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Offline Reinforcement Learning: Part 2
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Course reminders

- Homework 2 due tonight.

- Homework 3 out today.

- Project proposal feedback coming out soon.
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- Moving two office hours (Dilip, Ansh) from in-person to hybrid

Announcements



The plan for today

Offline RL: Part 2

1. Recap


2. Revisiting imitation learning for offline RL


a. Weighted imitation learning


b. Conditional imitation


3. Offline evaluation & hyperparameter tuning


4. Applications

Key learning goals:

- two approaches for offline RL (+ when they work & don’t work!)

- important considerations for tuning offline RL methods

Part of homework 3!}
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Recap: Offline RL, data constraints, conservativeness

Why offline RL? Online data is expensive. Reusing offline data is good!

Key challenge: Overestimating Q-values because of shift between  and πβ πθ

- can explicitly constrain to the data by modeling 


- implicitly constrain to data by penalizing Q-values

πβ
+ fairly intuitive - often too conservative in practice

+ simple + can work well in practice - need to tune alpha

Trajectory stitching allows offline RL methods to improve over imitation.
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Recap: Why offline RL versus imitation learning?

Offline data may not be optimal!

   —> Offline RL can leverage reward information to outperform behavior policy.

   —> Good offline RL methods can stitch together good behaviors.

(Recall: Imitation methods 
can’t outperform the expert.)
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s7 -> s9 is good behavior

Offline RL methods can learn a policy that goes from s1 to s9!



Other ways to leverage reward information in imitation?

If we have reward labels: imitate only the good trajectories?

1. Rank trajectories by return 


2. Filter dataset to include top k% of data 


3. Imitate filtered dataset: 

r(τ) = ∑
(st,at)∈τ

r(st, at)

D̃ : {τ |r(τ) > η}

max
π ∑

(s,a)∈D̃

log π(a |s)

Filtered behavior cloning:

A very primitive approach to using reward information.

Therefore, a good baseline to test against!
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Better way to do weighted imitation learning?

Could we weight each transition depending on how good the action is?

advantage-weighted regression, advantage-weighted actor-critic

How do you measure how good an action is? Recall: advantage function A
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Adv. weights for s3
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Aside: Can show that advantage-weighted objective 
approximates KL-constrained objective.





See Peters et al. (REPS), Rawlik et al. (“psi-learning”)

πnew = arg max
π

Ea∼π(⋅|s)Q(s, a) s.t. DKL(π∥πβ) < ϵ

θ ← arg max
θ

Es,a∼D [log πθ(a |s)exp(A(s, a))]
with advantage weightsstandard imitation learning



Better way to do weighted imitation learning?

Could we weight each transition depending on how good the action is?

advantage-weighted regression, advantage-weighted actor-critic

How do you measure how good an action is? Recall: advantage function A

Key question: How to estimate the advantage function?
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s9θ ← arg max
θ

Es,a∼D [log πθ(a |s)exp(A(s, a))]
with advantage weightsstandard imitation learning

s3

Adv. weights for s3

Advantage of which policy? We’ll use  for now.Aπβ
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Advantage-weighted regression

Could we weight each transition depending on how good the action is?

Estimate  with Monte Carlo, 


Approximate 

Vπβ(s) min
V

E(s,a)∼D [(Rs,a − V(s))2]
̂Aπβ(s, a) = Rs,a − V(s)

Key question: How to estimate the advantage function?

empirical return

9Peng, Kumar, Zhang, Levine. Advantage-Weighted Regression. ‘19

θ ← arg max
θ

Es,a∼D [log πθ(a |s)exp(A(s, a))]
with advantage weightsstandard imitation learning



Advantage-weighted regression

Full AWR algorithm

2. Train policy: ̂π ← arg max
π

Es,a∼D [log π(a |s)exp ( 1
α (Rs,a − ̂Vπβ(s)))]

1. Fit value function: ̂Vπβ(s) ← arg min
V

E(s,a)∼D [(Rs,a − V(s))2]

hyperparameter

+ Avoids querying or training 
on any OOD actions!

