Offline Reinforcement Learning: Part 2

CS 224R

- Homework 2 due tonight.
- Homework 3 out today.
- Project proposal feedback coming out soon.

Announcements

- Moving two office hours (Dilip, Ansh) from in-person to hybrid

Course reminders

The plan for today

Offline RL: Part 2

- 1. Recap
- 2. Revisiting imitation learning for offline RL
 - a. Weighted imitation learning
 - Conditional imitation b.
- 3. Offline evaluation & hyperparameter tuning
- Applications 4.

Key learning goals:

- important considerations for tuning offline RL methods

Part of homework 3!

- two approaches for offline RL (+ when they work & don't work!)

Recap: Offline RL, data constraints, conservativeness

- Why offline RL? Online data is expensive. Reusing offline data is good!
- Key challenge: Overestimating Q-values because of shift between π_{β} and π_{θ}
 - can explicitly constrain to the data by modeling π_{β} + fairly intuitive - often too conservative in practice implicitly constrain to data by penalizing Q-values -
 - + simple + can work well in practice need to tune alpha
 - Trajectory stitching allows offline RL methods to improve over imitation.

Recap: Why offline RL versus imitation learning?

Offline data may not be optimal! —> Good offline RL methods can *stitch* together good behaviors.

(**Recall**: Imitation methods can't outperform the expert.)

- \rightarrow Offline RL can leverage reward information to outperform behavior policy.

 - $s_1 \rightarrow s_3$ is good behavior
 - s₇ -> s₉ is good behavior
 - Offline RL methods can learn a policy that goes from s_1 to $s_9!$

Other ways to leverage reward information in imitation?

If we have reward labels: imitate only the good trajectories?

Filtered behavior cloning:

- 1. Rank trajectories by return $r(\tau) = \sum_{n=1}^{\infty} r^n$ $(\mathbf{s}_t, \mathbf{a}_t) \in \tau$
- 2. Filter dataset to include top k% of data \tilde{D} : { $\tau | r(\tau) > \eta$ }
- 3. Imitate filtered dataset: max $\sum \log \pi(\mathbf{a} | \mathbf{s})$ π $(\mathbf{s},\mathbf{a})\in \tilde{D}$

A very primitive approach to using reward information.

$$r(\mathbf{s}_t, \mathbf{a}_t)$$

Therefore, a **good baseline** to test against!

Better way to do weighted imitation learning?

Could we weight each transition depending on how good the action is?

How do you measure how good an action is? Recall: advantage function A

$$\theta \leftarrow \arg \max_{\theta} E_{\mathbf{s}, \mathbf{a} \sim D} \left[\log \pi_{\theta}(\mathbf{a} \mid \mathbf{s}) \exp \theta \right]$$

standard imitation learning with advantage weights

Aside: Can show that advantage-weighted objective approximates KL-constrained objective. $= \arg \max E_{\mathbf{a} \sim \pi(\cdot | \mathbf{s})} Q(\mathbf{s}, \mathbf{a}) \text{ s.t. } D_{KL}(\pi \| \pi_{\beta}) < \epsilon$ π_{new}

See Peters et al. (REPS), Rawlik et al. ("psi-learning")

 $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t)$: how much better \mathbf{a}_t is

Better way to do weighted imitation learning?

Could we weight each transition depending on how good the action is?

How do you measure how good an action is? Recall: advantage function A

$$\theta \leftarrow \arg \max_{\theta} E_{\mathbf{s}, \mathbf{a} \sim D} \left[\log \pi_{\theta}(\mathbf{a} \mid \mathbf{s}) \exp \theta \right]$$

standard imitation learning with advantage weights

Advantage of which policy? We'll use $A^{\pi_{\beta}}$ for now.

 $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t)$: how much better \mathbf{a}_t is

Advantage-weighted regression

Could we weight each transition depending on how good the action is?

$$\theta \leftarrow \arg\max_{\theta} E_{\mathbf{s},\mathbf{a}\sim D} \left[\log E_{\mathbf{s},\mathbf{a}\sim D}\right]$$

standard imitation learning with advantage weights

Key question: How to estimate the advantage function?

