Offline Reinforcement Learning: Part 1 CS 224R

Course reminders

- Homework 2 due Wednesday

- Project proposal feedback coming out soon.

Offline RL: Part 1

- 1. Why offline RL? Can we just run off-policy methods?
- Data constraint methods
- 3. Conservative methods
- Data stitching 4.

Key learning goals:

- the key challenges arising in offline reinforcement learning
- two approaches for offline RL (& why they work!)
- how offline RL can improve over imitation learning

Why offline RL?

Online RL process (on-policy or off-policy)

- Collect data
 - Update policy on latest data or data so far

- leverage datasets collected by people, existing systems —
- online policy collection may be risky, unsafe —
- reuse previously collected data rather than recollecting — (e.g. previous experiments, projects, robots, institutions)

Note: A blend of offline then online RL is also possible!

Offline RL process

- Given static dataset
- Train policy on provided dataset

Why, or when, might offline RL be more useful?

Why offline RL?

Offline RL process

- Given static dataset —
- Train policy on provided dataset —

More formally: Offline dataset $\mathcal{D}: \{(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)\}$ sampled from some unknown policy π_{β} $\mathbf{s} \sim d^{\pi_{\beta}}(\cdot)$ $\mathbf{a} \sim \pi_{\beta}(\cdot \mid \mathbf{s})$ $\mathbf{s}' \sim p(\cdot \mid \mathbf{s}, \mathbf{a})$ $r = r(\mathbf{s}, \mathbf{a})$ Objective: $\max_{\theta} \sum_{t} \mathbb{E}_{\mathbf{s}_{t} \sim d^{\pi_{\theta}}(\cdot), \mathbf{a}_{t} \sim \pi_{\theta}(\cdot | \mathbf{s}_{t})} \left[r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$

"behavior policy"

(Note: π_{β} may be a mixture of policies)

Why offline RL?

Offline RL process

- Given static dataset
- Train policy on provided dataset

Where does the data come from?

- human collected data
- data from a hand-designed system / controller
- data from previous RL run(s)
- a mixture of sources

Can we just use off-policy algorithms?

Recall: Q-learning objective $\sum_{(\mathbf{s},\mathbf{a},\mathbf{s}')\sim T}$

What happens if you optimize this using a static dataset?

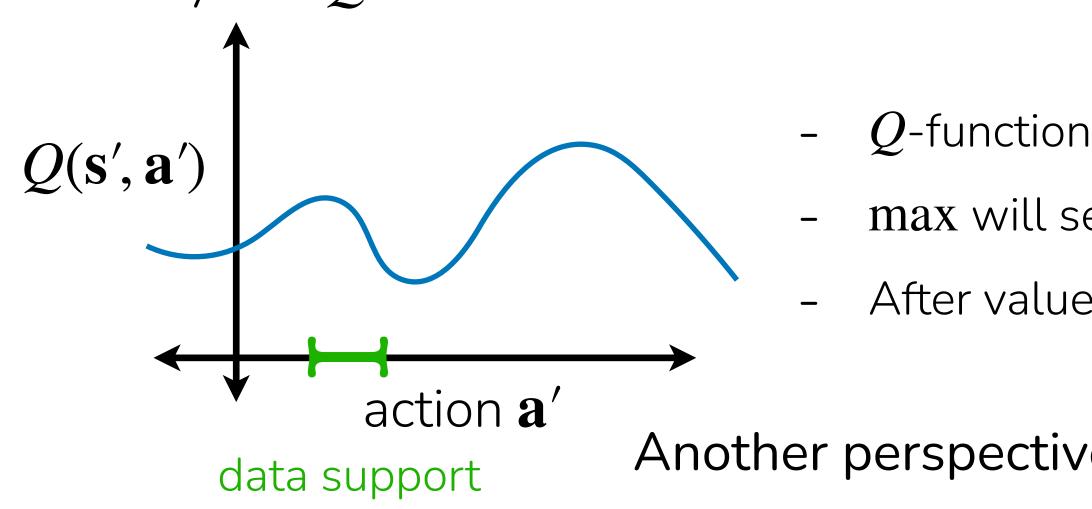
(e.g. say data collected by a mediocre policy)

$$\mathcal{D} \left\| Q(\mathbf{s}, \mathbf{a}) - \left(r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}') \right) \right\|^2$$

Can we just use c

Recall: Q-learning objective $(\mathbf{s}, \mathbf{a}, \mathbf{s'}) \sim$

Randomly init. Q-function for state \mathbf{s}'



off-policy algorithms?
$$\left\|Q(\mathbf{s}, \mathbf{a}) - \left(r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}')\right)\right\|^2$$

- What happens if you optimize this using a static dataset?
 - (e.g. say data collected by a mediocre policy)
- What happens when evaluating Q on actions \mathbf{a}' not in the dataset?

