Model-Based Reinforcement Learning

CS 224R

Course reminders

- Project proposal due this Wednesday
(graded fairly lightly — really for your benefit)

- Homework 2 due next Wednesday (start early!)

-ollowing up on high-resolution feedback:
- Optional readings posted on course website
- The most math-dense lectures are behind us.

- Unfortunately dont have TA bandwidth to support live zoom questions
- Covering RLHF on Weds.

The plan for today

1. A brief primer on sampling-based optimization

2. Model-based reinforcement learning

a. How to get a good dynamics model?
b. How to use a (learned) dynamics model?

3. Case study in dexterous robotic manipulation

Key learning goals:

- model-based RL methods, and how to implement them

- the key challenges arising in model-based reinforcement learning

- tradeoffs between different model-based RL approaches

3

Teaser: How to get a robot to learn this?

Gradient-based vs. sampling-based optimization

Gradient-based (1st order) Sampling-based (0Oth order)
loss L(6) loss L(6)

parameters @ parameters @

Cross-entropy method (CEM) (Not to be confused with the cross-entropy loss!)

1. Sample from distribution p.(6)
< 2. Rank samples according to loss 0, g

repeat

3. Fit Gaussian distribution p;, | to “elite” samples 0, —ventually return 6,
o

Gradient-based vs. sampling-based optimization

Gradient-based (1st order) Sampling-based (0Oth order)
loss L(6) loss L(6)
parameters @ parameters @
+ scalable to high dimensions + parallelizable
+ works well "especially™ in + requires no gradient information

overparametrized regimes

- requires nice optimization landscape - scales poorly to high dimensions

0

The plan for today

1. A brief primer on sampling-based optimization

2. Model-based reinforcement learning

a. How to get a good dynamics model?
b. How to use a (learned) dynamics model?

3. (Case studies

Recap: The anatomy of a reinforcement learning algorithm

Previously: introduced model-free RL methods (policy gradient, Q-learning)

compute Q = Y, _, 4" ~try (MC policy gradient)

fit Q4(s,a) (actor-critic, Q-learning)

fit a model to
estimate return

generate samples

(i.e. run the policy)

L 0 < 0+ aVyeJ(0) (policy gradient)

m(s) = argmax Q4 (s,a) (Q-learning)

This lecture: focus on model-based RL methods

8

Model-based reinforcement learning

Key idea: It would be useful if we could approximately simulate the world!
..e. If we could predict the consequences of our actions

f o o dal t estimate p(s’[s,a) (model-based)

estimate return

supervised learning

I minZchp(Sz',az’) — s3|°
generate samples ¢)

(i.e. run the policy)

L optimize mg(als) (model-based)

The plan for today

1. A brief primer on sampling-based optimization
2. Model-based reinforcement learning

a. How to get a good dynamics model?

b. How to use a (learned) dynamics model?

3. Case study in dexterous robotic manipulation

10

How to get a good dynamics model?

Fit a predictive model:
- Input: s, a

- output: s

Example models:

- robotics
- video prediction model (possibly in some image representation space)

- physics model some unknown free parameters
(e.g. unknown coefficient of friction)

- dialog: large language model

- finance: stock market predictor

11

The plan for today

1. A brief primer on sampling-based optimization

2. Model-based reinforcement learning

a. How to get a good dynamics model?

b. How to use a (learned) dynamics model?

3. Case study - for planning

- for learning a policy

12

Approach 1: Optimize over actions using model max Z r(s;, a,)

at:t+H t
Vi1 Fiy2 2 ‘planning”
S, —» St+1 — S;» — Sy ApprOaCh 1a:
/ ‘//' ‘//' via backpropagation
4, | A1

(i.e. gradient-based optimization)

Algorithm:

1. Run some policy (e.g. random policy) to collect data & = {(s, a,s’).}
2. Learn model f (s, a) to minimize Z /(s> ;) — Slsz

3. Backpropagate through f,(s,a) to choose actions

13

Approach 1: Optimize over actions using model max Z r(s;, a,)

A H t
Ty Fiin Iy ‘planning”
S, — St+1 — S\) —> ... — Sy ApprOaCh 1b
e 7 A via sampling
a; At Apy_1

(i.e. gradient-free optimization)

Algorithm:

1. Run some policy (e.g. random policy) to collect data & = {(s, a,s’).}
2. Learn model f (s, a) to minimize Z /(s> ;) — Slsz

