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Plan for Today

- Why aren’t robots autonomous already?
- Defining the problem: autonomous RL

- Developing the algorithms
- Forward-backward RL, MEDAL

- QWALE/single-life RL

Goal: Build autonomous agents that can learn in and interact with the real world



Plan for Today

- Why aren’t robots autonomous already?



Reinforcement Learning = Trial-and-Error

Learn a policy 7 to go from pj to p,

Repeat:

» Execute actions from the policy 7

» Observe data from the environment
» Update the policy z



Standard Reinforcement Learning

$0,d0,51,01 -..5H

ey o
Sg, Agy S1,A7 + + -

How does this happen?

Only in simulation!

import gym

env = gym.make("CartPole-v1")

observation = env.reset()

for _ in range(1000):
env.render()

action = env.action_space.sample() # yq
observation, reward, done, info = env.

if done:
observation = env.reset()

[Code snippet from https://gym.openai.com/]



The Continual Real World
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[Collective Robot Reinforcement Learning with Distributed
Asynchronous Guided Policy Search, Yahya et al. 2016]

[Combining model-based and model-free updates
for trajectory-centric reinforcement learning,
Chebotar et al. 2017]

[Self-Improving Robots: End-to-End Autonomous
Visuomotor Reinforcement Learning, Sharma et al.
2023]



Plan for Today

- Defining the problem: autonomous RL



$0,0d0,51,01 ...5H

Reset Environment
/ / / /
Sg, (g, S1,07 - - -
7 Problem: this requires human supervision

What if we increase H?

V Fewer environment resets, less human supervision



Autonomous RL: Definition
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No environment resets®

Initialize once at the beginning

*can relax this constraint to reset occasionally, or at low frequency



Autonomous RL: Evaluation

We might care about two different things:
- The amount of reward recovered over the course of its life (ex: mars rover)
- The quality of the policy learned (ex: robot chef)



Autonomous RL: Evaluation

Deployed Policy Evaluation Continuing Policy Evaluation™
= Quality of the policy learned = Reward accumulated over lifetime
o h
t . 1
J(m1) = Esgmpouarmm | > V'7(51,04) lim E | — g r(St, at)
t=0 h— o0 h
t=0
Start from the initial Take actions Total reward over Average over reward accumulated in

. ] lifeti
state distribution according to r, the episode the lifetime

We'll take a look at algorithms for both!

*average-reward RL



Why is autonomous RL important?

Robotics < — > Autonomy
- We want robots to operate with minimal human supervision +/
- We want robots to *train* with minimal human supervision

Autonomy is important to build generalist robots
- generalization requires data
- robot interaction data is bottlenecked by human supervision
- less supervision => more data => better generalization?



Plan for Today

Developing the algorithms
- Forward-backward RL, MEDAL



Standard RL Algorithms Fail Autonomously

What happens when the episode length is increased?
Fish
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Note: this measures deployed policy
evaluation



The Challenge of Learning Autonomously

Episodic Learning Non-Episodic Learning

Challenge 2: state
distribution collapse

\
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/\\ The agent never learns a good
Can always retry .
the task from initial Ch policy
state distribution can cause the agent to

drift far away



Learn a Backward Policy!

Fish
5.0e2 | learns successfully if allowed to retry
from the initial state distribution frequently
4,062
3.0e2 -
2.0e2 ] key idea: learn a policy to reset?
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Algorithm: Forward-Backward RL

Assume we have 7,(s, a) to reach p, Forward-Backward RL

and r,(s, a) to reach p, 1. Initialize forward policy 7, and backward policy 7,

2. Rollout 7, for H steps (+ update 77, on r,(s, a))
Po /\/\/\ . 3. Rollout 7, for H steps (+ update m, on r,(s, a))
4. Rollout 7, for H steps (+ update 7, on rf(s, a))
5. Rollout 7, for H steps (+ update m, on r,(s, a))
(repeat...)
p

T[f Backward
i Policy
Forward Policy - requires an additional r,(s, a)

+ simple to train

[Han et al. Learning Compound Multi-Step Controllers under Unknown Dynamics]
[Eysenbach et al. Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning]



Can we do better?

Consider learning from the forward policy’s perspective:

cannot change the initial
state distribution for
forward policy 7;in
episodic setting

What if the forward policy can practice from the easier states:

+ success from easier
states can make it
faster to learn from
harder states

backward policy 7,
controls the initial state
distribution for forward

policy 7;in autonomous RL



Matching Expert States

Po \ ‘

we want to initialize at states
an optimal policy would visit () [1]

Key insight: train backward policy 7, to match
How? Minimize Dys(p°(s) || p*(s))

State distribution of the

backward policy 7,

Problem: we don’t have either distribution

<

-

-’
Assume we have access to a (small) set of -
demonstrations expert _

demonstrations

+ we can sample distributions now
(rolling out 7, is approximately sampling o)

[1] Kakade & Langford. Approximately Optimal Approximate Reinforcement Learning. ICML 2002.



