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 3. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$

$$\pi(\mathbf{a}_t | \mathbf{s}_t) = \begin{cases} 1 - \epsilon & \text{if } \mathbf{a}_t = \arg \max_{\mathbf{a}_t} Q^{\phi}(\mathbf{s}_t, \mathbf{a}_t) \\ \epsilon/(|\mathcal{A}| - 1) & \text{otherwise} \end{cases} \bullet \text{ Epsilon greedy}$$

$$\mathbf{a}_{i}^{\prime}, \mathbf{s}_{i}^{\prime}, \mathbf{a}_{i}^{\prime}$$
$$\mathbf{a}_{i}^{\prime}) \qquad \qquad \pi(\mathbf{a}_{t}|\mathbf{s}_{t}) = \begin{cases} 1 \text{ if } \mathbf{a}_{t} \\ 0 \end{bmatrix} \end{cases}$$

$$\begin{aligned} \pi_{i} \\ \mathbf{y}_{i} \\ \|^{2} \\ \mathbf{y}_{i} \\ \|^{2} \end{aligned} \qquad \pi(\mathbf{a}_{t} | \mathbf{s}_{t}) = \begin{cases} 1 \text{ if } \mathbf{a}_{t} = \arg \max_{\mathbf{a}_{t}} Q_{\phi}(\mathbf{s}_{t}, \mathbf{a}_{t}) \\ 0 \text{ otherwise} \end{cases}$$

• Why could that be a bad idea?

• Why could that be a bad idea?

Simple practical tips for Q-learning

- Q-learning takes some care to stabilize
 - Test on easy, reliable tasks first, make sure your implementation is correct

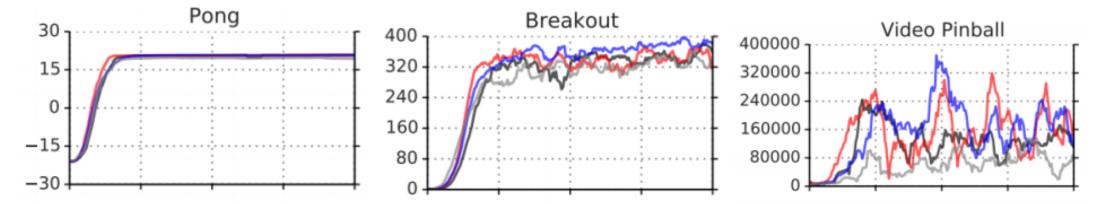
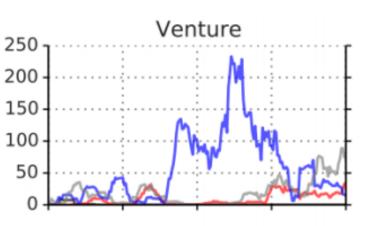


Figure: From T. Schaul, J. Quan, I. Antonoglou, and D. Silver. "Prioritized experience replay". arXiv preprint arXiv:1511.05952 (2015), Figure 7

- Large replay buffers help improve stability
 - Looks more like fitted Q-iteration
- It takes time, be patient might be no better than random for a while
- Start with high exploration (epsilon) and gradually reduce

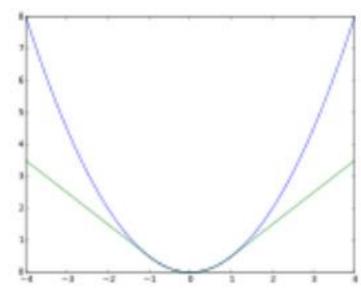


Advanced tips for Q-learning

• Bellman error gradients can be big; clip gradients or use Huber loss

$$L(x) = \begin{cases} x^2/2 & \text{if } |x| \le \delta \\ \delta |x| - \delta^2/2 & \text{otherwise} \end{cases}$$

- Double Q-learning helps *a lot* in practice, simple and no downsides
- N-step returns also help a lot, but have some downsides Schedule exploration (high to low) and learning rates (high to
- low), Adam optimizer can help too
- Run multiple random seeds, it's very inconsistent between runs



