Model-Based Reinforcement Learning CS 224R

Course reminders

- Project proposal due this Wednesday (graded fairly lightly — really for your benefit!)
- Homework 2 due next Wednesday (start early!)

Following up on high-resolution feedback:

- Optional readings posted on course website
- The most math-dense lectures are behind us.
- Unfortunately don't have TA bandwidth to support live zoom questions
- Covering RLHF on Weds.

The plan for today

- 1. A brief primer on sampling-based optimization
- 2. Model-based reinforcement learning
 - a. How to get a good dynamics model?
 - b. How to use a (learned) dynamics model?
- 3. Case study in dexterous robotic manipulation

Key learning goals:

- model-based RL methods, and how to implement them - the key challenges arising in model-based reinforcement learning - tradeoffs between different model-based RL approaches

Teaser: How to get a robot to learn this?

Gradient-based vs. sampling-based optimization

Gradient-based (1st order)

- Cross-entropy method (CEM) (Not
- 1. Sample from distribution $p_i(\theta)$

at

repe

- 2. Rank samples according to loss $\theta_{1,...,K}$
- 3. Fit Gaussian distribution p_{i+1} to "elite" samples $\theta_{1...k}$

Sampling-based (Oth order)

(Not to be confused with the cross-entropy loss!)

..., ${}^{K}_{_{5}}$ ite" samples $heta_{1...k}$ Eventually return $heta_{1}$

Gradient-based vs. sampling-based optimization

Gradient-based (1st order)

- + scalable to high dimensions
- + works well *especially* in overparametrized regimes
- requires nice optimization landscape scales poorly to high dimensions

Sampling-based (Oth order)

- + parallelizable
- + requires no gradient information

The plan for today

- 1. A brief primer on sampling-based optimization
- 2. Model-based reinforcement learning
 - a. How to get a good dynamics model?
 - b. How to use a (learned) dynamics model?
- 3. Case studies

Recap: The anatomy of a reinforcement learning algorithm

Previously: introduced model-free RL methods (policy gradient, Q-learning)

This lecture: focus on model-based RL methods

compute $\hat{Q} = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}$ (MC policy gradient) fit $Q_{\phi}(\mathbf{s}, \mathbf{a})$ (actor-critic, Q-learning)

 $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ (policy gradient) $\pi(\mathbf{s}) = \arg \max Q_{\phi}(\mathbf{s}, \mathbf{a}) \text{ (Q-learning)}$

Model-based reinforcement learning

Key idea: It would be useful if we could approximately simulate the world! i.e. if we could predict the consequences of our actions

estimate $p(\mathbf{s}'|\mathbf{s}, \mathbf{a})$ (model-based) supervised learning $\min_{\phi} \sum_{i} ||f_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{s}'_i||^2$

optimize $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (model-based)

The plan for today

- 1. A brief primer on sampling-based optimization
- 2. Model-based reinforcement learning
 - a. How to get a good dynamics model?
 - b. How to use a (learned) dynamics model?
- 3. Case study in dexterous robotic manipulation

How to get a good dynamics model?

Fit a predictive model:

- input: s, a
- output: s'

Example models:

- robotics
 - video prediction model (possibly in some image representation space)
 - physics model some unknown free parameters (e.g. unknown coefficient of friction)
- dialog: large language model
- finance: stock market predictor

The plan for today

- 1. A brief primer on sampling-based optimization
- 2. Model-based reinforcement learning
 - a. How to get a good dynamics model?

b. How to use a (learned) dynamics model? 3. Case study

- for planning
- for learning a policy

Algorithm:

- 2. Learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize $\sum \|f_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i\|^2$
- 3. Backpropagate through $f_{\phi}(\mathbf{s}, \mathbf{a})$ to choose actions

1. Run some policy (e.g. random policy) to collect data $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$

Algorithm:

- 2. Learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize $\sum \|f_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i\|^2$

1. Run some policy (e.g. random policy) to collect data $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$

3. Iteratively sample action sequences, run through model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to choose actions

Version 1: guess & check

a. Sample many A_1, \ldots, A_N from some distribution (e.g. uniform) t+Hb. Choose \mathbf{A}_i based on $\arg \max_i \sum_{t'=t}^{t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$

Version 2: cross-entropy method

- a. Sample many $\mathbf{A}_1, \ldots, \mathbf{A}_N$ from $p(\mathbf{A})$
- b. Evaluate $J(\mathbf{A}_i) = \sum_{t'}^{t+H} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$ t'=t
- c. Pick the elites $\mathbf{A}_{i_1}, \ldots, \mathbf{A}_{i_M}$ with the largest $J(\mathbf{A}_i)$, where M < N
- d. Refit $p(\mathbf{A})$ to the elites $\mathbf{A}_{i_1}, \ldots, \mathbf{A}_{i_M}$

Sampling-Based Optimization

Denote $\mathbf{A} := \mathbf{a}_t, \ldots, \mathbf{a}_{t+H}$

"random shooting"

Can we improve this distribution?

Sampling-Based Optimization

Version 1: guess & check Version 2: cross-entropy method

Pros: + fast, if parallelized + simple

"random shooting"

Cons: - doesn't scale to high-dimensions (Including both *H* and **|a|**)

Algorithm:

- 2. Learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize

1. Run some policy (e.g. random policy) to collect data $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$

$$\sum_{i} \|f_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{s}_{i}'\|^{2}$$

3. Iteratively sample action sequences, run through model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to choose actions (e.g. with random shooting or cross-entropy method)

How can this approach fail?

Going right means that we can go higher!

Thought Exercise: How might you alleviate this issue?

