

Imitation Learning

CS 224R

SpongeBob image rights & credits to Viacom International

Course reminders

- Homework 1 out today, due Weds April 19

- Thursday PyTorch tutorial (4:30 pm) moved to Skilling Auditorium - Up to 2% extra credit for providing TA-endorsed answers on Ed

- Start forming final project groups (survey due Mon April 17) - Fill out AWS form with account ID by this Friday April 7

News

The plan for today

Imitation Learning

- Where does the data come from?
- What can go wrong? 2.
- Learning from online interventions 3.
- Case study in fine robotic manipulation 4.

Key learning goals:

Topic of homework 1!

- the basic mechanics of imitation learning & how to implement it - the most common challenges & latest solutions for addressing them

Result: a trajectory $\mathbf{S}_1, \mathbf{a}_1, \ldots, \mathbf{S}_T$. also called a policy *roll-out*

The basics of imitation learning

Key idea: Train policy using supervised learning

Data: Given trajectories collected by an expert "demonstrations" $\mathcal{D} := \{(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T)\}$

Training: Train policy to mimic expert: $\min_{\theta} - \mathbb{E}_{(s,a) \sim \mathcal{D}}[\log \pi_{\theta}(a \mid s)]$ i.e. minimize cross-entropy loss or ℓ_2 loss between predicted & expert actions.

The plan for today

Imitation Learning

- **1.** Where does the data come from?
- What can go wrong? 2.
- Learning from online interventions 3.
- Case study in fine robotic manipulation 4.

Key learning goals:

- the basic mechanics of imitation learning & how to implement it - the most common challenges & latest solutions for addressing them

How to collect demonstrations?

In some domains: People already collect demonstrations that can be recorded e.g. driving cars, writing text messages

What about robotics?

Kinesthetic teaching

+ easy interface

- human visible in scene

In other domains: It may not be viable to collect demos! (e.g. quadruped robot)

Remote controllers

~ interface ease varies

Puppeteering

+ easy interface

- requires double hardware

Can we directly use videos of people, animals?

- Embodiment gap: - difference in appearance

Peng, Kanazawa, Malik, Abbeel, Levine. SFV: Reinforcement Learning of Physical Skills from Videos. SIGGRAPH Asia 2018. 8

- difference in physical capabilities, degrees of freedom

Hard to directly imitate human & animal data, but can guide exploration.

The plan for today

Imitation Learning

1. Where does the data come from?

What can go wrong? 2.

- Learning from online interventions 3.
- Case study in fine robotic manipulation 4.

Key learning goals:

- the basic mechanics of imitation learning & how to implement it - the most common challenges & latest solutions for addressing them

What can go wrong in imitation learning?

What can go wrong in imitation learning? **1.** Compounding errors

Supervised learning

Inputs independent of predicted labels $\mathbf{\hat{y}}$

Supervised learning of behavior

Predicted actions affect next state.

Errors can lead to drift away from the data distribution!

Errors can then compound!

states visited by states visited learned policy π by expert

"covariate shift"

What can go wrong in imitation learning? 1. Compounding errors

Supervised learning of behavior

Predicted actions affect next state.

Errors can lead to drift away from the data distribution!

Errors can then compound!

 $p_{expert}(\mathbf{s}) \neq p_{\pi}(\mathbf{s})$

Solutions?

- Collect A LOT of demo data & hope for the best.
- 2. Collect corrective behavior data

What can go wrong in imitation learning? 2. Multimodal demonstration data

Use expressive distribution class to fit p(a | s). Solution?

- capture all modes of the data distribution
- e.g. Gaussian mixture, Categorical, VAEs, diffusion models

The data takes two different actions **here**!

If we use ℓ_2 loss, what action will the agent take?

When does this happen in practice? All time time! Esp. when data collected by multiple people.

What can go wrong in imitation learning? 3. Mismatch in observability between expert & agent

Example demos scraped from conversations:

Problem: Expert has more information than is observed by the agent.

Impossible to accurately imitate.

