Hierarchical RL and Skill Discovery
CS 224R



Reminders

Today: Project milestone due

Wednesday next week: Homework 4 due



The Plan

Information-theoretic concepts
Skill discovery
Using discovered skills

Hierarchical RL

Key learning goals:
 Understand the concept of a skill and basic algorithms in this space

* Qverview of hierarchical RL algorithms



Recall: RL so far

(a) online reinforcement learning  (b) off-policy reinforcement learning (c) offline reinforcement learning
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Why Skill Discovery?

What if we want to discover interesting
behaviors?

Circular ashtray Frying pan
44
Zipper Computer mouse
/7
Light bulb Beer mug
[The construction of movement [Postural hand synergies for tool
by the spinal cord, Tresch et al., use, Santello, et al., 1998]

1999]




Why Skill Discovery? More practical version

Coming up with tasks is tricky...

Task ideas for a tabletop manipulation scenario

assembly

dial turn

Elck place

reach wall

basketball

disassemble door open

gmdle press handle press gicyédle pull

plate slide

shelf place

Train

utton ress button res? button press bu ton press coffee button coffee pull coffee push

topdow

handle pull

g]gte slide glate slide

soccer stick push

lever pull

glote sli e(-!

stick pull

gea% insert

push back

sweep into

g%% unplug

pus

sweep

door unlock drawer close drawer open faucet open faucet close hammer

pick place

g'(ik out of

push wall reach

window open window close

Test

bin picking

box close

door lock

door unlock

hand insert

[Meta-World, Yu, Quillen, He, Julian, et al., 2019]




Why Hierarchical RL?

Performing tasks at various levels of abstractions Exploration

Bake a cheesecake

Buy ingredients
Go to the store

Walk to the door

Take a step

Contract muscle X



The Plan

Information-theoretic concepts
Skill discovery
Using discovered skills

Hierarchical RL



Entropy

p(X) distribution (e.g., over observations x)

' p(x)
H (p(X)) —  Lx~op(x) [log p(X)]
entropy — how “broad” p(x) is Ho00)
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Slide adapted from Sergey Levine
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KL-divergence

Distance between two distributions

Dz (allp) =E, [log f,f”i | =E,log q(x) ~E,log p(z) = —E,logp(z) — H(q(x))

b




Mutual information

y
p(x,y)
:EX ~D(x log high MI: x and y : ;de
(x,¥)~p(x,y) O p(x)p(y) g MI: x and y are dependent

=H(p(y)) —Hp(ylx)) = H(p(x)) — H(p(x]y)) 3

> X

low MI: x and y are independent

High MI?
X- it rains tomorrow, y — streets are wet tomorrow

X- it rains tomorrow, y — we find life on Mars tomorrow

Slide adapted from Sergey Levine



Mutual information

y
p(x,y)
:EX ~D(x log high MI: x and y : ;de
(x,¥)~p(x,y) O p(x)p(y) g MI: x and y are dependent

=H(p(y)) —Hp(ylx)) = H(p(x)) — H(p(x]y)) 3

> X

low MI: x and y are independent

example of mutual information: “empowerment” (Polani et al.)

L(sir15as) = H(st41) — H(set1|as)

Slide adapted from Sergey Levine
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Soft Q-learning

Objective:
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Soft Q-learning

m(ags)) = N(pu(se), 2)
-

Q(St,at)
) m(a[se) o< exp Q(s¢, ay)

ag

VA

Exploration

Pretraining: reward = speed (any direction)

(one robot per trajectory)

DDPG (policy 1) Soft Q-learning (fixed policy)

25 random seeds; noise addded to actions random seeds 0 - 24

Haarnoja et al. RL with Deep Energy-Based Policies, 2017



Learning diverse skills

m(als,0)
m(als, 2)
task index r(als,5) | BOLK m(als, 1)
Why can’t we just use MaxEnt RL e N
w(als,4) .| L x| w(als, 2)
1. action entropy is not the same as state entropy
. . o w(als, 3)
agent can take very different actions, but land in similar states

2. MaxEnt policies are stochastic, but not always controllable

intuitively, we want low diversity for a fixed z, high diversity across z’s

Intuition: different skills should visit different state-space regions

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need. Slide adapted from Sergey Levine



Diversity-promoting reward function

W(&‘S, Z) = arg mgxz Es~7r(s|z) [’I"(S7 Z)]
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Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need. Slide adapted from Sergey Levine @



Examples of learned tasks

Cheetah
Ant

Mountain car
Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.



