
CS 224R

Model-Based Reinforcement Learning
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Course reminders

- Project proposal due this Wednesday 
(graded fairly lightly — really for your benefit!) 

- Homework 2 due next Wednesday (start early!)

Following up on high-resolution feedback: 
- Optional readings posted on course website 
- The most math-dense lectures are behind us. 
- Unfortunately don’t have TA bandwidth to support live zoom questions 
- Covering RLHF on Weds.
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The plan for today

1. A brief primer on sampling-based optimization 

2. Model-based reinforcement learning 

a. How to get a good dynamics model? 

b. How to use a (learned) dynamics model? 

3. Case study in dexterous robotic manipulation

Key learning goals: 
- model-based RL methods, and how to implement them 
- the key challenges arising in model-based reinforcement learning 
- tradeoffs between different model-based RL approaches
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Teaser: How to get a robot to learn this?
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Gradient-based vs. sampling-based optimization

parameters θ

loss L(θ)

parameters θ

loss L(θ)

Gradient-based (1st order) Sampling-based (0th order)

Cross-entropy method (CEM) (Not to be confused with the cross-entropy loss!)

1. Sample from distribution  

2. Rank samples according to loss  

3. Fit Gaussian distribution  to “elite” samples  

pi(θ)
θ1,...,K

pi+1 θ1...k

re
pe

at

Eventually return θ1
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Gradient-based vs. sampling-based optimization

parameters θ

loss L(θ)

parameters θ

loss L(θ)

Gradient-based (1st order) Sampling-based (0th order)

+ parallelizable 
+ requires no gradient information 

- scales poorly to high dimensions

+ scalable to high dimensions 
+ works well *especially* in 

overparametrized regimes 

- requires nice optimization landscape
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The plan for today

1. A brief primer on sampling-based optimization 

2. Model-based reinforcement learning 

a. How to get a good dynamics model? 

b. How to use a (learned) dynamics model? 

3. Case studies
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generate	samples	
(i.e.	run	the	policy)	

fit	a	model	to	
es7mate	return	

improve	the	policy	

Previously: introduced model-free RL methods (policy gradient, Q-learning)

This	lecture: focus on model-based	RL methods
8

Recap: The anatomy of a reinforcement learning algorithm



Model-based reinforcement learning

supervised learning

generate	samples	
(i.e.	run	the	policy)	

fit	a	model	to	
es7mate	return	

improve	the	policy	

Key idea: It would be useful if we could approximately simulate the world!
i.e. if we could predict the consequences of our actions
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The plan for today

1. A brief primer on sampling-based optimization 

2. Model-based reinforcement learning 

a. How to get a good dynamics model? 

b. How to use a (learned) dynamics model? 

3. Case study in dexterous robotic manipulation
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How to get a good dynamics model?

Fit a predictive model: 
- input: s, a 
- output: s’

Example models: 
- robotics 

- video prediction model (possibly in some image representation space) 

- physics model some unknown free parameters 
(e.g. unknown coefficient of friction) 

- dialog: large language model 
- finance: stock market predictor



The plan for today

1. A brief primer on sampling-based optimization 

2. Model-based reinforcement learning 

a. How to get a good dynamics model? 

b. How to use a (learned) dynamics model? 

3. Case study
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- for planning 

- for learning a policy



MBRL: Policy Improvement Approaches

Approach 1: Optimize over actions using model

Algorithm:

Approach 1a:  
via backpropagation

3. Backpropagate through  to choose actionsfϕ(s, a)

2. Learn model  to minimize fϕ(s, a) ∑
i

∥fϕ(si, ai) − s′ i∥2

1. Run some policy (e.g. random policy) to collect data 𝒟 = {(s, a, s′ )i}

max
at:t+H

∑
t

r(st, at)

(i.e. gradient-based optimization)

“planning”

st+1

at

st st+2

at+1

… sH

aH−1

rt+1 rt+2 rH
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MBRL: Policy Improvement Approaches

Approach 1: Optimize over actions using model

Algorithm:

