Building Autonomous Reinforcement Learning
Agents g

Archit Sharma
IRIS @ Stanford

CS5224R: Deep Reinforcement Learning
May 22, 2023

Plan for Today

- Why aren’t robots autonomous already?
- Defining the problem: autonomous RL

- Developing the algorithms
- Forward-backward RL, MEDAL

- QWALE/single-life RL

Goal: Build autonomous agents that can learn in and interact with the real world

Plan for Today

- Why aren’t robots autonomous already?

Reinforcement Learning = Trial-and-Error

Learn a policy 7 to go from pj to p,

Repeat:

» Execute actions from the policy 7

» Observe data from the environment
» Update the policy z

Standard Reinforcement Learning

$0,d0,51,01 -..5H

ey o
Sg, Agy S1,A7 + + -

How does this happen?

Only in simulation!

import gym

env = gym.make("CartPole-v1")

observation = env.reset()

for _ in range(1000):
env.render()

action = env.action_space.sample() # yq
observation, reward, done, info = env.

if done:
observation = env.reset()

[Code snippet from https://gym.openai.com/]

The Continual Real World

. Y_Q

“Grasp the mug”

“Navigate to the basketball court”

\
- —%! —
-
/ —
,' g — Several
_ _ =2 thousands of
MY-=s====— - - trials!
_— ~ !
\
S o | L
“Learn how to shelf a book” == ! /

[Collective Robot Reinforcement Learning with Distributed
Asynchronous Guided Policy Search, Yahya et al. 2016]

[Combining model-based and model-free updates
for trajectory-centric reinforcement learning,
Chebotar et al. 2017]

[Self-Improving Robots: End-to-End Autonomous
Visuomotor Reinforcement Learning, Sharma et al.
2023]

Plan for Today

- Defining the problem: autonomous RL

$0,0d0,51,01 ...5H

Reset Environment
/ / / /
Sg, (g, S1,07 - - -
7 Problem: this requires human supervision

What if we increase H?

V Fewer environment resets, less human supervision

Autonomous RL: Definition

.
.
.
.
.
.
.
.
.
-
.
.
., .
., ay
. ,
. .
. .
. ,
.....
.
.]

‘e
‘e
.

No environment resets®

Initialize once at the beginning

*can relax this constraint to reset occasionally, or at low frequency

Autonomous RL: Evaluation

We might care about two different things:
- The amount of reward recovered over the course of its life (ex: mars rover)
- The quality of the policy learned (ex: robot chef)

Autonomous RL: Evaluation

Deployed Policy Evaluation Continuing Policy Evaluation™
= Quality of the policy learned = Reward accumulated over lifetime
o h
t . 1
J(m1) = Esgmpouarmm | > V'7(51,04) lim E | — g r(St, at)
t=0 h— o0 h
t=0
Start from the initial Take actions Total reward over Average over reward accumulated in

.] lifeti
state distribution according to r, the episode the lifetime

We'll take a look at algorithms for both!

*average-reward RL

Why is autonomous RL important?

Robotics < — > Autonomy
- We want robots to operate with minimal human supervision +/
- We want robots to *train* with minimal human supervision

Autonomy is important to build generalist robots
- generalization requires data
- robot interaction data is bottlenecked by human supervision
- less supervision => more data => better generalization?

Plan for Today

Developing the algorithms
- Forward-backward RL, MEDAL

Standard RL Algorithms Fail Autonomously

What happens when the episode length is increased?
Fish

5.0e2] o 1000 steps

4.0e2 1

<4+—— 2000 steps

3.0e2

10,000 steps
< 50,000 steps

2.0e2 A

1.0e2 A

100,000 steps

0.0e0 1.0'e6 2.0|e6 3.0Ie6 4.0|e6 5.0e6
Environment Steps

Note: this measures deployed policy
evaluation

The Challenge of Learning Autonomously

Episodic Learning Non-Episodic Learning

Challenge 2: state
distribution collapse

\

~— N | —
/\\ The agent never learns a good
Can always retry .
the task from initial Ch policy
state distribution can cause the agent to

drift far away

Learn a Backward Policy!