Matching Expert States

Key insight: train backward policy 7, to match

How? Minimize Dys(p°(s) || p*(s))

‘ + we can sample distributions now

2 (rolling out 7, is approximately sampling p®)

How do we train 7;,? Train a classifier as a
reward function!
. (already seen this in “Learning Rewards”)

+1 s € demos,

we want to initialize at states C(S) - 1 b
an optimal policy would visit (/™) o s~p ()

max[E

Z vYirs(se, at)] backward policy 7,; max —E Z ' log (1 — C(s¢41))

t=0 t=0



Algorithm: MEDAL

Assume we have r,(s, a) to reach p,

and expert demos

Po
S ﬂ'b
ﬂf Backward
Forward Policy Policy

Matching Expert Distributions for
Autonomous Learning

1. Initialize forward policy 7, and backward policy 7,
2. Rollout 7, for H steps (+ update 7, on r¢(s, a))

3. Rollout 7, for H steps (+ update x;, on Dys(p | 1p*))
4. Rollout 7, for H steps (+ update 7, on r(s, a))

5. Rollout 7, for H steps (+ update 7, on Dys(p,||p*)
(repeat...)

- requires expert demos

- adversarial training can be tricky
+ can be more efficient

+ no additional reward functions



Autonomous Reinforcement Learning via MEDAL

Matching Expert Distributions for
Autonomous Learning

Addressing challenge 2:
backward policy avoids 2
collapse of state '
distribution l -
q 7t )
T Addressing challenge 1: agent
y Backward doesn’t drift away
Forward Policy Policy

Pro: Forward policy tries the task from wide set of initial states,
both easy and hard, improving the sample efficiency [1]



VaPRL MEDAL
Results (goal : FBRL

curriculum)
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EARL: Sharma*, Xu* et al. Autonomous Reinforcement Learning: Formalism and Benchmarking, ICLR 2022.
VaPRL: Sharma et al. Autonomous Reinforcement Learning via Subgoal Curricula. NeurlPS 2021.

FBRL: Han et al. Learning Compound Multi-Step Controllers under Unknown Dynamics. IROS 2015.

R3L: Zhu et al. The Ingredients of Real-World Robotic Reinforcement Learning. ICLR 2020.
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Putting it on the real world: MEDAL++

Challenge: we don’t have a reward function r4(s, a) for the forward policy

Solution: use classifier-based rewards again!

Results:

Timelapse of MEDAL++
on other tasks

Forward and backward policies in MEDAL++
learning to put a cloth through the hook

[1] Sharma et al. Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement Learning




Plan for Today

- Developing the algorithms

- QWALE/single-life RL



So far...

We Looked at FBRL, MEDAL
- We can improve the quality of the policy through autonomous practice

What happens after we deploy the policy?

Obviously, everything works perfectly and nothing goes wrong +/



So far...

We Looked at FBRL, MEDAL
- We can improve the quality of the policy through autonomous practice

What happens after we deploy the policy?

The natural world is complex, and something likely will go wrong, despite
preparation :(



Single-life RL

........................................

----
o

) f, ‘ Tyre stuck in a pot hole

Delivery bot

This is a new scenario that has not been seen in training before:
- Finishing the delivery is more important
- Wait for human to intervene?
- Consider the example of Mars Rover, how would humans even intervene?



Single-life RL

Autonomous Practice

Single life reinforcement learning

Given prior data, the agent has one life to autonomously complete the
task in a novel scenario



Challenge: Recovery from Unseen States

This agent was only trained to run, but has not seen hurdles before:

Deploying a policy, and even fine-tuning online does not encourage it to recover once it tumbles



Bias towards Prior Data

Prior Data

% S T T /N\

Delivery bot

..........................
...............
..................................

Online single-life trajectory

When the agent goes reaches an unseen state:
- bias towards states seen in prior data
- but not all states, as the data may have suboptimal states



Q-Weighted Adversarial Learning (QWALE)

Key Idea: Train the agent to stay close to states visited in prior data

Do we know of a technique to reach a state distribution? yes! Train a reward classifier!

C(s) = +1 s € prior data,

—1 s € online data

But, how do differentiate good prior states from bad ones? Weigh all prior states when training
the classifier by eXp(Q (s, a)) [1] prior data bias

QWALE: train policy 7 with the reward: 7(s") —log(1 — C(s"))

task reward

[1] Chen et al. You Only Live Once: Single-life Reinforcement Learning. NeurIPS, 2022



Can QWALE help agents handle novel, out-of-distribution
situations?

QWALE helps the agent recover when it falls into out-of-distribution
states.



Experimental Domains

Tabletop-Organization =~ Pointmass Cheetah Franka-Kitchen
(+new initial mug pos) (+wind) (+hurdles) (+new combo of tasks)



How does QWALE compare to RL fine-tuning in SLRL settings?

Median Steps to Task Completion
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QWALE significantly outperforms RL fine-tuning.



Summary

- Why aren’t robots autonomous already?
- Defining the problem: autonomous RL
- Developing the algorithms

- Forward-backward RL, MEDAL

- QWALE /single-life RL

Things we did not cover:
- How to handle irreversible states [1]
- Autonomous agents are taking over the web! [2]

Questions?

[1] Xie* et al. When to Ask for Help: Proactive Interventions in Autonomous Reinforcement Learning
[2] https:/ / github.com /Significant-Gravitas / Auto-GPT



https://github.com/Significant-Gravitas/Auto-GPT