Estimate
$$V^{\pi_{\beta}}(s)$$
 with Monte Carlo, $\min_{V} E_{(\mathbf{s},\mathbf{a})\sim D} \left[\left(R_{\mathbf{s},\mathbf{a}} - V(\mathbf{s}) \right)^{2} \right]$
Approximate $\hat{A}^{\pi_{\beta}}(\mathbf{s},\mathbf{a}) = R_{\mathbf{s},\mathbf{a}} - V(\mathbf{s})$ empirical return

Peng, Kumar, Zhang, Levine. Advantage-Weighted Regression. '19

 $\pi_{\theta}(\mathbf{a} \mid \mathbf{s}) \exp(A(\mathbf{s}, \mathbf{a}))$

Advantage-weighted regression

Full AWR algorithm

1. Fit value function: $\hat{V}^{\pi_{\beta}}(s) \leftarrow \arg \min_{V} E_{V}$ 2. Train policy: $\hat{\pi} \leftarrow \arg \max_{\pi} E_{\mathbf{s},\mathbf{a}\sim D}$ $\log_{\pi} E_{\mathbf{s},\mathbf{a}\sim D}$

+ Simple+ Avoids querying or trainingon any OOD actions!

Peng, Kumar, Zhang, Levine. Advantage-Weighted Regression. '19

$$E_{(\mathbf{s},\mathbf{a})\sim D}\left[\left(R_{\mathbf{s},\mathbf{a}}-V(\mathbf{s})\right)^{2}\right]$$

g $\pi(\mathbf{a} \mid \mathbf{s})\exp\left(\frac{1}{\alpha}\left(R_{\mathbf{s},\mathbf{a}}-\hat{V}^{\pi_{\beta}}(\mathbf{s})\right)\right)\right]$
hyperparameter

- Monte Carlo estimation is noisy - \hat{A}^{π_β} assumes weaker policy than \hat{A}^{π_θ}

Advantage-weighted regression

Estimate advantage function with TD updates instead of Monte Carlo?

1. Estimate Q^{π} -function: $\min_{Q} E_{(\mathbf{s}, \mathbf{a}, \mathbf{s})}$ 2. Estimate advantage as: $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$ 3. Update policy as before: $\hat{\pi} \leftarrow ar$

"advantage weighted actor critic"

+ Policy still only trained on actions in data. What might go wrong? + Temporal difference updates instead of Monte Carlo.

Nair, Gupta, Dalal, Levine. AWAC. '20 Wang et al. Critic Regularized Regression. NeurIPS '20

$$\int_{\mathbf{a},\mathbf{s}')\sim D} \left[\left(Q(\mathbf{s},\mathbf{a}) - \left(r + \gamma E_{\mathbf{a}'\sim\pi(\cdot|\mathbf{s})}[Q(\mathbf{s}',\mathbf{a}')] \right) \right)^2 \right]$$
$$= \hat{Q}^{\pi}(\mathbf{s},\mathbf{a}) - E_{\bar{\mathbf{a}}\sim\pi(\cdot|\mathbf{s})}[\hat{Q}^{\pi}(\mathbf{s},\bar{\mathbf{a}})]$$
$$\arg\max_{\pi} E_{\underline{\mathbf{s}},\underline{\mathbf{a}}\sim D} \left[\log \pi(\mathbf{a} \mid \mathbf{s}) \exp\left(\frac{1}{\alpha} \hat{A}^{\pi}(\mathbf{s},\mathbf{a})\right) \right]$$

- Possibly querying OOD actions!

Want to estimate advantages using TD updates, without querying Q on OOD actions.

AWAC: Estimate Q-function: $\min_{Q} E_{(\mathbf{s},\mathbf{a},\mathbf{s}') \sim P}$

Can we do better?

$$\mathcal{L}_{D}\left[\left(Q(\mathbf{s},\mathbf{a}) - \left(r + \gamma E_{\mathbf{a}' \sim \pi(+|\mathbf{s})}[Q(\mathbf{s}',\mathbf{a}')]\right)\right)^{2}\right]$$

"SARSA algorithm"

Can we do better?

Want to estimate advantages using TD updates, without querying Q on OOD actions.

SARSA update:
$$\hat{Q}^{\pi_{\beta}} \leftarrow \arg\min_{Q} E_{(\mathbf{s},\mathbf{a},\mathbf{s}',\mathbf{a}')\sim D} \left[\left(Q(\mathbf{s},\mathbf{a}) - \left(r + \gamma Q(\mathbf{s}',\mathbf{a}') \right) \right)^2 \right]$$

a sample of $V^{\pi_{\beta}}(\mathbf{s}')$

Can we estimate Q for a policy that is better than π_{β} ?