Solutions:

- Give as much contextual information to the agent as possible.
- Collect demos in a way that gives expert same information as agent.

What can go wrong in imitation learning?

- 1. Compounding errors
- 2. Multimodal demonstration data
- 3. Mismatch in observability between expert & agent

The plan for today

Imitation Learning

- 1. Where does the data come from?
- What can go wrong? 2.
- 3. Learning from online interventions
- Case study in fine robotic manipulation 4.

Key learning goals:

- the basic mechanics of imitation learning & how to implement it - the most common challenges & latest solutions for addressing them

Addressing Compounding Errors with DAgger

Collect corrective behavior data

- 1. Roll-out learned policy π_{θ} : $\mathbf{s}'_1, \hat{\mathbf{a}}_1, \ldots, \mathbf{s}'_T$ 2. Query expert action at visited states $\mathbf{a}^* \sim \pi_{expert}(\cdot | \mathbf{s}')$ 3. Aggregate corrections with existing data $\mathcal{D} \leftarrow \mathcal{D} \cup \{(s', a^*)\}$ 4. Update policy min $\mathscr{L}(\pi_{\theta}, \mathscr{D})$

- + data-efficient way to learn from an expert
- can be challenging to query expert when agent has control
 - Is there another way to collect corrective data?

"dataset aggregation" (DAgger)

Addressing Compounding Errors with DAgger

Collect corrective behavior data while taking full control

- 1. Start to roll-out learned policy π_{θ} : $\mathbf{s}'_1, \hat{\mathbf{a}}_1, \ldots, \mathbf{s}'_t$
- 2. Expert intervenes at time t when policy makes mistake
- 3. Expert provides (partial) demonstration $\mathbf{s}'_t, \mathbf{a}^*_t, \ldots, \mathbf{s}'_T$
- 4. Aggregate new demos with existing data $\mathscr{D} \leftarrow \mathscr{D} \cup \{(s'_i, a^*_i)\}; i \geq t$
- 5. Update policy $\min \mathscr{L}(\pi_{\theta}, \mathscr{D})$
 - "human gated DAgger"
- + (much) easier interface for providing corrections
- can be hard to catch mistakes quickly in some application domains

The plan for today

Imitation Learning

- 1. Where does the data come from?
- What can go wrong? 2.
- Learning from online interventions 3.
- 4. Case study in fine robotic manipulation

Key learning goals:

- the basic mechanics of imitation learning & how to implement it - the most common challenges & latest solutions for addressing them

Case study: Can robots learn fine-grained manipulation skills from demonstrations?

Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware

Tony Z. Zhao¹ Vikash Kumar³ Sergey Levine² Chelsea Finn¹ ¹ Stanford University ² UC Berkeley ³ Meta

Goal: Solve tasks where *precision* and *closed-loop feedback* are important, with objects that are *difficult to simulate*

—> by learning from real-world data.

Hardware Set-Up

Total cost: <\$20k -Off-the-shelf arms + open- sourced parts & code - Fun to play with. :)

Hardware Set-Up

- Total cost: <\$20k
- Off-the-shelf arms + opensourced parts & code
- Off-the-shelf 6-DoF arms with 3Dprinted fingers
- Map joint angles across robots during teleoperation
- 50 Hz control _
- Record RGB images from 4 cameras
- No force feedback (beyond weight of _ "leader" robot)

Train neural network policy to map from images to target joint positions.

Challenge 1: Supervised imitation learning struggles with compounding errors, particularly at 50 Hz.

Challenge 2: Human demonstrations perform tasks in different ways, leading to multimodal data distribution.

	Slid	Slide Ziploc (real)		Slot Battery (real)		
	Grasp	Pinch	Open	Grasp	Place	Insert
BC-ConvMLP	0	0	0	0	0	0
BeT	8	0	0	4	0	0
RT-1	4	0	0	4	0	0
VINN	28	0	0	20	0	0
Succe	ss rates o	f carefull	y-tuned	prior IL m	ethods.	

Naive policy training achieves 0% success.

Train neural network policy to map from images to target joint positions.