Improving Q learning

Case studies: games, robotics

The Plan

Recap

Q learning tricks

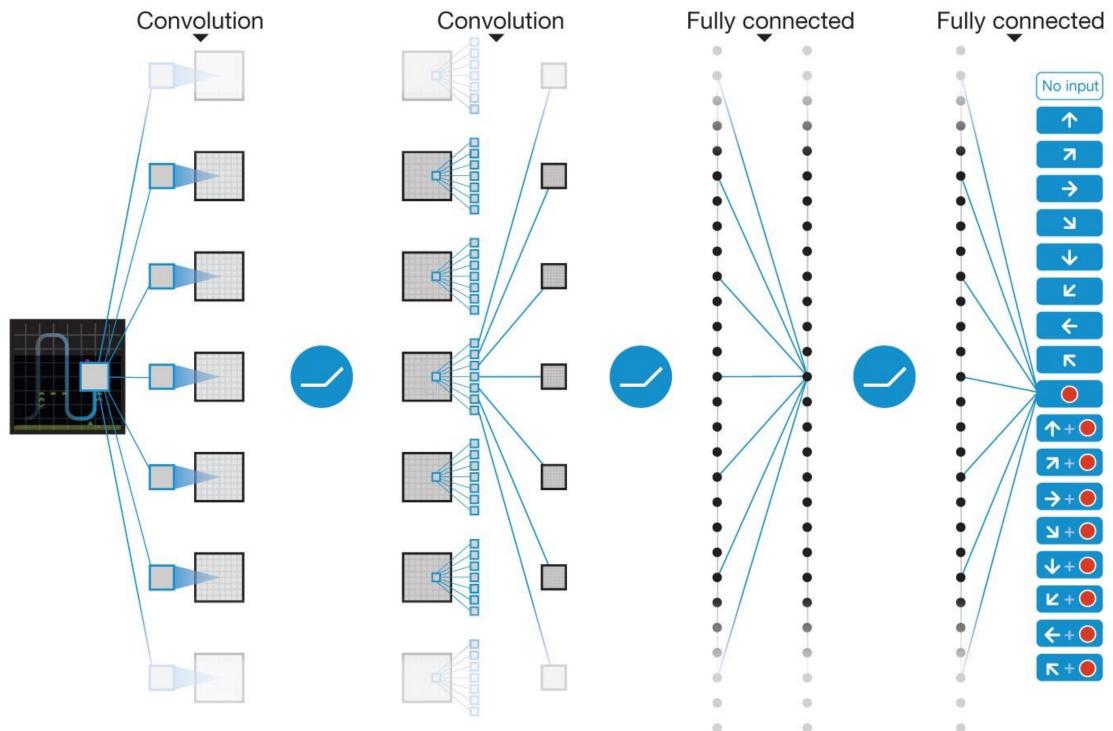
Example: Deep Q Learning (DQN) Applied to Atari

- Human-level control through deep RL, Mnih et. al, 2013
- Uses target network and replay buffer
- One step back-up

(no n-step returns)

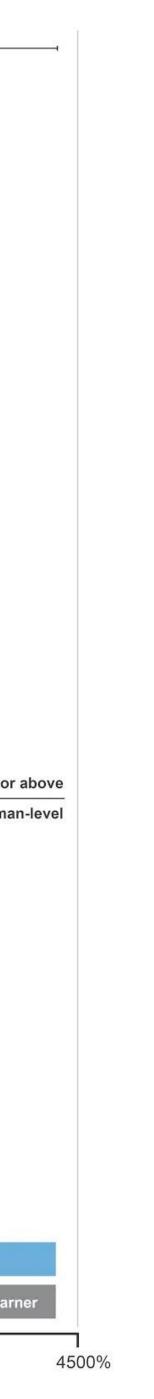
 Became a popular benchmark since

Example: DQN



- No input \uparrow 7 → × ≮ R 0 **↑**+● 🛛 + 🔵 →+● • الا ↓+● ∠ + ● ←+● **F** + **O**

