RL in the Real World: From Chip Design to LLMs

Anna Goldie Anthropic & Stanford (Includes work done at Google Brain)

Structure of this Talk

- RL for Chip Design
 - RL for AI Accelerators
- RL for Large Language Models
 - \circ RL from Human Feedback
 - RL from AI Feedback

Structure of this Talk

- RL for Chip Design
 - RL for AI Accelerators
- RL for Large Language Models
 - \circ RL from Human Feedback
 - RL from AI Feedback

RL-Generated Chip Floorplans used in TPU! (Now for multiple generations, including the latest)

Published in Nature

Article | Published: 09 June 2021

A graph placement methodology for fast chip design

Azalia Mirhoseini ⊠, Anna Goldie ⊠, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean

Nature **594**, 207–212 (2021) Cite this article

21k Accesses | 1 Citations | 1552 Altmetric | Metrics

Google Invents AI That Learns a Key Part of Chip Design

AI helps designs AI chip that might help an AI design future AI chips

By Samuel K. Moore

Google is using AI to design chips that will accelerate Al

Google is using AI to design AI processors much faster than humans can By Paul Lilly 10 days ago

Chips making chips

🚹 🙄 🙆 🖸 💭 COMMENTS

Google uses artificial intelligence to optimize AI chip production

Google Hoping The Next AI Chips Will Be Designed By Al

Company researchers have come up with an AI system that can design other AI chips. The goal is to help improve AI with the help of AI.

GOOC

Google Researchers Create Al-ception with an Al Chip That Speeds Up Al

Using a reinforcement-learning algorithm, the AI has learnt to optimize the placement of components on a

Google trains chips to design

In the past decade, systems and hardware have transformed ML.

In the past decade, systems and hardware have transformed ML. Now, it's time for ML to transform systems and hardware.

Demand for Compute Outpacing Supply (Moore's Law)

	Error rate	Polynomial		
Benchmark		Computation Required (Gflops)	Environmental Cost (CO ₂)	Economic Cost (\$)
ImageNet	Today: 11.5%	10 ¹⁴	106	10 ⁶
	Target 1: 5%	10 ¹⁹	10 ¹⁰	1011
	Target 2: 1%	10 ²⁸	10 ²⁰	10 ²⁰

Implications of achieving performance on the computation, carbon emissions, and economic costs from deep learning on projections from polynomial models. *The Computational Limits of Deep Learning, Thompson et al., 2020*

Since 2012, the amount of compute used in the largest AI training runs doubled every 3.4 months, *OpenAI*, 2019

Scaling Laws: Compute Fuels Progress in ML

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, Dario Amodei. Scaling Laws for Neural Language Models. OpenAI 2020.

Value of Machine Learning for Chip Design

- Enabling cheaper, faster, and more environmentally friendly chips
- Potential to reduce the design cycle from 1.5-2 years to weeks
 - Today, we design chips for the NN architectures of 2-5 years from now
 - Shortening the chip design cycle would enable us to be far more adaptive to the rapidly advancing field of machine learning
- New possibilities emerge if we evolve NN architectures and chips together
 - Discovering the next generation of NN architectures (which would not be computationally feasible with today's chips)

Chip Floorplanning Problem

- A form of graph resource optimization
- Place the chip components to minimize the latency of computation, power consumption, chip area and cost, while adhering to constraints, such as congestion, cell utilization, heat profile, etc.

Complexity of Chip Placement Problem

Chess

Go

Chip Placement

Number of states ~ 10¹²³

Number of states ~ 10^{360}

Number of states ~ 10^{9000}

Prior Approaches to Chip Placement

Partitioning-Based Methods	Stochastic/Hill-Climbing Methods
(e.g. MinCut)	(e.g. Simulated Annealing)
Analytic Solvers (e.g. RePIAce)	

Prior Approaches to Chip Placement

Partitioning-Based Methods	Stochastic/Hill-Climbing Methods
(e.g. MinCut)	(e.g. Simulated Annealing)
Analytic Solvers (e.g. RePIAce)	Learning-Based Methods

Chip Placement with Reinforcement Learning

State: Graph embedding of chip netlist, embedding of the current node, and the canvas.

