
CS 224R

Model-Based Reinforcement Learning

1

Course reminders

- Project proposal due this Wednesday
(graded fairly lightly — really for your benefit!)

- Homework 2 due next Wednesday (start early!)

Following up on high-resolution feedback:
- Optional readings posted on course website
- The most math-dense lectures are behind us.
- Unfortunately don’t have TA bandwidth to support live zoom questions
- Covering RLHF on Weds.

2

The plan for today

1. A brief primer on sampling-based optimization

2. Model-based reinforcement learning

a. How to get a good dynamics model?

b. How to use a (learned) dynamics model?

3. Case study in dexterous robotic manipulation

Key learning goals:
- model-based RL methods, and how to implement them
- the key challenges arising in model-based reinforcement learning
- tradeoffs between different model-based RL approaches

3

Teaser: How to get a robot to learn this?

4

Gradient-based vs. sampling-based optimization

parameters θ

loss L(θ)

parameters θ

loss L(θ)

Gradient-based (1st order) Sampling-based (0th order)

Cross-entropy method (CEM) (Not to be confused with the cross-entropy loss!)

1. Sample from distribution

2. Rank samples according to loss

3. Fit Gaussian distribution to “elite” samples

pi(θ)
θ1,...,K

pi+1 θ1...k

re
pe

at

Eventually return θ1
5

Gradient-based vs. sampling-based optimization

parameters θ

loss L(θ)

parameters θ

loss L(θ)

Gradient-based (1st order) Sampling-based (0th order)

+ parallelizable
+ requires no gradient information

- scales poorly to high dimensions

+ scalable to high dimensions
+ works well *especially* in

overparametrized regimes

- requires nice optimization landscape
6

The plan for today

1. A brief primer on sampling-based optimization

2. Model-based reinforcement learning

a. How to get a good dynamics model?

b. How to use a (learned) dynamics model?

3. Case studies

7

generate	samples	
(i.e.	run	the	policy)	

fit	a	model	to	
es7mate	return	

improve	the	policy	

Previously: introduced model-free RL methods (policy gradient, Q-learning)

This	lecture: focus on model-based	RL methods
8

Recap: The anatomy of a reinforcement learning algorithm

Model-based reinforcement learning

supervised learning

generate	samples	
(i.e.	run	the	policy)	

fit	a	model	to	
es7mate	return	

improve	the	policy	

Key idea: It would be useful if we could approximately simulate the world!
i.e. if we could predict the consequences of our actions

9

The plan for today

1. A brief primer on sampling-based optimization

2. Model-based reinforcement learning

a. How to get a good dynamics model?

b. How to use a (learned) dynamics model?

3. Case study in dexterous robotic manipulation

10

11

How to get a good dynamics model?

Fit a predictive model:
- input: s, a
- output: s’

Example models:
- robotics

- video prediction model (possibly in some image representation space)

- physics model some unknown free parameters
(e.g. unknown coefficient of friction)

- dialog: large language model
- finance: stock market predictor

The plan for today

1. A brief primer on sampling-based optimization

2. Model-based reinforcement learning

a. How to get a good dynamics model?

b. How to use a (learned) dynamics model?

3. Case study

12

- for planning

- for learning a policy

MBRL: Policy Improvement Approaches

Approach 1: Optimize over actions using model

Algorithm:

Approach 1a:
via backpropagation

3. Backpropagate through to choose actionsfϕ(s, a)

2. Learn model to minimize fϕ(s, a) ∑
i

∥fϕ(si, ai) − s′ i∥2

1. Run some policy (e.g. random policy) to collect data 𝒟 = {(s, a, s′)i}

max
at:t+H

∑
t

r(st, at)

(i.e. gradient-based optimization)

“planning”

st+1

at

st st+2

at+1

… sH

aH−1

rt+1 rt+2 rH

13

MBRL: Policy Improvement Approaches

Approach 1: Optimize over actions using model

Algorithm:

Approach 1b:
via sampling

3. Iteratively sample action sequences, run through model to choose actionsfϕ(s, a)

2. Learn model to minimize fϕ(s, a) ∑
i

∥fϕ(si, ai) − s′ i∥2

1. Run some policy (e.g. random policy) to collect data 𝒟 = {(s, a, s′)i}

(i.e. gradient-free optimization)

max
at:t+H

∑
t

r(st, at)

“planning”

st+1

at

st st+2

at+1

… sH

aH−1

rt+1 rt+2 rH

14

Sampling-Based Op@miza@on

Version	1: guess & check

Denote A := at, . . . , at+H

a. Sample many from some distribution (e.g. uniform)

b. Choose based on

A1, . . . , AN

Ai arg max
i

t+H

∑
t′ =t

r(st′
, at′

)

“random shoo@ng”

Version	2: cross-entropy method
a. Sample many from

b. Evaluate

c. Pick the elites with the largest , where
d. Refit to the elites

A1, . . . , AN p(A)

J(Ai) =
t+H

∑
t′ =t

r(st′
, at′

)

Ai1, . . . , AiM J(Ai) M < N
p(A) Ai1, . . . , AiM

Can we improve this distribu@on?

15

Sampling-Based Op@miza@on

Version	1: guess & check “random shoo@ng”

Version	2: cross-entropy method

+ fast, if parallelized

+ simple

Pros: Cons:

- doesn’t scale to high-dimensions
(Including both and)H |a |

16

MBRL: Policy Improvement Approaches

Approach 1: Optimize over actions using model

Algorithm:

Approach 1b:
via sampling

3. Iteratively sample action sequences, run through model to choose actionsfϕ(s, a)

2. Learn model to minimize fϕ(s, a) ∑
i

∥fϕ(si, ai) − s′ i∥2

1. Run some policy (e.g. random policy) to collect data 𝒟 = {(s, a, s′)i}

(i.e. gradient-free optimization)

max
at:t+H

∑
t

r(st, at)

“planning”

st+1

at

st st+2

at+1

… sH

aH−1

rt+1 rt+2 rH

(e.g. with random shooting or cross-entropy method)

17

How can this approach fail?

Going right means that we can go higher!

We should go right
Data distribution mismatch

How might you alleviate this issue?Thought Exercise:

pπ0
(s) ≠ pπf

(s)

18

MBRL: Policy Improvement Approaches

Approach 1: Optimize over actions using model

Algorithm:

Approach 1b:
via sampling

4. Execute planned actions, appending visiting tuples to (s, a, s′) 𝒟

3. Iteratively sample action sequences, run through model to choose actionsfϕ(s, a)

2. Learn model to minimize fϕ(s, a) ∑
i

∥fϕ(si, ai) − s′ i∥2

1. Run some policy (e.g. random policy) to collect data 𝒟 = {(s, a, s′)i}

(i.e. gradient-free optimization)

max
at:t+H

∑
t

r(st, at)

st+1

at

st st+2

at+1

… sH

aH−1

rt+1 rt+2 rH

19

Revisiting the cliff

Going right means that we can go higher!
Final policy: go to the top and stop.

20

Can we do better?

open-loop vs. closed-loop planning

21

Approach 2: Plan & replan using model
model-predictive control (MPC)

+ replan to correct for model errors - compute intensive
22

So far: Planning with learned models

1. Can plan a1, …, aH with gradient-based or sampling-based optimization

2. Update the model using data collected with planning

3. Replan periodically to help account for mistakes.

+ Easy to plug in different goals / rewards
(possibly even at test time!)

+ Simple - Compute intensive at test time

- Only practical for short-horizon problems
(or very shaped reward functions)

Can we train a policy using a learned model?