3. Iteratively sample action sequences, run through model f,(s,a) to choose actions

14

Sampling-Based Optimization

Denote A :=a,,...,a,
Version 1: guess & check “random shooting”
a. Sample many Aq,...,Ay from some distribution (e.g. uniform)
(+H

b. Choose A; based on arg max Z r(s,,a,)

! /
=t

a. Sample many A,,...,Ay from p(A)
t+H

b. Evaluate J(A)) = Z r(s,,a,)

t'=t

Pick the elites A;, ..., A; with the largest J(A;), where M <N
d. Refit p(A) to the elites Ail, Y. ¥

Iv

™

15

Sampling-Based Optimization

/)

Version 1: guess & check ‘random shooting

Version 2: cross-entropy method

Pros: cons:

+ fast, it parallelized - doesn’t scale to high-dimensions

+ simple (Including both H and |a|)

16

Approach 1: Optimize over actions using model max Z r(s;, a,)

A H t
Ty Fiin Iy ‘planning”
S, — St+1 — S\) —> ... — Sy ApprOaCh 1b
e 7 A via sampling
a; At Apy_1

(i.e. gradient-free optimization)

Algorithm:

1. Run some policy (e.g. random policy) to collect data & = {(s, a,s’).}
2. Learn model f (s, a) to minimize Z /(s> ;) — Slsz

3. Iteratively sample action sequences, run through model f,(s,a) to choose actions
(e.g. with random shooting or cross-entropy method)

17

How can this approach fail?

1. Run some policy (e.g. random policy) to collect data & = {(s, a,s’);}
2. Learn model f(s, a) to minimize Z |[f¢(si, a;) — slf||2
i

3. Iteratively sample action sequences, run through model f,(s, a) to choose actions

Data distribution mismatch
P, (8) 7 Pr(S)

Going right means that we can go higher

Thought Exercise: How might you alleviate this issue?

18

Approach 1: Optimize over actions using model max Z r(s, a,)

A1 H t
Fi+1 P42 'H
S, — St+1 — S\) —> ... — Sy Approach 1b
e 7 A via sampling
a; A1 Apy_|

(i.e. gradient-free optimization)

Algorithm:

1. Run some policy (e.g. random policy) to collect data & = {(s, a,s’).}
2. Learn model f (s, a) to minimize Z /(s> ;) — Slsz

3. Iteratively sample action sequences, run through model f,(s,a) to choose actions

4. Execute planned actions, appending visiting tuples (s,a,s’) to &

19

Revisiting the cliff

1. Run some policy (e.g. random policy) to collect data & = {(s, a,s’);}
2. Learn model f(s, a) to minimize Z |[f¢(si, a;) — slf||2
i

3. Iteratively sample action sequences, run through model f,(s, a) to choose actions

4. Execute planned actions, appending visiting tuples (s, a,s’) to 9

= <4 _

Going right means that we can go higher!

20

Can we do petter?

open-loop vs. closed-loop planning

21

Approach 2: Plan & replan using model
model-predictive control (MPC)

1. run base policy mo(a¢|s:) (e.g., random policy) to collect D = {(s,a,s’);}
. learn model f;(s,a) to minimize Z | fo(ss,a5) — s5||°

. use model f4(s,a) to optimize action sequence
. execute the first planned action, observe resulting state s’
. append (s, a,s’) to dataset D

+ replan to correct for model errors - compute intensive

22

So far: Planning with learned models

1. Can plan as, ..., an with gradient-based or sampling-based optimization
2. Update the model using data collected with planning

3. Replan periodically to help account for mistakes.

+ Simple - Compute intensive at test time

+ Easy to plug in different goals / rewards - Only practical for short-horizon problems
(possibly even at test timel) (or very shaped reward functions)

| (a) too compute expensive to make long plans
Why only short horizons? | |
(b) model is not accurate for long horizons

Can we train a policy using a learned model?
23

Model-based policy optimization

Option 1: Distill planner’s actions into a policy

(l.e. train policy to match actions taken by planner)

+ no longer compute intensive at test time

- still imited to short-horizon problems

How might we solve longer-horizon problems using a model?

1. Plan with terminal value function

2. Augment model-free RL methods with data from model

L et’'s focus on #2
24

Model-based policy optimization

Key idea: augment data with model-simulated roll-outs.

-xample real trajectory How to augment?
S;O - generate full trajectories from initial states?
S5
S4 /‘ - model may not be accurate for long horizons
C
530/ - generate partial trajectories from initial states?
52./ - may not get good coverage of later states

25

Model-based policy optimization

Key idea: augment data with model-simulated roll-outs.