A connection to mutual information

W(&‘S, Z) = arg maXZ Es~7r(s|z) [’I“(S7 Z)]
r(s, z) = log p(z|s)

I[(z,s8) = H(z) — H(z|s)

/ \

maximized by using uniform prior p(z) minimized by maximizing log p(z|s)

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.
See also: Gregor et al. Variational Intrinsic Control. 2016 Slide adapted from Sergey Levine
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How to use learned skills?

How can we use the learned skills to accomplish a task?

Learn a policy that operates on z’s

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.



Results: hierarchical RL

c Can we do better?
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Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.



What’s the problem?

Skills might not be particularly useful It’s not very easy to use the learned skills

What makes a useful skill?



What’s the problem?
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Slightly different mutual information

I(z,8)=H(z) — H(z|s)
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Sharma, Gu, Levine, Kumar, Hausman, DADS, 2019.



Skill-dynamics model

We are learning a skill-dynamics model  q(s | s, 2)

compared to conventional global dynamics p(s' | s,a)

Skills are optimized specifically to make skill-dynamics easier to model

Sharma, Gu, Levine, Kumar, Hausman, DADS, 2019.



DADS algorithm

Update
ag(s’ I's,2)

Computer,(s, a, s’)

repeat

(sy, @y, 1) - sy, ap, 1)

(51, @y, 1q) e (sy, ap, ry)

VAV

(51, @y, 1) - (Sp, ap, 1y)

NSV

Sharma, Gu, Levine, Kumar, Hausman, DADS, 2019.

Algorithm 1: Dynamics-Aware Discovery
of Skills (DADS)

Initialize 7, g4;

while not converged do

Sample a skill z ~ p(z) every episode;

Collect new M on-policy samples;

Update g4 using K steps of gradient
descent on M transitions;

Compute 7 (s, a, s") for M transitions;

Update 7 using any RL algorithm;

end




DADS results
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Using learned skills

Use skill-dynamics for model-based planning

Plan for skills not actions

Tasks can be learned zero-shot

iterate

skill-dynamics

q¢l
policy T

Py (S @gs - Sy AW)
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Summary

- Two skill discovery algorithms that use mutual information
- Predictability can be used as a proxy for “usefulness”

- Method that optimizes for both, predictability and diversity
- Model-based planning in the skill space

- Opens new avenues such as unsupervised meta-RL

- Gupta et al. Unsupervised Meta-Learning for RL, 2018
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Why Hierarchical RL?

Performing tasks at various levels of abstractions Exploration

Bake a cheesecake

Buy ingredients
Go to the store

Walk to the door

Take a step

Contract muscle X



Hierarchical RL — design choices

Design choices:

goal-conditioned vs not
pre-trained vs e2e
self-terminating vs fixed rate

on-policy vs off-policy




Learning Locomotor Controllers

Command updated
every K steps

High-level
ller

-level
ntroller

- HLand LL trained separately
- Trained with policy gradients
- Hierarchical noise

inform . w
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80 fW‘

60

—— prelearned
—— FF, from scratch

40

20

0
0 50 100 150 200 0 50 100 150 200 0 100 200 300 400 500 600 700

episodes (x 1000) episodes (x 1000) episodes (x 1000)

(a) target-seek (easy) (b) target-seek (hard) (c) soccer

Heess, Wayne, Tassa, Lillicrap, Riedmiller, Silver, Learning Locomotor Controllers, 2016.
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Design choices:

- goal-conditioned vs not

- pre-trained vs e2e

- self-terminating vs fixed rate
- on-policy vs off-policy




Option Critic

A Markovian option w € (2 is a triple
(Zw, 7w, Bw) in which Z, C § is an initiation set, 7, is
an intra-option policy, and 3, : § — [0,1] is a termi-
nation function. We also assume that Vs € S§,Vw € 2 :
s € 1, (i.e., all options are available everywhere)

- Option is a self-terminating mini- Design choices:
policy
} - goal-conditioned vs not

Everything trained together with

[ oolicy gradient - pre-trained vs e2e
- self-terminating vs fixed rate
- on-policy vs off-policy
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Bacon, Harb, Precup, The Option-Critic Architecture, 2016.



Relay Policy Learning

Gupta, Kumar, Lynch, Levine, Hausman, Relay Policy Learning, 2019.