Idea: Use an asymmetric loss function

Kostrikov, Nair, Levine. Implicit Q-Learning. ICLR '22

Aside: Expectile regression

Instead of getting the mean of a random variable, can we get a higher or lower expectile?

Expectile regression loss:

$$\ell_2^{\tau}(x) = \begin{cases} (1-\tau)x^2 & \text{if } x < 0\\ \tau x^2 & \text{otherwise} \end{cases}$$

Kostrikov, Nair, Levine. Implicit Q-Learning. ICLR '22

Example with a 2D random variable

Can we do better?

Want to estimate advantages using TD updates, without querying Q on OOD actions.

Full algorithm

Fit V with expectile loss: $\hat{V}(\mathbf{s}) \leftarrow \arg \min_{V} B$ Update Q with typical MSE loss: $\hat{Q}(\mathbf{s}, \mathbf{a}) \leftarrow$

Extract policy with AWR: $\hat{\pi} \leftarrow \arg \max E_s$

+ Never need to query OOD actions! + Policy (still) only trained on actions in data. + Decoupling actor & critic training —> computationally fast Kostrikov, Nair, Levine. Implicit Q-Learning. ICLR '22

$$E_{(\mathbf{s},\mathbf{a})\sim D}\left[\ell_{2}^{\tau}\left(V(\mathbf{s})-\hat{Q}(\mathbf{s},\mathbf{a})\right)\right] \text{ using small } \tau < 0.5$$

$$\leftarrow \arg\min_{Q} E_{(\mathbf{s},\mathbf{a},\mathbf{s}')\sim D}\left[\left(Q(\mathbf{s},\mathbf{a})-\left(r+\gamma\hat{V}(\mathbf{s}')\right)\right)^{2}\right]$$

$$= \exp\left[\log \pi(\mathbf{a} \mid \mathbf{s})\exp\left(\frac{1}{\alpha}\left(\hat{Q}(\mathbf{s},\mathbf{a})-\hat{V}(\mathbf{s})\right)\right)\right]$$

policy improvement is implicit -> implicit Q-learning (IQL)

> You will implement IQL in homework 3!

The plan for today

Offline RL: Part 2

- 1. Recap
- 2. Revisiting imitation learning for offline RL
 - a. Weighted imitation learning

b. Conditional imitation

- 3. Offline evaluation & hyperparameter tuning
- Applications 4.

Revisiting Filtered Behavior Cloning

If we have reward labels: imitate only the good trajectories?

Filtered behavior cloning:

- 1. Rank trajectories by return $r(\tau) = \sum_{(\mathbf{s}_t, \mathbf{a}_t) \in \tau} r(\mathbf{s}_t, \mathbf{a}_t)$
- 2. Filter dataset to include top k% of data \tilde{D} : { $\tau | r(\tau) > \eta$ }
- 3. Imitate filtered dataset: $\max_{\pi} \sum_{(\mathbf{s},\mathbf{a})\in \tilde{D}} \log \pi(\mathbf{a} \mid \mathbf{s})$

A very primitive approach to using reward information.

For some datasets, filtered BC can actually work really well!

What if we feel bad about discarding data?

Return-conditioned policies

- 1. Imitate entire dataset: $\max_{\pi} \sum_{x} \log \pi(\mathbf{a} | \mathbf{s}, R_{\mathbf{s}, \mathbf{a}})$ π (**s**,**a**)∈*D*
- Policy will learn to mimic good and poor behaviors (and everything in between!)
- Pass in high return at test time
- Can use a sequence model:

Condition policy on (empirical) return to go.

Referred to as: upside-down RL, rewardconditioned policies, decision transformers

- linear decoder
- emb. + pos. enc.

Question: Can this approach do data stitching? **Question**: When would a sequence model be helpful?

The plan for today

Offline RL: Part 2

- 1. Recap
- 2. Revisiting imitation learning for offline RL
 - a. Weighted imitation learning
 - Conditional imitation b.
- 3. Offline evaluation & hyperparameter tuning
- Applications 4.

Hyperparameter tuning for offline RL

Train policy π_{θ} using offline dataset D.