Video Pinball	2539%			1	
		1	1	6 0	
Boxing_			3.		
Breakout_		() ()			
Star Gunner			- 1		
Robotank_			(
Atlantis_					
Crazy Climber					
Gopher_					
Demon Attack					
Name This Game			~		
Krull	the second se		1		
Assault		-			
Road Runner					
Kangaroo_					
James Bond					
Tennis					
Pong					
Space Invaders					
Beam Rider	119%				
Tutankham	112%				
Kung-Fu Master	102%				
Freeway	102%				
Time Pilot	100%				
Enduro	97%				
Fishing Derby	93%				
Up and Down	92%				
Ice Hockey	79%				
Q*Bert	78%				
H.E.R.O.	76%				at human-level or
Asterix	69% -				below huma
Battle Zone	67%				2010/19/12/2010/07/2020/09/12/2020/09/12
Wizard of Wor	67%				
Chopper Command	64%				
Centipede					
Bank Heist					
River Raid					
Zaxxon					
Amidar	43%				
Alien	42%				
Venture					
Seaquest					
Double Dunk					
Bowling					
Ms. Pacman					
Asteroids					
Frostbite					
Gravitar					DQN
Private Eye					DQN
Montezuma's Revenge					Best Linear Lear
womezunia s revenge					
	I I 0% 100% 20	I I)0% 300%	ا 6 400% 5	I I (00% 600%	(I 1000%
		.0.007			



Example: Q-learning Applied to Robotics

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy 2. set $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 3. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$

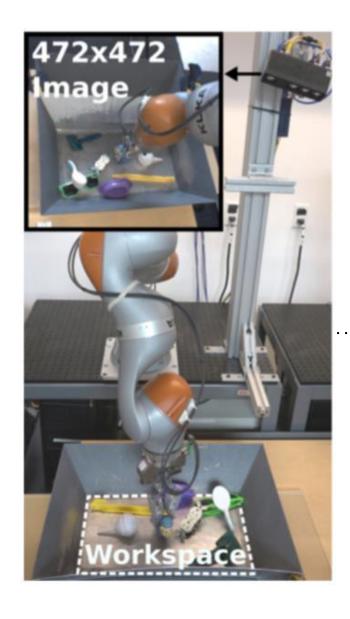


Continuous action space?

Simple optimization algorithm -> Cross Entropy Method (CEM)