Fish
5.0e2 | learns successfully if allowed to retry
from the initial state distribution frequently
4,062
3.0e2 -
2.0e2] key idea: learn a policy to reset?
1022
0.0e0 1.0e6 2.0e6 3.0e6 4.0e6 5.0e6

Environment Steps

Algorithm: Forward-Backward RL

Assume we have 7,(s, a) to reach p, Forward-Backward RL

and r,(s, a) to reach p, 1. Initialize forward policy 7, and backward policy 7,

2. Rollout 7, for H steps (+ update 77, on r,(s, a))
Po /\/\/\ . 3. Rollout 7, for H steps (+ update m, on r,(s, a))
4. Rollout 7, for H steps (+ update 7, on rf(s, a))
5. Rollout 7, for H steps (+ update m, on r,(s, a))
(repeat...)
p

T[f Backward
i Policy
Forward Policy - requires an additional r,(s, a)

+ simple to train

[Han et al. Learning Compound Multi-Step Controllers under Unknown Dynamics]
[Eysenbach et al. Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning]

Can we do better?

Consider learning from the forward policy’s perspective:

cannot change the initial
state distribution for
forward policy 7;in
episodic setting

What if the forward policy can practice from the easier states:

+ success from easier
states can make it
faster to learn from
harder states

backward policy 7,
controls the initial state
distribution for forward

policy 7;in autonomous RL

Matching Expert States

Po \ ‘

we want to initialize at states
an optimal policy would visit () [1]

Key insight: train backward policy 7, to match
How? Minimize Dys(p°(s) || p*(s))

State distribution of the

backward policy 7,

Problem: we don’t have either distribution

<

-

-’
Assume we have access to a (small) set of -
demonstrations expert _

demonstrations

+ we can sample distributions now
(rolling out 7, is approximately sampling o)

[1] Kakade & Langford. Approximately Optimal Approximate Reinforcement Learning. ICML 2002.

Matching Expert States

Key insight: train backward policy 7, to match

How? Minimize Dys(p°(s) || p*(s))

‘ + we can sample distributions now

2 (rolling out 7, is approximately sampling p®)

How do we train 7;,? Train a classifier as a
reward function!
. (already seen this in “Learning Rewards”)

+1 s € demos,

we want to initialize at states C(S) - 1 b
an optimal policy would visit (/™) o s~p ()

max[E

Z vYirs(se, at)] backward policy 7,; max —E Z ' log (1 — C(s¢41))

t=0 t=0

Algorithm: MEDAL

Assume we have r,(s, a) to reach p,

and expert demos

Po
S ﬂ'b
ﬂf Backward
Forward Policy Policy

Matching Expert Distributions for
Autonomous Learning

1. Initialize forward policy 7, and backward policy 7,
2. Rollout 7, for H steps (+ update 7, on r¢(s, a))

3. Rollout 7, for H steps (+ update x;, on Dys(p | 1p*))
4. Rollout 7, for H steps (+ update 7, on r(s, a))

5. Rollout 7, for H steps (+ update 7, on Dys(p,||p*)
(repeat...)

- requires expert demos

- adversarial training can be tricky
+ can be more efficient

+ no additional reward functions

Autonomous Reinforcement Learning via MEDAL

Matching Expert Distributions for
Autonomous Learning

Addressing challenge 2:
backward policy avoids 2
collapse of state '
distribution l -
q 7t)
T Addressing challenge 1: agent
y Backward doesn’t drift away
Forward Policy Policy

Pro: Forward policy tries the task from wide set of initial states,
both easy and hard, improving the sample efficiency [1]

VaPRL MEDAL
Results (goal : FBRL

curriculum)

EARL Benchmark

(reach
\ /ﬁo)

R3L

Training: r very 200k 1.0+ (state
a g' e_setg ery 200k steps g / novelty)
Evaluation: policy performance o=
from L0 8 0.81 oracle
= SAC
LE (episodic)
., 0.6
3
o | SAC (non-
0.4
% —, episodic,
[no backward
2 0.2 policy)
2,
)
A

0.0e0 5.0e5 1.0e6

EARL: Sharma*, Xu* et al. Autonomous Reinforcement Learning: Formalism and Benchmarking, ICLR 2022.
VaPRL: Sharma et al. Autonomous Reinforcement Learning via Subgoal Curricula. NeurlPS 2021.

FBRL: Han et al. Learning Compound Multi-Step Controllers under Unknown Dynamics. IROS 2015.

R3L: Zhu et al. The Ingredients of Real-World Robotic Reinforcement Learning. ICLR 2020.