-xample real trajectory How to augment?
P S;O - generate full trajectories from initial states?
S5
S4 /‘ / - model may not be accurate for long horizons
®o—
530/ - generate partial trajectories from initial states?
Szo/'/' - may not get good coverage of later states

/‘/' Augmented data - generate partial trajectories from all states in the data
S1@®

20

Model-based policy optimization

Key idea: augment data with model-simulated roll-outs.

Full algorithm
1. Collect data using current policy Ty, addto D,
2. Update model py(s’| s, a) using D,, |

3. Collect synthetic roll-outs using T, in model py from statesin D, ;addto D, ...

4. Update policy & (and critic Q) using D, ...

Notes: - compatible with variety of model-free RL methods (step 4)
- could additionally use D, in policy update

27

VWhen to use model-based RL?

+ Models are immensely useful If easy to learn

+ Mode
+ Mode

. can be trained without reward labels (self-supervised)

L is somewhat task-agnostic (can sometimes be transferred across rewards)

- Models don't optimize for task performance

- Sometimes harder to learn than a policy

Whether to use a model depends on how hard it is to learn!

28

The plan for today

1. A brief primer on sampling-based optimization

2. Model-based reinforcement learning

a. How to get a good dynamics model?
b. How to use a (learned) dynamics model?

3. Case study in dexterous robotic manipulation

29

Case study: Model-based RL for dexterous manipulation

Deep Dynamics Models
for Learning Dexterous Manipulation

Anusha Nagabandi, Kurt Konoglie, Sergey Levine, Vikash Kumar
Google Brain

September 2019

Still one of the most impressive results with five-fingered hands!

Case study: Model-based RL for dexterous manipulation

State space: hand & object positions

Action space: controlling b-fingered hand (24 DoF)

Reward: track target object trajectory + penalty for dropping

Model: Ensemble of 3 neural networks,
each with 2 hidden layers of size 500

Planner: modified version of CEM optimizer
softer reward-weighted mean & temporal smoothing on actions

Alternate between collecting ~30 trajectories with

olanner & updating model.

Case study: Model-based RL for dexterous manipulation

Simulated experiments

Model-free methods:

SAC: actor-critic method
NPG: policy gradient method

Model-based methods:
PDDM: proposed method

. 0.0 10
MBPO: RL with model-generated data == - | -
g
PETS: CEM-based planner v KO A L af s A bt o aked 4 2 E
- AAAPEREIEIVNOS 2 2 20
. ' é Q
: random shooting, No - o AEPES..2 23 s
ensembles) Negabendice]| 25 _s0
—— SAC

More efficient than model-free methods

More performant than other model-based methods

PETS
Nagabandi et. al
— SAC

— NPG

—— PDDM (Ours)

0.2 0.4 0.6 0.8 1.0
Number of datapoints (M)

Normalized Task Reward

Normalized Task Reward

Case study: Model-based RL for dexterous manipulation

Simulated ablations

Model Architecture Ensemble Size

1.0 = 1.0 , A
LI ML“W
A ‘ . .
z f v . - Need sufficiently large model

0.5 E; 0.5 |
s [N 1 - Need at least 3 ensemble members
2 — 5 . .

0.0 0.0 - Planning horizon trade-offs

0 100000 ?00000 0 100000 290000
Number of datapoints Number of datapoints ~ M 0O d| re e d C :M | S cru C| al.
Horizon Controller

1.0 = 1.0
g ./\/’M
» /
Ad 0

0.5 ,mm VOAN[Eos F:—— ey s ' i

Vor! ’\ ‘ \aIMAJ 5 T4
" (/) db 5 T"E — Filtering + Reward Weighting
— 7 : —— CEM
=15 2 0.0 Random-shooting

0.0

0 50000 100000 150000 0 50000 100000
Number of datapoints Number of datapoints

Case study: Model-based RL for dexterous manipulation

Real-world dexterous control with ShadowHand

- Efficiency Is key for fragile hardware

- Learns Baoding ball rotation in ~4 hours

- Ball is reset with another robot arm

[0h)

A s

IMNF turns A

The plan for today

1. A brief primer on sampling-based optimization

2. Model-based reinforcement learning

a. How to get a good dynamics model?
b. How to use a (learned) dynamics model?

3. Case study in dexterous robotic manipulation

Key learning goals:

- model-based RL methods, and how to implement them

- the key challenges arising in model-based reinforcement learning

- tradeoffs between different model-based RL approaches

35

Course reminders

- Project proposal due this Wednesday
(graded fairly lightly — really for your benefit)

- Homework 2 due next Wednesday (start early!)

Next time: Where do rewards come from? Can we learn them?

36