- Q-function will be unreliable on OOD actions
- max will seek out actions where Q-function is over-optimistic
- After values propagate, Q-values will become substantially overestimated.

Another perspective: learned policy deviates too much from behavior policy. 8

This is the core goal of offline RL methods!

Offline RL: Part 1

- 1. Why offline RL? Can we just run off-policy methods?
- 2. Data constraint methods
- Conservative methods 3.
- Data stitching 4.

How to mitigate over

Recall: Q-learning objective $(\mathbf{s}, \mathbf{a}, \mathbf{s'}) \sim \mathbf{c}$

Can we constrain \mathbf{a}' to stay close to behavior policy? If so: we could avoid querying Q on OOD actions!

New objective:

$$\sum_{(\mathbf{s},\mathbf{a},\mathbf{s}')\sim\mathcal{D}} \left\| Q(\mathbf{s},\mathbf{a}) - \left(r(\mathbf{s},\mathbf{a}) + \gamma E_{\mathbf{a}'\sim\pi_{\mathrm{new}}(\cdot|\mathbf{s}')} Q(\mathbf{s}',\mathbf{a}') \right) \right\|^2$$

 $\pi_{\text{new}} = \arg \max_{\pi} E_{\mathbf{a}' \sim \pi(\cdot | \mathbf{s}')} Q(\mathbf{s}', \mathbf{a}') \text{ s.t. } \pi \text{ close to } \pi_{\beta}$

restimation in offline RL?
$$\left\|Q(\mathbf{s}, \mathbf{a}) - \left(r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}')\right)\right\|^2$$

Can we constrain \mathbf{a}' to stay close to behavior policy?

If so: we could avoid querying Q on OOD actions!

New objective:

$$\sum_{(\mathbf{s},\mathbf{a},\mathbf{s}')\sim\mathcal{D}} \|Q(\mathbf{s},\mathbf{a}) - (r(\mathbf{s},\mathbf{a}) + \gamma E_{\mathbf{a}'\sim\pi_{\mathrm{new}}(\cdot|\mathbf{s}')}Q(\mathbf{s}',\mathbf{a}'))\|^{2}$$
$$\pi_{\mathrm{new}} = \arg\max_{\pi} E_{\mathbf{a}'\sim\pi(\cdot|\mathbf{s}')}Q(\mathbf{s}',\mathbf{a}') \text{ s.t. } \pi \text{ close}$$

Many "data constraint" methods will fit a policy to the data. (i.e. learn a proxy for π_{β} through imitation)

to π_{β}

Issue: We don't know what π_{β} is!

Can we constrain \mathbf{a}' to stay close to behavior policy?

If so: we could avoid querying Q on OOD actions!

New objective:

$$\sum_{(\mathbf{s},\mathbf{a},\mathbf{s}')\sim\mathcal{D}} \|Q(\mathbf{s},\mathbf{a}) - (r(\mathbf{s},\mathbf{a}) + \gamma E_{\mathbf{a}'\sim\pi_{\mathrm{new}}(\cdot|\mathbf{s}')}Q(\mathbf{s}',\mathbf{a}'))\|^{2}$$
$$\pi_{\mathrm{new}} = \arg\max_{\pi} E_{\mathbf{a}'\sim\pi(\cdot|\mathbf{s}')}Q(\mathbf{s}',\mathbf{a}') \text{ s.t. } \pi \text{ close}$$

Forms of policy constraints?

1. support constraint: $\pi(\mathbf{a} \mid \mathbf{s}) > 0$ only if $\pi_{\beta}(\mathbf{a} \mid \mathbf{s}) \geq \epsilon$

2. KL divergence: $D_{KL}(\pi || \pi_{\beta})$ + easy to implement

to π_{β}

+ close to what we want - challenging to implement in practice

- not necessarily what we want

How to implement data constraint methods?