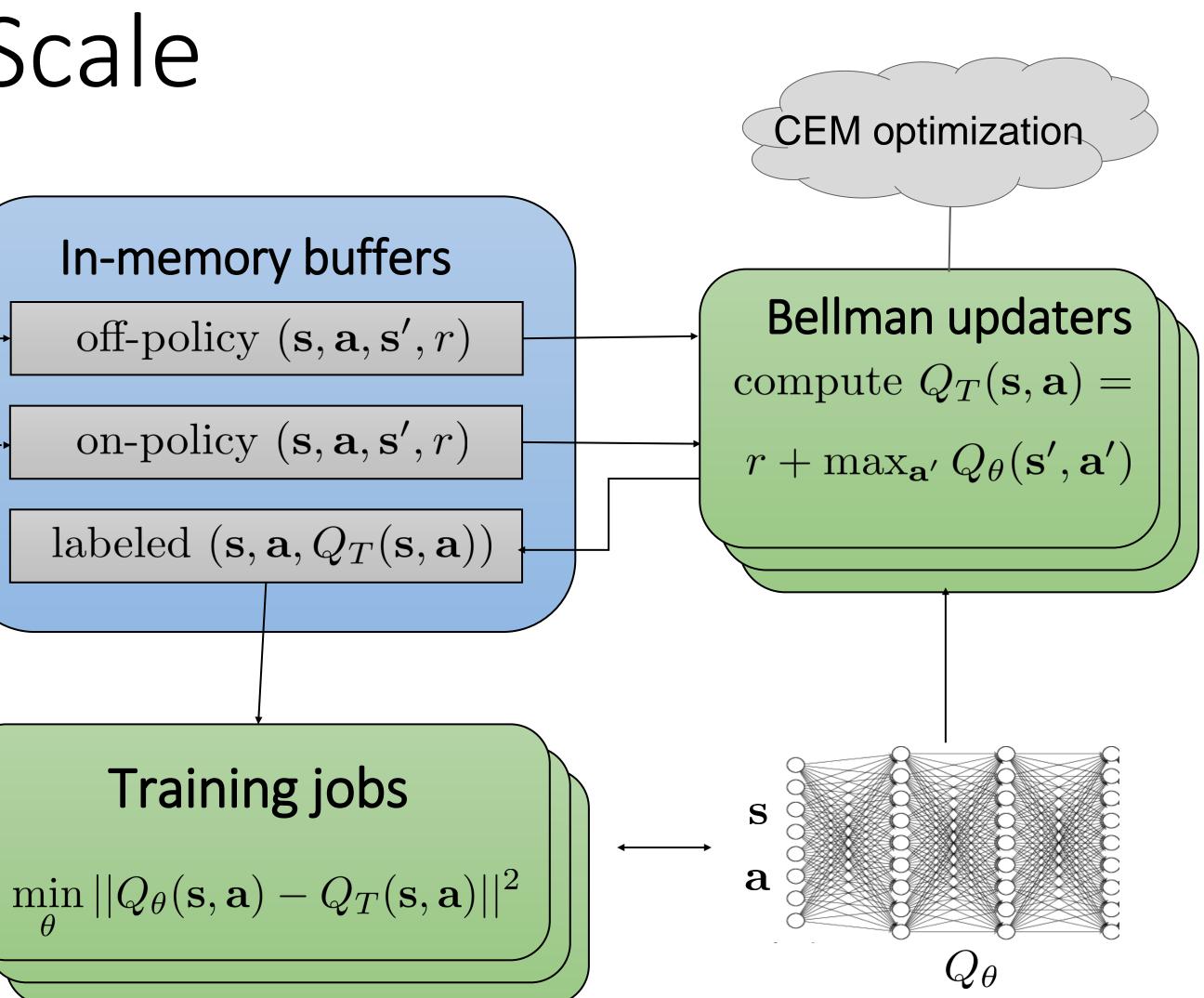
QT-Opt: Q-learning at Scale

stored data from all past experiments $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i)\}_i$



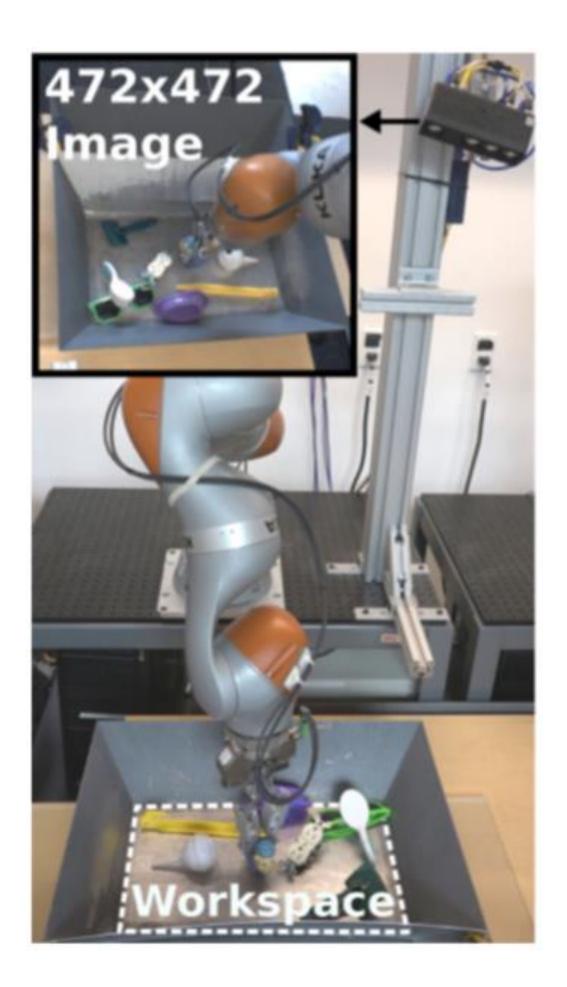
minimize $\sum_{i} (Q(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \max_{\mathbf{a}'_i} Q(\mathbf{s}'_i, \mathbf{a}'_i)])^2$