Action: Placing the current node onto a grid cell.

Reward: A weighted average of total wirelength, density, and congestion

Our Objective Function

 $J(\theta, G) = \frac{1}{K} \sum_{g \sim G} E_{g,p \sim \pi_{\theta}}[R_{p,g}]$ $\underset{\text{graphs G}}{\text{Reward corresponding to}} \text{placement p of netlist (graph) g}$ $\underset{RL \text{ policy}}{\text{RL policy}}$ $\underset{\text{parameterized}}{\text{RL policy}}$ $\underset{\text{by theta}}{\text{BL policy}}$

$$R_{p,g} = -Wirelength(p,g) -\lambda Congestion(p,g) - \gamma Density(p,g)$$

We Take a Hybrid Approach to Placement Optimization

Results on a TPU-v4 Block

White area are macros and the green area is composed of standard cell clusters Our method finds smoother, rounder macro placements to reduce the wirelength

Human Expert

ML Placer

Time taken: ~6-8 weeks Total wirelength: 57.07m Route DRC^{*} violations: 1766

DRC: Design Rule Checking

Time taken: **24 hours** Total wirelength: 55.42m (-2.9% shorter) Route DRC violations: 1789 (+23 - negligible difference)

Moving Towards Generalized Placements

Using the previous RL policy architecture, we trained it on multiple chips and tested it on new unseen chips.

Using the previous RL policy architecture, we trained it on multiple chips and tested it on new unseen chips. -> Didn't work!

Using the previous RL policy architecture, we trained it on multiple chips and tested it on new unseen chips. -> Didn't work!

Freezing different layers of the RL policy and then testing it on new unseen chips

Using the previous RL policy architecture, we trained it on multiple chips and tested it on new unseen chips. -> Didn't work!

Freezing different layers of the RL policy and then testing it on new unseen chips -> Didn't work either!

Using the previous RL policy architecture, we trained it on multiple chips and tested it on new unseen chips. -> Didn't work!

Freezing different layers of the RL policy and then testing it on new unseen chips -> Didn't work either!

What did work?

Using the previous RL policy architecture, we trained it on multiple chips and tested it on new unseen chips. -> Didn't work!

Freezing different layers of the RL policy and then testing it on new unseen chips -> Didn't work either!

What did work? Leveraging supervised learning to find the right architecture!

Achieving Generalization by Training Accurate Reward Predictors

Key observation: A value network trained only on placements generated by a single policy is unable to accurately predict the quality of placements generated by another policy, limiting the ability of the policy network to generalize.

Achieving Generalization by Training Accurate Reward Predictors

Key observation: A value network trained only on placements generated by a single policy is unable to accurately predict the quality of placements generated by another policy, limiting the ability of the policy network to generalize.

To decompose the problem, we trained models capable of accurately predicting reward from off-policy data.

Compiling a Dataset of Chip Placements

To train a more accurate predictor, we generated a dataset of 10k placements

Each placement was labeled with their wirelength and congestion, which were drawn from vanilla RL policies.