+ Simple
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- Monte Carlo estimation is noisy

-  assumes weaker policy than ̂Aπβ ̂Aπθ

Peng, Kumar, Zhang, Levine. Advantage-Weighted Regression. ‘19



Advantage-weighted regression

Estimate advantage function with TD updates instead of Monte Carlo?

1. Estimate -function:  Qπ min
Q

E(s,a,s′￼)∼D [(Q(s, a) − (r + γEa′￼∼π(⋅|s)[Q(s′￼, a′￼)]))
2

]
2. Estimate advantage as: ̂Aπ(s, a) = Q̂π(s, a) − Eā∼π(⋅|s)[Q̂π(s, ā)]

“advantage weighted actor critic”

3. Update policy as before: ̂π ← arg max
π

Es,a∼D [log π(a |s)exp ( 1
α

̂Aπ(s, a))]
What might go wrong?

+ Temporal difference updates instead 
of Monte Carlo.

- Possibly querying OOD actions!

+ Policy still only trained on actions in data.

11
Nair, Gupta, Dalal, Levine. AWAC. ‘20
Wang et al. Critic Regularized Regression. NeurIPS ‘20



Can we do better?

Estimate -function:  Q min
Q

E(s,a,s′￼)∼D [(Q(s, a) − (r + γEa′￼∼π(⋅|s)[Q(s′￼, a′￼)]))
2

]AWAC:
a′￼∼ D

“SARSA algorithm”

Want to estimate advantages using TD updates, without querying  on OOD actions.Q
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Can we do better?
Want to estimate advantages using TD updates, without querying  on OOD actions.Q

SARSA update:  Q̂πβ ← arg min
Q

E(s,a,s′￼,a′￼)∼D [(Q(s, a) − (r + γQ(s′￼, a′￼)))
2]

Can we estimate  for a policy that is better than ?Q πβ

a sample of Vπβ(s′￼)

Histogram of V(s)

V(s)

Idea: Use an asymmetric loss function  for best policy 
in data support
V(s)

 loss gives us this!ℓ2 Can we use another 
loss to get this?

x

ℓ2(x)

ℓτ
2(x)

13Kostrikov, Nair, Levine. Implicit Q-Learning. ICLR ‘22 

Ea∼πβ(⋅|s)[Q(s, a)]



Aside: Expectile regression
Instead of getting the mean of a random variable, can we get a higher or lower expectile?

Expectile regression loss:

   if (1 − τ)x2 x < 0ℓτ
2(x) =

             otherwiseτx2{
Example with a 2D random variable

ℓτ
2(x)

x

Kostrikov, Nair, Levine. Implicit Q-Learning. ICLR ‘22 14



Can we do better?
Want to estimate advantages using TD updates, without querying  on OOD actions.Q

Full algorithm

Fit  with expectile loss: V ̂V(s) ← arg min
V

E(s,a)∼D [ℓτ
2 (V(s) − Q̂(s, a))]

-> implicit Q-learning (IQL)

using small τ < 0.5

Update  with typical MSE loss: Q Q̂(s, a) ← arg min
Q

E(s,a,s′￼)∼D [(Q(s, a) − (r + γ ̂V(s′￼)))
2

]
Extract policy with AWR: ̂π ← arg max

π
Es,a∼D [log π(a |s)exp ( 1

α (Q̂(s, a) − ̂V(s)))]
+ Never need to query OOD actions!

+ Decoupling actor & critic training —> computationally fast

+ Policy (still) only trained on actions in data.

policy improvement is implicit

You will implement IQL 
in homework 3!

15Kostrikov, Nair, Levine. Implicit Q-Learning. ICLR ‘22 
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Revisiting Filtered Behavior Cloning

If we have reward labels: imitate only the good trajectories?

1. Rank trajectories by return 


2. Filter dataset to include top k% of data 


3. Imitate filtered dataset: 

r(τ) = ∑
(st,at)∈τ

r(st, at)

D̃ : {τ |r(τ) > η}

max
π ∑

(s,a)∈D̃

log π(a |s)

Filtered behavior cloning:

A very primitive approach to using reward information.
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Use filtered BC Use filtered BC

Use fancy offline RL method

For some datasets, filtered BC can actually work really well!