1. Change actor update:

 $\theta \leftarrow \arg\max_{\theta} E_{\mathbf{s} \sim D, \mathbf{a} \sim \pi_{\theta}(\cdot|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) \right] - \lambda D_{KL}(\pi_{\theta} \| \pi_{\beta})$

2. Modify the reward function:

$$\bar{r}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) - D_{KL}(\pi_{\theta} \| \pi_{\beta})$$

See: Wu, Tucker, Nachum. Behavior Regularized Offline RL. '19

Lagrange multiplier

 $\theta \leftarrow \arg\max_{\beta} E_{\mathbf{s} \sim D, \mathbf{a} \sim \pi_{\theta}(\cdot|\mathbf{s})} \left[Q(\mathbf{s}, \mathbf{a}) + \lambda \log \pi_{\beta}(\mathbf{a}|\mathbf{s}) + \lambda \mathcal{H}\left(\pi_{\theta}(\cdot|\mathbf{s})\right) \right]$

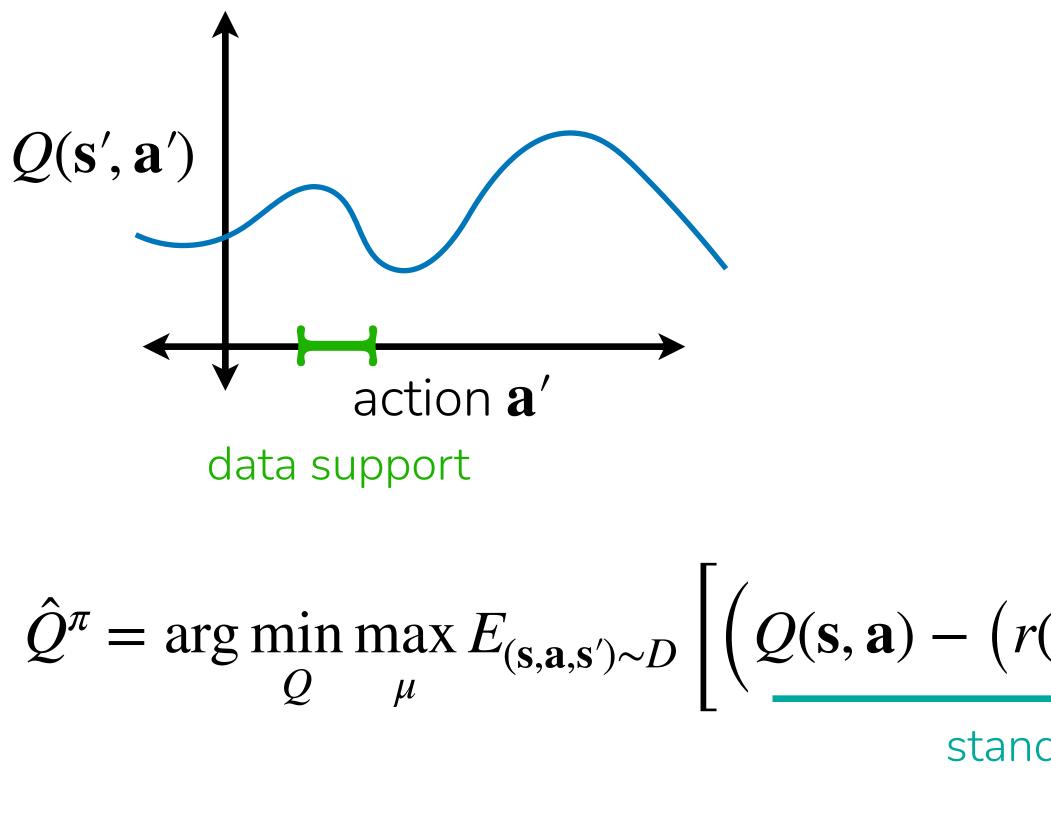
Easy to compute for Gaussian, categorical policies

Policy will also account for *future* divergence

Offline RL: Part 1

- 1. Why offline RL? Can we just run off-policy methods?
- Data constraint methods 2.
- 3. Conservative methods
- Data stitching 4.