How good is the policy π_{θ} ? Is policy π_{θ_1} better than policy π_{θ_2} ? "offline policy evaluation"

There's no general, reliable way to evaluate offline. 😢 Also true for imitation learning!

Strategies:

- Roll-out policy in real world - Evaluate in high-fidelity simulator or model + might be good enough for comparing policies - Sometimes can use heuristics + easy & cheap - not reliable, general-purpose

Frue objective:
$$\max_{\theta} \sum_{t} \mathbb{E}_{\mathbf{s}_{t} \sim d^{\pi_{\theta}}(\cdot), \mathbf{a}_{t} \sim \pi_{\theta}(\cdot | \mathbf{s}_{t})} \left[r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

+ accurate - can be expensive, risky ~ no longer purely offline (consider using online data!)

- developing simulator is hard

Hyperparameter tuning for offline RL

How good is the policy π_{θ} ? Is policy π_{θ_1} better than policy π_{θ_2} ? "offline policy evaluation" Pick-Place Task **Strategies:** 60

Kumar*, Singh*, Tian, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. CoRL '21

The plan for today

Offline RL: Part 2

- 1. Recap
- 2. Revisiting imitation learning for offline RL
 - a. Weighted imitation learning
 - Conditional imitation b.
- 3. Offline evaluation & hyperparameter tuning
- 4. Applications

Some example applications

Optimizing policy for sending notifications to users on LinkedIn

Prabhakar, Yuan, Yang, Sun, Muralidharan. Multi-Objective Optimization of Notifications Using Offline RL. '22

WAU: weekly active users **Volume**: total # of notifications CTR: click-through-rate of notifications

Metric	DDQN vs. Baseline	DDQN + CQL vs. Baseline
Sessions	not stat sig	+ 0.24%
WAU	-0.69%	+ 0.18%
Volume	+7.72%	-1.73%
CTR	-7.79%	+2.26%

Table 1: Online A/B test results for DDQN with and without CQL

Some example applications

Annie Chen, Alex Nam, Suraj Nair develop Rafael Rafailov reuses same dataset to train a algorithm for scalably collecting robot data. policy with new offline RL method

Chen*, Nam*, Nair*, Finn. Batch Exploration with Examples for Scalable Robotic RL, ICRA/RA-L '21 Rafailov*, Yu*, Rajeswaran, Finn. Offline RL from Images with Latent Space Models, L4DC '21

- 1. Label 200 images as drawer open vs. closed.
- 2. Train classifier(for a reward signal)
- 3. Run offline RL with LOMPO.
- (precursor to COMBO)

ground truth video

predicted video

Some example applications

Annie Chen, Alex Nam, Suraj Nair develop Rafael Rafailov reuses same dataset to train a algorithm for scalably collecting robot data. policy with new offline RL method

Chen*, Nam*, Nair*, Finn. Batch Exploration with Examples for Scalable Robotic RL, ICRA/RA-L '21 Rafailov*, Yu*, Rajeswaran, Finn. Offline RL from Images with Latent Space Models, L4DC '21

- 1. Label 200 images as drawer open vs. closed.
- 2. Train classifier(for a reward signal)
- 3. Run offline RL with LOMPO.
- (precursor to COMBO)

Which offline RL algorithm to use?

If you only want to train offline:

Filtered behavior cloning: Good first approach to using offline data. Implicit Q-learning: Can stitch data & explicitly constrained to data support **Conservative Q-learning**: Just one hyperparameter

If you want offline pre-training + online fine-tuning: Implicit Q-learning: Seems most performant.

If you have a good way to train a dynamics model: COMBO: Similar to CQL, but benefits from learned model

Note: Still an active area of research!

The plan for today

Offline RL: Part 2

- 1. Recap
- 2. Revisiting imitation learning for offline RL
 - a. Weighted imitation learning
 - Conditional imitation b.
- 3. Offline evaluation & hyperparameter tuning
- Applications 4.

Key learning goals:

- important considerations for tuning offline RL methods

Part of homework 3!

- two approaches for offline RL (+ when they work & don't work!)

- Homework 2 due tonight.
- Homework 3 out today.
- Project proposal feedback coming out soon.

Announcements

- Moving two office hours (Dilip, Ansh) from in-person to hybrid

Course reminders