Design choices:

- goal-conditioned vs not

- pre-trained vs e2e

- self-terminating vs fixed rate
- on-policy vs off-policy




Relay Policy Learning

J

Unstructured

Demos

Long Horizon Goal

4 )
//\x
K High level /

Relay Data Relabeling

RPL (Ours)

- Goal-conditioned policies with relabeling
- Demonstrations to pre-train everything

- On-policy

DAPG-GCBC

On-policy HIRO

Gupta, Kumar, Lynch, Levine, Hausman, Relay Policy Learning, 2019.

Z1 VS Sg1 Z2 VS Sgz

Design choices:

- goal-conditioned vs not
- pre-trained vs e2e

- self-terminating vs fixed rate
- on-policy vs off-policy

Success Percentage

Comparison of success rate

------ RPL Distilled Policy (Ours)
— IRIL-RPL (Ours)

A —— DAPG-RPL (Ours)
wvee = NPG-RPL (Ours)
NPG-GCBC

NPG-BC
DAPG-GCBC

—— DAPG-BC
HIRO
Pre-trained low level
Oracle split

-~ Nearest Neighbor

P "
Training Iterations




1. Collect experience s¢, g¢, at, R, .. ..
h 2. Train ,ulo with  experience  transitions
9, g9; — e —g 4 9. (st,gt, at, Tt, St+1,gt+1) using g as
K ? additional state observation and reward given by
o o o o res?)'lg‘::;‘g’;;"g’;‘%m: D goal-conditioned function ry =
s 6% rewards r(s,, g, a, S,,,)- 'r(st,gt,at,st+1) — —|Tst + g+ — St+1||2. Z1 Vs Sg1 22 VS Sgz '___‘
% a, 1 a, g a._, < a. 3. Train ,uM on temporally-extended experience _n,_'
\ | \ | \ | \ | e o L (8¢, 3ts > Ri:t4c—1,St+c), Where gi is re- ﬁ —!
{ Environment p— re-labelling. labelled high-level action to maximize probability “y
of past low-level actions a¢.¢4c—1. l"e n:}
,in ,i1 le ,ic }_ 4. Repeat. -
Figure 2: The design and basic training of HIRO. The lower-level policy interacts directly with the
environment. The higher-level policy instructs the lower-level policy via high-level actions, or goals, Desi gn choices:
g: € R% which it samples anew every c steps. On intermediate steps, a fixed goal transition function
h determines the next step’s goal. The goal simply instructs the lower-level policy to reach specific
states, which allows the lower-level policy to easily learn from prior off-policy experience. - goa l-conditioned vs not
- pre-trained vs e2e
- Goal-conditioned policies with relabeling - self-terminating vs fixed rate
- Off-policy training through off-policy - on-policy vs off-policy
corrections

Ant Gather Ant Maze Ant Push Ant Fall

HIRO With pre-training No HRL

With lower-level re-labelling No off-policy correction

Nachum, Gu, Lee, Levine HIRO, 2018.



HRL Summary

- Multiple design choices and frameworks

- Helps with exploration and temporally
extended tasks

- Can be difficult to get it to work

- Seems like a natural direction for harder RL
problems

Hypothesis Experiments Important?

Yes, but only for the use of

al traini igures 2, 3 :
(H1) Temporal training Figures 2, multi-step rewards (n-step returns).

Yes, and this is important even for

2 ; ' ioures 2
(HZ) Texporal explocifion | Figues 2, 4 non-hierarchical exploration.

(H3) Semantic training Figure 3 Mo.

Yes, and this is important even for

H4) Semantic exploration Figure 4 . . ;
(H4) P £ non-hierarchical exploration.

Figure 5: A summary of our conclusions on the benefits of hierarchy.

Nachum, Lang, Lu, Gu, Lee, Levine, Why Does Hierarchy (Sometimes) Work? 2019.

Design choices:

- goal-conditioned vs not

- pre-trained vs e2e

- self-terminating vs fixed rate
- on-policy vs off-policy




Recap

Key learning goals:
* Understand the and basic algorithms in this space

e Qverview of hierarchical RL algorithms

Hierarchical RL:

e Connected to information-theoretic * Many different options/methods
measures like mutual information * Designed to cope with longer-horizon
* Unsupervised but difficult to use in tasks

complex environments e Largely unsolved



Next

Monday — no lecture

Guest lecture — Anna Goldie on various RL applications

including LLMs and chip design
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