What if we feel bad about discarding data?



Return-conditioned policies

Referred to as: upside-down RL, reward-
conditioned policies, decision transformers

1. Imitate entire dataset: max
π ∑

(s,a)∈D

log π(a |s, Rs,a)

Condition policy on (empirical) return to go.

- Policy will learn to mimic good and poor behaviors (and everything in between!)

- Pass in high return at test time

- Can use a sequence model:
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Question: Can this approach do data stitching?
Question: When would a sequence model be helpful?

Kumar et al. Reward-Conditioned Policies. ’19 
Srivastava et al. Upside-Down RL. ’19 

Chen*, Lu* et al. Decision Transformer. ‘21
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Hyperparameter tuning for offline RL

Train policy  using offline dataset .πθ D

How good is the policy ?πθ

True objective: max
θ ∑

t

𝔼st∼dπθ(⋅),at∼πθ(⋅|st) [r(st, at)]

“offline policy evaluation”Is policy  better than policy ?πθ1
πθ2

There’s no general, reliable way to evaluate offline. 😢

- Roll-out policy in real world


- Evaluate in high-fidelity simulator or model

Also true for imitation learning!

+ accurate - can be expensive, risky ~ no longer purely offline (consider using online data!)

+ might be good enough for comparing policies - developing simulator is hard

+ easy & cheap - not reliable, general-purpose
- Sometimes can use heuristics

Strategies:
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Hyperparameter tuning for offline RL
How good is the policy ?πθ “offline policy evaluation”Is policy  better than policy ?πθ1

πθ2

Example heuristic for early stopping with CQL:

Look at peak average Q-value before decline

Strategies:

+ easy & cheap - not reliable, general-purpose
- Sometimes can use heuristics

Number of trajectories

Kumar*, Singh*, Tian, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. CoRL ‘21
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Some example applications
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Optimizing policy for sending notifications to users on LinkedIn

Prabhakar, Yuan, Yang, Sun, Muralidharan. Multi-Objective Optimization of Notifications Using Offline RL. ‘22

WAU: weekly active users
Volume: total # of notifications

CTR: click-through-rate 
of notifications



Some example applications
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Annie Chen, Alex Nam, Suraj Nair develop 
algorithm for scalably collecting robot data.

Chen*, Nam*, Nair*, Finn. Batch Exploration with 
Examples for Scalable Robotic RL, ICRA/RA-L ‘21

Rafael Rafailov reuses same dataset to train a 
policy with new offline RL method

1. Label 200 images as 
drawer open vs. closed.

3. Run offline RL with 
LOMPO.

2. Train classifi
(for a reward signal)

(precursor to COMBO)
ground truth video predicted video

Rafailov*, Yu*, Rajeswaran, Finn. Offline RL from 
Images with Latent Space Models, L4DC ‘21



Some example applications
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Annie Chen, Alex Nam, Suraj Nair develop 
algorithm for scalably collecting robot data.

Chen*, Nam*, Nair*, Finn. Batch Exploration with 
Examples for Scalable Robotic RL, ICRA/RA-L ‘21

Rafael Rafailov reuses same dataset to train a 
policy with new offline RL method

1. Label 200 images as 
drawer open vs. closed.

3. Run offline RL with 
LOMPO.

2. Train classifi
(for a reward signal)

(precursor to COMBO)

Rafailov*, Yu*, Rajeswaran, Finn. Offline RL from 
Images with Latent Space Models, L4DC ‘21

w/o pessimism

76% success rate

w/ LOMPO



Which offline RL algorithm to use?
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Filtered behavior cloning: Good first approach to using offline data.

Conservative Q-learning: Just one hyperparameter

Implicit Q-learning: Can stitch data & explicitly constrained to data support

Note: Still an active area of research!

If you only want to train offline:

If you want offline pre-training + online fine-tuning:

Implicit Q-learning: Seems most performant.

If you have a good way to train a dynamics model:

COMBO: Similar to CQL, but benefits from learned model
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- Moving two office hours (Dilip, Ansh) from in-person to hybrid
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