Why only short horizons?
(a) too compute expensive to make long plans

(b) model is not accurate for long horizons

23

Model-based policy optimization

Option 1: Distill planner’s actions into a policy

(i.e. train policy to match actions taken by planner)

+ no longer compute intensive at test time

- still limited to short-horizon problems

How might we solve longer-horizon problems using a model?

1. Plan with terminal value function

2. Augment model-free RL methods with data from model
Let’s focus on #2

24

Model-based policy optimization
Key idea: augment data with model-simulated roll-outs.

s1

s2

s3

s4

s5

s6

Example real trajectory How to augment?

- generate full trajectories from initial states?
- model may not be accurate for long horizons

- generate partial trajectories from initial states?
- may not get good coverage of later states

25

Model-based policy optimization
Key idea: augment data with model-simulated roll-outs.

s1

s2

s3

s4

s5

s6

Example real trajectory How to augment?

- generate full trajectories from initial states?
- model may not be accurate for long horizons

- generate partial trajectories from initial states?
- may not get good coverage of later states

- generate partial trajectories from all states in the dataAugmented data

26

Model-based policy optimization
Key idea: augment data with model-simulated roll-outs.

Full algorithm

27

1. Collect data using current policy , add to

2. Update model using

3. Collect synthetic roll-outs using in model from states in ; add to

4. Update policy (and critic using

πϕ Denv

pθ(s′ |s, a) Denv

πϕ pθ Denv Dmodel

π Q) Dmodel

- compatible with variety of model-free RL methods (step 4)

- could additionally use in policy updateDenv

Notes:

+ Models are immensely useful if easy to learn
+ Model can be trained without reward labels (self-supervised)
+ Model is somewhat task-agnostic (can sometimes be transferred across rewards)
- Models don’t optimize for task performance
- Sometimes harder to learn than a policy

Whether to use a model depends on how hard it is to learn!

28

When to use model-based RL?

The plan for today

1. A brief primer on sampling-based optimization

2. Model-based reinforcement learning

a. How to get a good dynamics model?

b. How to use a (learned) dynamics model?

3. Case study in dexterous robotic manipulation

29

Case study: Model-based RL for dexterous manipulation

September 2019

Still one of the most impressive results with five-fingered hands!

Case study: Model-based RL for dexterous manipulation

State space: hand & object positions

Action space: controlling 5-fingered hand (24 DoF)

Model: Ensemble of 3 neural networks,
each with 2 hidden layers of size 500

Reward: track target object trajectory + penalty for dropping

Alternate between collecting ~30 trajectories with
planner & updating model.

Planner: modified version of CEM optimizer
softer reward-weighted mean & temporal smoothing on actions

Case study: Model-based RL for dexterous manipulation
Simulated experiments

Model-free methods:
SAC: actor-critic method
NPG: policy gradient method

Model-based methods:
PDDM: proposed method
MBPO: RL with model-generated data
PETS: CEM-based planner
Nagabandi et al.: random shooting, no
ensembles

More efficient than model-free methods

More performant than other model-based methods

Case study: Model-based RL for dexterous manipulation
Simulated ablations

- Need sufficiently large model
- Need at least 3 ensemble members
- Planning horizon trade-offs
- Modified CEM is crucial

Case study: Model-based RL for dexterous manipulation
Real-world dexterous control with ShadowHand

- Efficiency is key for fragile hardware
- Learns Baoding ball rotation in ~4 hours
- Ball is reset with another robot arm

The plan for today

1. A brief primer on sampling-based optimization

2. Model-based reinforcement learning

a. How to get a good dynamics model?

b. How to use a (learned) dynamics model?

3. Case study in dexterous robotic manipulation

Key learning goals:
- model-based RL methods, and how to implement them
- the key challenges arising in model-based reinforcement learning
- tradeoffs between different model-based RL approaches

35

Course reminders

- Project proposal due this Wednesday
(graded fairly lightly — really for your benefit!)

- Homework 2 due next Wednesday (start early!)

36

Next time: Where do rewards come from? Can we learn them?