1.5e6

2.de6

2.5e6

—_
o

o
=)
i)
(U 4
20.8
[¢]
>
M 0.6 A
>
S
S04l
g 0.4 \
e}
(<)
0.2
2 MEDAL
A
Door Closing 0.0e0 8.0e5 1.6e6 24e6 3.2e6 4.0e6
(Vo)
=] I
S |
T 04 |
= !
© I
> I
K 0.3 I
>’ I
9 ,'
g 021 |
) .'
g{ I
2 0.1' :
% |
0.0e0 1.5e6 3.0e6 4.5e6 6.0e6
—— R3L —— FBRL —— VaPRL - — oracle

Peg Insertion — MEDAL —— naive

Putting it on the real world: MEDAL++

Challenge: we don’t have a reward function r4(s, a) for the forward policy

Solution: use classifier-based rewards again!

Results:

Timelapse of MEDAL++
on other tasks

Forward and backward policies in MEDAL++
learning to put a cloth through the hook

[1] Sharma et al. Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement Learning

Plan for Today

- Developing the algorithms

- QWALE/single-life RL

So far...

We Looked at FBRL, MEDAL
- We can improve the quality of the policy through autonomous practice

What happens after we deploy the policy?

Obviously, everything works perfectly and nothing goes wrong +/

So far...

We Looked at FBRL, MEDAL
- We can improve the quality of the policy through autonomous practice

What happens after we deploy the policy?

The natural world is complex, and something likely will go wrong, despite
preparation :(

Single-life RL

..

o

) f, ‘ Tyre stuck in a pot hole

Delivery bot

This is a new scenario that has not been seen in training before:
- Finishing the delivery is more important
- Wait for human to intervene?
- Consider the example of Mars Rover, how would humans even intervene?

Single-life RL

Autonomous Practice

Single life reinforcement learning

Given prior data, the agent has one life to autonomously complete the
task in a novel scenario

Challenge: Recovery from Unseen States

This agent was only trained to run, but has not seen hurdles before:

Deploying a policy, and even fine-tuning online does not encourage it to recover once it tumbles

Bias towards Prior Data

Prior Data

% S T T /N\

Delivery bot

..........................
...............
..................................

Online single-life trajectory

When the agent goes reaches an unseen state:
- bias towards states seen in prior data
- but not all states, as the data may have suboptimal states

Q-Weighted Adversarial Learning (QWALE)

Key Idea: Train the agent to stay close to states visited in prior data

Do we know of a technique to reach a state distribution? yes! Train a reward classifier!

C(s) = +1 s € prior data,

—1 s € online data

But, how do differentiate good prior states from bad ones? Weigh all prior states when training
the classifier by eXp(Q (s, a)) [1] prior data bias

QWALE: train policy 7 with the reward: 7(s") —log(1 — C(s"))

task reward

[1] Chen et al. You Only Live Once: Single-life Reinforcement Learning. NeurIPS, 2022

Can QWALE help agents handle novel, out-of-distribution
situations?

QWALE helps the agent recover when it falls into out-of-distribution
states.

Experimental Domains

Tabletop-Organization =~ Pointmass Cheetah Franka-Kitchen
(+new initial mug pos) (+wind) (+hurdles) (+new combo of tasks)

How does QWALE compare to RL fine-tuning in SLRL settings?

Median Steps to Task Completion
00000 p p 10 Successes (out of 10) [QWALE
- B SAC
9 g —
v 1500001 A
o) o B SAC-RND
& S 6
—
© 100000 2
8 > 4l
E 38
> S
Z 500001 =
= 29
0- , , 0- ; ; —
Tabletop Pointmass Cheetah Kitchen Average TabletopPointmassCheetah Kitchen Average
Environment Environment

QWALE significantly outperforms RL fine-tuning.

Summary

- Why aren’t robots autonomous already?
- Defining the problem: autonomous RL
- Developing the algorithms

- Forward-backward RL, MEDAL

- QWALE /single-life RL

Things we did not cover:
- How to handle irreversible states [1]
- Autonomous agents are taking over the web! [2]

Questions?

[1] Xie* et al. When to Ask for Help: Proactive Interventions in Autonomous Reinforcement Learning
[2] https:/ / github.com /Significant-Gravitas / Auto-GPT

https://github.com/Significant-Gravitas/Auto-GPT