- 1. Run some policy (e.g. random policy) to collect data $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- 2. Learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize $\sum \|f_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i\|^2$
- 3. Iteratively sample action sequences, run through model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to choose actions

Data distribution mismatch $p_{\pi_0}(\mathbf{s}) \neq p_{\pi_f}(\mathbf{s})$

Algorithm:

- 2. Learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize $\sum \|f_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i\|^2$
- 4. Execute planned actions, appending visiting tuples (s, a, s') to \mathscr{D}

1. Run some policy (e.g. random policy) to collect data $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$

3. Iteratively sample action sequences, run through model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to choose actions

Revisiting the cliff

Going right means that we can go higher! Final policy: go to the top and stop.

- 1. Run some policy (e.g. random policy) to collect data $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- 2. Learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize $\sum \|f_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i\|^2$
- 3. Iteratively sample action sequences, run through model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to choose actions
- 4. Execute planned actions, appending visiting tuples (s, a, s') to \mathscr{D}

Can we do better?

open-loop vs. closed-loop planning

Approach 2: Plan & replan using model model-predictive control (MPC)

- 5. append $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$ to dataset \mathcal{D}

+ replan to correct for model errors

1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$ 2. learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize $\sum ||f_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{s}'_i||^2$ 3. use model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to optimize action sequence 4. execute the first planned action, observe resulting state \mathbf{s}'

REPLANNING HELPS WITH MODEL ERRORS

- compute intensive

So far: Planning with learned models

- 1. Can plan a₁, ..., a_H with gradient-based or sampling-based optimization
- 2. Update the model using data collected with planning
- 3. **Replan** periodically to help account for mistakes.
- + Simple
- + Easy to plug in different goals / rewards - Only practical for short-horizon problems (or very shaped reward functions) (possibly even at test time!)

Why only short horizons?

- Compute intensive at test time

- (a) too compute expensive to make long plans (b) model is not accurate for long horizons
- Can we **train a policy** using a learned model?

- 1. Plan with terminal value function
- 2. Augment model-free RL methods with data from model

- **Option 1**: Distill planner's actions into a policy
- (i.e. train policy to match actions taken by planner)

- + no longer compute intensive at test time
- still limited to short-horizon problems
- How might we solve longer-horizon problems using a model?

Let's focus on #2

Key idea: augment data with model-simulated roll-outs.

Example real trajectory How to augment?

generate full trajectories from initial states?

- model may not be accurate for long horizons

- generate *partial trajectories* from initial states?

- may not get good coverage of later states

Key idea: augment data with model-simulated roll-outs.

Example real trajectory How to augment?

- generate full trajectories from initial states?
- model may not be accurate for long horizons
- generate *partial trajectories* from initial states?
 - may not get good coverage of later states
- generate *partial trajectories* from *all states* in the data

Key idea: augment data with model-simulated roll-outs.

Full algorithm

- 1. Collect data using current policy π_{ϕ} , add to D_{env}
- 2. Update model $p_{\theta}(s' | s, a)$ using D_{env}
- 4. Update policy π (and critic Q) using D_{model}
 - - could additionally use D_{env} in policy update

3. Collect synthetic roll-outs using π_{ϕ} in model p_{θ} from states in D_{env} ; add to D_{model}

Notes: - compatible with variety of model-free RL methods (step 4)

- + Models are immensely useful if easy to learn
- + Model can be trained without reward labels (self-supervised)
- + Model is somewhat task-agnostic (can sometimes be transferred across rewards)
- Models don't optimize for task performance
- Sometimes harder to learn than a policy

When to use model-based RL?

Whether to use a model depends on how hard it is to learn!

The plan for today

- 1. A brief primer on sampling-based optimization
- 2. Model-based reinforcement learning
 - a. How to get a good dynamics model?
 - b. How to use a (learned) dynamics model?
- 3. Case study in dexterous robotic manipulation

Case study: Model-based RL for dexterous manipulation

Deep Dynamics Models for Learning Dexterous Manipulation

Anusha Nagabandi, Kurt Konoglie, Sergey Levine, Vikash Kumar Google Brain

September 2019

Still one of the most impressive results with five-fingered hands!

Case study: Model-based RL for dexterous manipulation

State space: hand & object positions Action space: controlling 5-fingered hand (24 DoF) **Reward**: track target object trajectory + penalty for dropping

Model: Ensemble of 3 neural networks, each with 2 hidden layers of size 500

Planner: modified version of CEM optimizer softer reward-weighted mean & temporal smoothing on actions

Alternate between collecting ~30 trajectories with planner & updating model.

Case study: Model-based RL for dexterous manipulation Simulated experiments

Model-free methods: SAC: actor-critic method NPG: policy gradient method Model-based methods: PDDM: proposed method MBPO: RL with model-generated data PETS: CEM-based planner Γask Reward -0-1 Nagabandi et al.: random shooting, no ensembles

0.0

Handwriting: Fixed Trajectory

Case study: Model-based RL for dexterous manipulation Simulated ablations

- Need sufficiently large model
- Need at least 3 ensemble members
- Planning horizon trade-offs
- Modified CEM is crucial

Case study: Model-based RL for dexterous manipulation Real-world dexterous control with ShadowHand

Amount of data (hours)

The plan for today

- 1. A brief primer on sampling-based optimization
- 2. Model-based reinforcement learning
 - a. How to get a good dynamics model?
 - b. How to use a (learned) dynamics model?
- 3. Case study in dexterous robotic manipulation

Key learning goals:

- model-based RL methods, and how to implement them - the key challenges arising in model-based reinforcement learning - tradeoffs between different model-based RL approaches

Course reminders

- Project proposal due this Wednesday

(graded fairly lightly — really for your benefit!)

- Homework 2 due next Wednesday (start early!)

Next time: Where do rewards come from? Can we learn them?