Challenge 1: Supervised imitation learning struggles with compounding errors, particularly at 50 Hz.

Challenge 2: Human demonstrations perform tasks in different ways, leading to multimodal data distribution.

Solutions for #1:

Policy predicts chunks of ~60 actions open-loop — (closed-loop at ~ 0.8 Hz, rather than making new decision every timestep)

Naive policy training achieves 0% success.

trade-off drift & open-loop

Train neural network policy to map from images to target joint positions.

Challenge 1: Supervised imitation learning struggles with compounding errors, particularly at 50 Hz.

Challenge 2: Human demonstrations perform tasks in different ways, leading to multimodal data distribution.

Solutions for #1:

- Policy predicts chunks of ~ 60 actions open-loop — (closed-loop at ~ 0.8 Hz, rather than making new decision every timestep)
- Weighted average over predicted actions for that timestep —

Naive policy training achieves 0% success.

trade-off drift & open-loop x [0.5, 0.3, 0.2, 0.1] =

Train neural network policy to map from images to target joint positions.

Challenge 1: Supervised imitation learning struggles with compounding errors, particularly at 50 Hz.

Challenge 2: Human demonstrations perform tasks in different ways, leading to multimodal data distribution.

Solutions for #1:

- Policy predicts chunks of ~60 actions open-loop (closed-loop at ~0.8 Hz, rather than making new decision every timestep)
- Weighted average over predicted actions for that timestep —
- Transformer-based policy architecture —
- Actions correspond to target absolute joint positions (rather than relative joint positions)

Solution for #2:

Use variational auto-encoder (VAE) to model multimodality —

Naive policy training achieves 0% success.

trade-off drift & open-loop

Action chunking with transformers (ACT)

Policy architecture

Simulated Results

Grasp & transfer from image observations

Is action chunking important?

How does ACT compare to prior methods?

	Success Rate
MLP policy	1%
Behavior Transformer (BeT)	27%
Visual Imitation Nearest Neighbors (VINN)	3%
RT-1	2%
ACT	86%
ACT, no action chunking	0%

Simulated Ablations

0.0/	
8%	
3%	
3%	
8%	
3%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	_
8%	
8%	
8%	
8%	_

Simulated Ablations

0.07	
0/2	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	
8%	

Simulated Ablations

Imitation Learning

- Where does the data come from? 1.
- What can go wrong? 2.
- Learning from online interventions 3.
- Case study in fine robotic manipulation 4.

Key learning goals:

Recap

- the basic mechanics of imitation learning & how to implement it - the most common challenges & latest solutions for addressing them

Key learning goals:

Data: Given trajectories collected by an expert "demonstrations" $\mathcal{D} := \{(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T)\}$

Training: Train policy to mimic expert: $\min_{\theta} - \mathbb{E}_{(s,a) \sim \mathcal{D}}[\log \pi_{\theta}(a \mid s)]$

- the **basic mechanics** of imitation learning & how to implement it - the most common challenges & latest solutions for addressing them

Key learning goals:

- the most common challenges & latest solutions for addressing them

Common Challenges:

- 1. Compounding errors
- 2. Multimodal demonstration data
- 3. Mismatch in observability

- the basic mechanics of imitation learning & how to implement it

Some Solutions:

- -> more data, online interventions
- -> use more expressive distributions
- -> provide more context, or collect data with less context

Is Imitation Learning All You Need?

- Collecting expert demonstrations can be difficult or But: impossible in some scenarios
 - Learned behavior will never be better than expert
 - Does not provide a framework for learning from experience, indirect feedback
 - Can agents learn autonomously, from their own mistakes?

A simple & powerful framework for learning behavior!

Next time: Start of reinforcement learning algorithms We'll revisit imitation learning in week 4.

Course reminders

- Homework 1 out today, due Weds April 19

- Thursday PyTorch tutorial (4:30 pm) moved to Skilling Auditorium - Up to 2% extra credit for providing TA-endorsed answers on Ed

- Start forming final project groups (survey due Mon April 17) - Fill out AWS form with account ID by this Friday April 7

News