Slide adapted from D. Kalashnikov



QT-Opt: Kalashnikov et al. '18, Google Brain

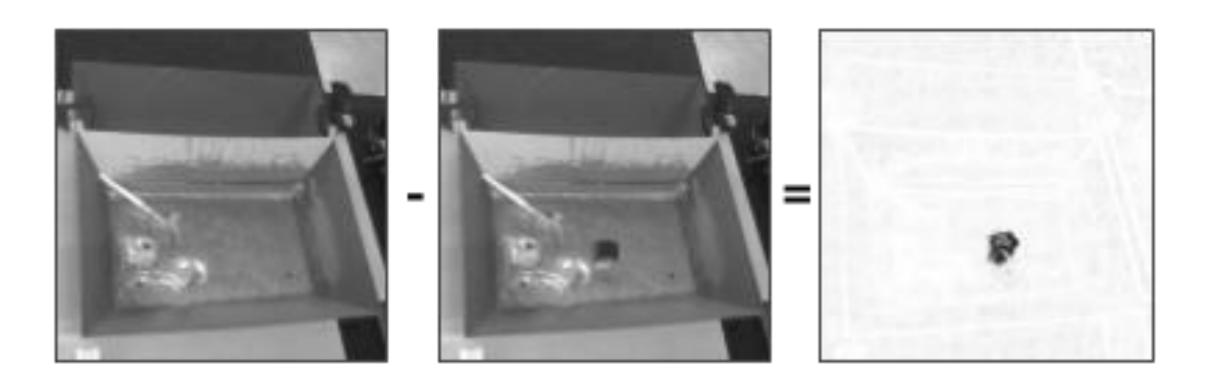
QT-Opt: MDP Definition for Grasping



Slide adapted from D. Kalashnikov

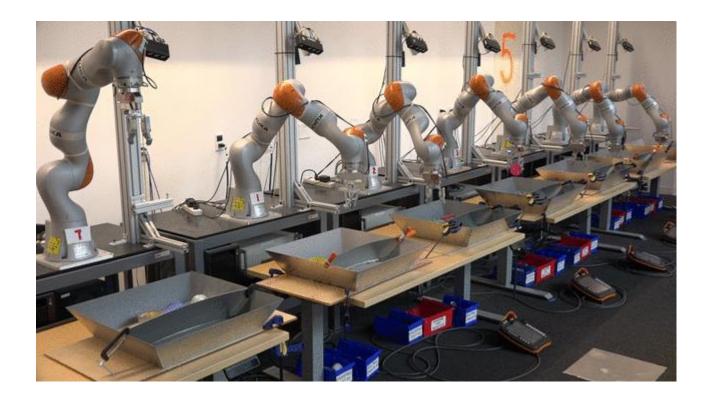
No shaping

Automatic success detection:



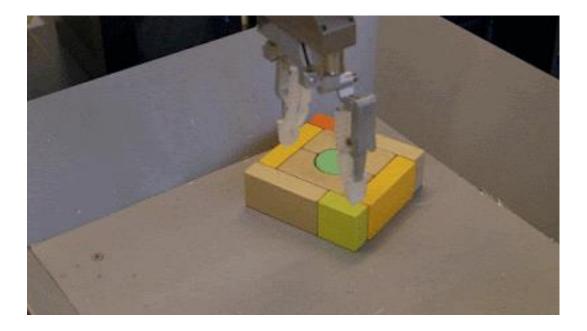
- **State**: over the shoulder RGB camera image, no depth
- **Action**: 4DOF pose change in Cartesian space + gripper control
- **Reward**: binary reward at the end, if the object was lifted. Sparse.

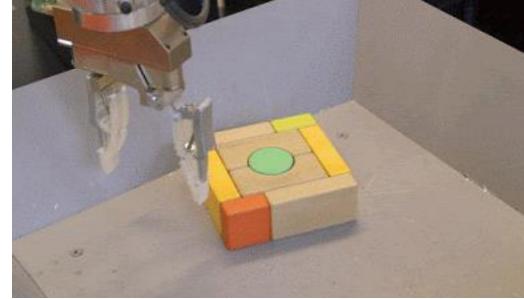
QT-Opt: Setup and Results



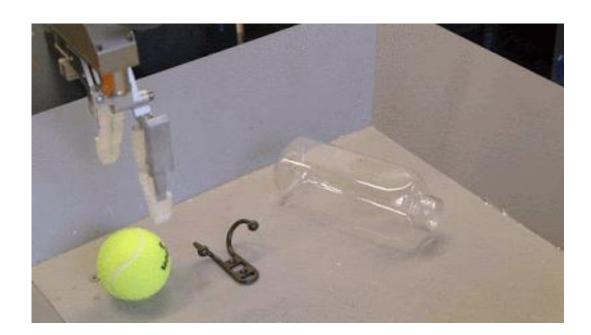
7 robots collected 580k grasps

Unseen test objects





96% test success rate!



Key learning goals:

- Practical Q learning implementation tricks
- Understanding the landscape of Q learning algorithms

Q learning implementation:

- Replay buffer & target networks
- Double Q-learning & n-step returns

Recap

Landscape of Q learning:

- Q learning w/ continuous actions
- Examples

Any other way to learn a policy?

What about the dynamics of the environment?

Model-based RL