Recall: Randomly init. Q-function for state \mathbf{s}'



Slide adapted from Sergey Levine

Can we discourage overestimation? without explicitly modeling the behavior policy

What if we just push down on large Q-values?

$$\mathbf{r}(\mathbf{s},\mathbf{a}) + \gamma E_{\pi}[Q(\mathbf{s}',\mathbf{a}')]) \Big)^{2} + \alpha E_{\mathbf{s}\sim D,\mathbf{a}\sim\mu(\cdot|\mathbf{s})}[Q(\mathbf{s},\mathbf{a})]$$

standard critic update

push down on large Q-values

Can show that $\hat{Q}^{\pi} \leq Q^{\pi}$ for large enough α

Can we discourage overestimation? without explicitly modeling the behavior policy

$$\hat{Q}^{\pi} = \arg\min_{Q} \max_{\mu} E_{(\mathbf{s},\mathbf{a},\mathbf{s}')\sim D} \left[\left(Q(\mathbf{s},\mathbf{a}) - \left(r(\mathbf{s},\mathbf{a}) \right) \right) \right]$$

BUT, guaranteed that
$$E_{\pi(\mathbf{a}|\mathbf{s})}[\hat{Q}^{\pi}]$$

Conservative Q-learning (CQL)

Slide adapted from Sergey Levine

standard critic update push down on large Q-values $(1) + \gamma E_{\pi}[Q(\mathbf{s}', \mathbf{a}')]))^{2} + \alpha E_{\mathbf{s} \sim D, \mathbf{a} \sim \mu(\cdot|\mathbf{s})}[Q(\mathbf{s}, \mathbf{a})]$

$$- \alpha E_{(\mathbf{s},\mathbf{a})\sim D}[Q(\mathbf{s},\mathbf{a})]$$

push up on Q-values for (s, a) in the data

No longer guaranteed that $\hat{Q}^{\pi} \leq Q^{\pi}$ for all (\mathbf{s}, \mathbf{a}) .

 $\pi(\mathbf{s}, \mathbf{a})] \leq E_{\pi(\mathbf{a}|\mathbf{s})}[Q^{\pi}(\mathbf{s}, \mathbf{a})]$ for all $\mathbf{s} \in D$.

Conservative Q-learning (CQL) Full algorithm

- 1. Update \hat{Q}^{π} using L_{CQL} using D2. Update policy π

If actions are discrete: $\pi(\mathbf{a} \mid \mathbf{s}) = \begin{cases} 1 \text{ if } \mathbf{a} = \arg \max \hat{Q}(\mathbf{s}, \bar{\mathbf{a}}) \\ 0 \text{ otherwise} \end{cases}$

If actions are continuous: $\theta \leftarrow \theta + \eta \nabla_{\theta} E$

Slide adapted from Sergey Levine

$$\mathcal{E}_{\mathbf{s}\sim D,\mathbf{a}\sim \pi_{\theta}(\cdot|\mathbf{s})}\left[\hat{Q}(\mathbf{s},\mathbf{a})\right]$$

Conservative Q-learning (CQL) 1. Update \hat{Q}^{π} using L_{CQL} using D
2. Update policy π

How compute objective L_{CQL} ? $\hat{Q}^{\pi} = \arg\min_{Q} \max_{\mu} E_{(\mathbf{s},\mathbf{a},\mathbf{s}')\sim D} \left[\left(Q(\mathbf{s},\mathbf{a}) - \left(r(\mathbf{s},\mathbf{a}) - \left(r(\mathbf{s},\mathbf{s}) - \left(r(\mathbf{s}) - \left(r(\mathbf{s$ Common choice: $R(\mu) = E_{\mathbf{s}\sim D}[\mathcal{H}(\mu(\cdot|\mathbf{s})$ With max entropy regularizer R, optimal $\mu(\mathbf{a})$ Then: $E_{\mathbf{s} \sim D, \mathbf{a} \sim \mu(\cdot | \mathbf{s})}[Q(\mathbf{s}, \mathbf{a})] = \mathbf{lo}$

Don't need to

Slide adapted from Sergey Levine

$$(\mathbf{s}, \mathbf{a}) + \gamma E_{\pi}[Q(\mathbf{s}', \mathbf{a}')])^{2} + \alpha E_{\mathbf{s} \sim D, \mathbf{a} \sim \mu(\cdot | \mathbf{s})}[Q(\mathbf{s}, \mathbf{a})] - \alpha E_{(\mathbf{s}, \mathbf{a}) \sim D}[Q(\mathbf{s}, \mathbf{a})] + \underline{R(\mu)}$$

$$(\mathbf{s}, \mathbf{a}) \propto \exp(Q(\mathbf{s}, \mathbf{a}))$$

$$\log \sum_{\mathbf{a}} \exp(Q(\mathbf{s}, \mathbf{a}))$$

$$\log \sum_{\mathbf{a}} \exp(Q(\mathbf{s}, \mathbf{a}))$$

$$\operatorname{You will implement}$$

in homework 3!