Approach 1b:  
via sampling

3. Iteratively sample action sequences, run through model  to choose actionsfϕ(s, a)

2. Learn model  to minimize fϕ(s, a) ∑
i

∥fϕ(si, ai) − s′ i∥2

1. Run some policy (e.g. random policy) to collect data 𝒟 = {(s, a, s′ )i}

(i.e. gradient-free optimization)

max
at:t+H

∑
t

r(st, at)

“planning”

st+1

at

st st+2

at+1

… sH

aH−1

rt+1 rt+2 rH
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Sampling-Based Op@miza@on

Version	1:  guess & check

Denote A := at, . . . , at+H

a. Sample many  from some distribution (e.g. uniform) 

b. Choose  based on 

A1, . . . , AN

Ai arg max
i

t+H

∑
t′ =t

r(st′ 
, at′ 

)

“random shoo@ng”

Version	2:  cross-entropy method
a. Sample many  from  

b. Evaluate  

c. Pick the elites  with the largest , where  
d. Refit  to the elites 

A1, . . . , AN p(A)

J(Ai) =
t+H

∑
t′ =t

r(st′ 
, at′ 

)

Ai1, . . . , AiM J(Ai) M < N
p(A) Ai1, . . . , AiM

Can we improve this distribu@on?

15



Sampling-Based Op@miza@on

Version	1:  guess & check “random shoo@ng”

Version	2:  cross-entropy method

+ fast, if parallelized

+ simple

Pros: Cons:

- doesn’t scale to high-dimensions
(Including both  and )H |a |
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MBRL: Policy Improvement Approaches

Approach 1: Optimize over actions using model

Algorithm:

Approach 1b:  
via sampling

3. Iteratively sample action sequences, run through model  to choose actionsfϕ(s, a)

2. Learn model  to minimize fϕ(s, a) ∑
i

∥fϕ(si, ai) − s′ i∥2

1. Run some policy (e.g. random policy) to collect data 𝒟 = {(s, a, s′ )i}

(i.e. gradient-free optimization)

max
at:t+H

∑
t

r(st, at)

“planning”

st+1

at

st st+2

at+1

… sH

aH−1

rt+1 rt+2 rH

(e.g. with random shooting or cross-entropy method)
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How can this approach fail?

Going right means that we can go higher!

We should go right
Data distribution mismatch

How might you alleviate this issue?Thought Exercise:

pπ0
(s) ≠ pπf

(s)
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MBRL: Policy Improvement Approaches

Approach 1: Optimize over actions using model

Algorithm:

Approach 1b:  
via sampling

4. Execute planned actions, appending visiting tuples  to (s, a, s′ ) 𝒟

3. Iteratively sample action sequences, run through model  to choose actionsfϕ(s, a)

2. Learn model  to minimize fϕ(s, a) ∑
i

∥fϕ(si, ai) − s′ i∥2

1. Run some policy (e.g. random policy) to collect data 𝒟 = {(s, a, s′ )i}

(i.e. gradient-free optimization)

max
at:t+H

∑
t

r(st, at)

st+1

at

st st+2

at+1

… sH

aH−1

rt+1 rt+2 rH
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Revisiting the cliff

Going right means that we can go higher!
Final policy: go to the top and stop.
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Can we do better?

open-loop vs. closed-loop planning
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Approach 2: Plan & replan using model 
model-predictive control (MPC)

+ replan to correct for model errors - compute intensive
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So far: Planning with learned models

1. Can plan a1, …, aH with gradient-based or sampling-based optimization 

2. Update the model using data collected with planning 

3. Replan periodically to help account for mistakes.

+ Easy to plug in different goals / rewards  
(possibly even at test time!)

+ Simple - Compute intensive at test time

- Only practical for short-horizon problems 
(or very shaped reward functions)

Can we train a policy using a learned model?