Aside: Model-based offline RL

Key idea: Instead of minimizing Q-values of policy actions, minimize Q-values of model-generated (s, a)

CQL objective:

$$\hat{Q}^{\pi} = \arg\min_{Q} \max_{\mu} E_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim D} \left[\left(Q(\mathbf{s}, \mathbf{a}) - \left(r(\mathbf{s}, \mathbf{a}) + \gamma E_{\pi}[Q(\mathbf{s}', \mathbf{a}')] \right) \right)^{2} \right] + \alpha E_{\mathbf{s} \sim D, \mathbf{a} \sim \mu(|\mathbf{s})}^{\rho(\mathbf{s}, \mathbf{a})} [Q(\mathbf{s}, \mathbf{a})] \\ - \alpha E_{(\mathbf{s}, \mathbf{a}) \sim D} [Q(\mathbf{s}, \mathbf{a})] \\ \text{Add data from model to } D$$
state action tuples from mode

Intuition: If model produces data that look clearly different from the real data, it's easy for the Q-function to make it look bad.

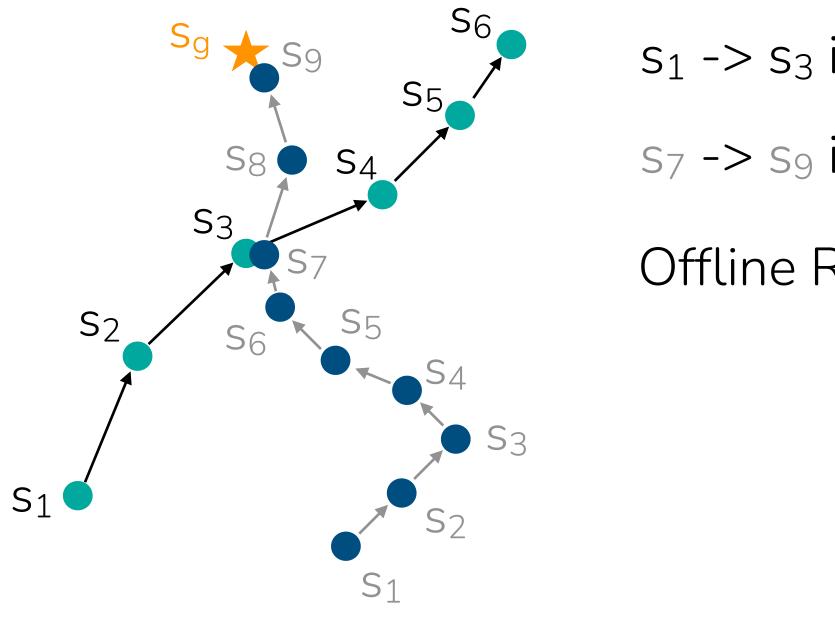
Slide adapted from Sergey Levine

Offline RL: Part 1

- 1. Why offline RL? Can we just run off-policy methods?
- Data constraint methods 2.
- 3. Conservative methods
- 4. Data stitching

Why offline RL versus imitation learning?

Offline data may not be optimal! —> Good offline RL methods can *stitch* together good behaviors.



(Recall: Imitation methods can't outperform the expert.)

- \rightarrow Offline RL can leverage reward information to outperform behavior policy.

 - $s_1 \rightarrow s_3$ is good behavior
 - s₇ -> s₉ is good behavior
 - Offline RL methods can learn a policy that goes from s_1 to $s_9!$

Offline RL: Part 1

- 1. Why offline RL? Can we just run off-policy methods?
- Data constraint methods
- 3. Conservative methods
- Data stitching 4.

Key learning goals:

- the key challenges arising in offline reinforcement learning
- two approaches for offline RL (& why they work!)
- how offline RL can improve over imitation learning

Summary

- Why offline RL? Online data is expensive. Reusing offline data is good!
- Key challenge: Overestimating Q-values because of shift between π_{β} and π_{θ}
 - can explicitly constrain to the data by modeling π_{β} + fairly intuitive - often too conservative in practice implicitly constrain to data by penalizing Q-values —
 - + simple + can work well in practice need to tune alpha
 - Trajectory stitching allows offline RL methods to improve over imitation.
 - **Next time**: other offline RL approaches & hyperparameter tuning

Course reminders

- Homework 2 due Wednesday

- Project proposal feedback coming out soon.