Why only short horizons?
(a) too compute expensive to make long plans 

(b) model is not accurate for long horizons
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Model-based policy optimization

Option 1: Distill planner’s actions into a policy

(i.e. train policy to match actions taken by planner)

+ no longer compute intensive at test time

- still limited to short-horizon problems

How might we solve longer-horizon problems using a model?

1. Plan with terminal value function 

2. Augment model-free RL methods with data from model
Let’s focus on #2
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Model-based policy optimization
Key idea: augment data with model-simulated roll-outs.

s1

s2

s3

s4

s5

s6

Example real trajectory How to augment?

- generate full trajectories from initial states? 
- model may not be accurate for long horizons 

- generate partial trajectories from initial states? 
- may not get good coverage of later states 
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Model-based policy optimization
Key idea: augment data with model-simulated roll-outs.

s1

s2

s3

s4

s5

s6

Example real trajectory How to augment?

- generate full trajectories from initial states? 
- model may not be accurate for long horizons 

- generate partial trajectories from initial states? 
- may not get good coverage of later states 

- generate partial trajectories from all states in the dataAugmented data

26



Model-based policy optimization
Key idea: augment data with model-simulated roll-outs.

Full algorithm
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1. Collect data using current policy , add to  

2. Update model  using  

3. Collect synthetic roll-outs using  in model  from states in ; add to  

4. Update policy  (and critic  using 

πϕ Denv

pθ(s′ |s, a) Denv

πϕ pθ Denv Dmodel

π Q) Dmodel

- compatible with variety of model-free RL methods (step 4) 

- could additionally use  in policy updateDenv

Notes:



+ Models are immensely useful if easy to learn 
+ Model can be trained without reward labels (self-supervised) 
+ Model is somewhat task-agnostic (can sometimes be transferred across rewards) 
-  Models don’t optimize for task performance 
-  Sometimes harder to learn than a policy

Whether to use a model depends on how hard it is to learn!
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When to use model-based RL?



The plan for today

1. A brief primer on sampling-based optimization 

2. Model-based reinforcement learning 

a. How to get a good dynamics model? 

b. How to use a (learned) dynamics model? 

3. Case study in dexterous robotic manipulation
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Case study: Model-based RL for dexterous manipulation

September 2019

Still one of the most impressive results with five-fingered hands!



Case study: Model-based RL for dexterous manipulation

State space: hand & object positions

Action space: controlling 5-fingered hand (24 DoF)

Model: Ensemble of 3 neural networks, 
each with 2 hidden layers of size 500

Reward: track target object trajectory + penalty for dropping

Alternate between collecting ~30 trajectories with 
planner & updating model.

Planner: modified version of CEM optimizer 
softer reward-weighted mean & temporal smoothing on actions



Case study: Model-based RL for dexterous manipulation
Simulated experiments

Model-free methods: 
SAC: actor-critic method 
NPG: policy gradient method

Model-based methods: 
PDDM: proposed method 
MBPO: RL with model-generated data 
PETS: CEM-based planner 
Nagabandi et al.: random shooting, no 
ensembles

More efficient than model-free methods 

More performant than other model-based methods



Case study: Model-based RL for dexterous manipulation
Simulated ablations

- Need sufficiently large model 
- Need at least 3 ensemble members 
- Planning horizon trade-offs 
- Modified CEM is crucial



Case study: Model-based RL for dexterous manipulation
Real-world dexterous control with ShadowHand

- Efficiency is key for fragile hardware 
- Learns Baoding ball rotation in ~4 hours 
- Ball is reset with another robot arm



The plan for today

1. A brief primer on sampling-based optimization 

2. Model-based reinforcement learning 

a. How to get a good dynamics model? 

b. How to use a (learned) dynamics model? 

3. Case study in dexterous robotic manipulation

Key learning goals: 
- model-based RL methods, and how to implement them 
- the key challenges arising in model-based reinforcement learning 
- tradeoffs between different model-based RL approaches
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Course reminders

- Project proposal due this Wednesday 
(graded fairly lightly — really for your benefit!) 

- Homework 2 due next Wednesday (start early!)

36

Next time: Where do rewards come from? Can we learn them?