Searching for Effective Neural Architecture for Encoder

Input Features

Searching for Effective Neural Architecture for Encoder

*Node type: One-hot category {Hard macro, soft macro}

Edge-based Graph Convolution: Node Embeddings

Edge-based Graph Convolution: Edge Embedding

Edge-based Graph Convolution: Edge Embedding

Edge-based Graph Convolution: Propagate

Edge-based Graph Convolution: Repeat

Final Step: Get Graph Embedding

Discovered Reward Model Architecture and Features

Input Features

*Node type: One-hot category {Hard macro, soft macro}

Label Prediction Results on Test Chips

Overall RL Policy/Value Network Architecture

Comparisons with Manual and SOTA Baselines

Name Method		Timing		Area	Power	Wirelength	irelength Congestion	
		WNS (ps)	TNS (ns)	Total (μm^2)	Total (W)	(m)	H (%)	V (%)
Block 1	RePlAce	374	233.7	1693139	3.70	52.14	1.82	0.06
	Manual	136	47.6	1680790	3.74	51.12	0.13	0.03
	Ours	84	23.3	1681767	3.59	51.29	0.34	0.03
Block 2	RePlAce	97	6.6	785655	3.52	61.07	1.58	0.06
	Manual	75	98.1	830470	3.56	62.92	0.23	0.04
	Ours	59	170	694757	3.13	59.11	0.45	0.03
Block 3	RePlAce	193	3.9	867390	1.36	18.84	0.19	0.05
	Manual	18	0.2	869779	1.42	20.74	0.22	0.07
	Ours	11	2.2	868101	1.38	20.80	0.04	0.04
Block 4	RePlAce	58	11.2	944211	2.21	27.37	0.03	0.03
	Manual	58	17.9	947766	2.17	29.16	0.00	0.01
	Ours	52	0.7	942867	2.21	28.50	0.03	0.02
Block 5	RePlAce	156	254.6	1477283	3.24	31.83	0.04	0.03
	Manual	107	97.2	1480881	3.23	37.99	0.00	0.01
	Ours	68	141.0	1472302	3.28	36.59	0.01	0.03

• We freeze the macro placements generated by each method and report the place opt results by the commercial EDA.

• RePIAce: C. Cheng, A. B. Kahng, I. Kang and L. Wang, "RePIAce: Advancing Solution Quality and Routability Validation in Global Placement," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018

Ariane (RISC-V) Placement Visualization

Training policy from scratch

Finetuning a pre-trained policy

Ariane is an open-source RISC-V processor. See: https://github.com/pulp-platform/ariane

Convergence Curve: Training from Scratch vs. Finetuning

Training Time (hrs)

Effects of Training Set Size on Convergence

Open-Source Release of RL Framework ("Circuit Training")

Search or jump to 7 Pull reque	sts Issues Codespaces Marketplace Explore	Ļ +• ∰•
google-research / circuit_training Public		⊘ Watch 21 ♥ Fork 115 ▼ ☆ Star 558 ▼
<> Code Issues 14 Pull requests 1 	Actions 🛈 Security 🗠 Insights	
🐉 main 🗸 🧚 3 branches 🛇 1 tag	Go to file Add file -	<> Code - About
Circuit Training Team and Copybara	-Service Allow for finetuning only the valu e416dbb 2 days ago 😗 20	No description, website, or topics provided.
circuit_training	Allow for finetuning only the value head during an initial warmup per	2 days ago
docs	Adds the release branch 0.0.3 and adds improved instructions to buil	at Apache-2.0 license
tools	Fixes git checkout to have $-C$ so it works without cd and fix tox	last week ☆ 558 stars
🗋 .gitignore	Initial commit	2 years ago 💿 21 watching
CODE_OF_CONDUCT.md	Initial commit	2 years ago 😵 115 forks
	Initial commit	2 years ago
	Initial commit	2 years ago
PRINCIPLES.md	Add Google AI Principles.	2 years ago
🗅 README.md	Fixes git checkout to have $-C$ so it works without cd and fix tox	last week
🗋 conftest.py	Initial commit	2 years ago
🗋 setup.py	Removes python 3.8 support and adds a warning about it. 3 r	months ago
🗅 tox.ini	Adds unit tests for stable tf-agents[reverb] and removed locking pyg	last week

Structure of this Talk

- RL for Chip Design
 - RL for AI Accelerators
- RL for Large Language Models
 - **RL from Human Feedback**
 - RL from AI Feedback

What to do in domains where reward is hard to specify?

- One solution is to ask humans to provide feedback however, this is prohibitively expensive in the naive formulation, as RL typically requires thousands to millions of labels to learn an effective policy (depending on the complexity of the task)
- But what if you train a model to predict human judgments and then use this predictive model as the reward signal?

Deep RL from Human Preferences

 Without access to the true reward function and labeling <1% of the environment interactions, able to perform complex tasks, including Atari games and MuJoCo.

Paul Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. <u>Deep Reinforcement Learning from</u> <u>Human Preferences</u>. NeurIPS 2017.

RL from Human Feedback in LLMs (aka RLHF)

- "Secret sauce" behind powerful LLMs like ChatGPT and Anthropic's Claude!
- Humans rank-order pairs of behavior, train a preference model, use preference model as reward, and RL-finetune to optimize "good" behavior
- Performing RLHF on top of pretrained large language models (LLMs) greatly improves instruction-following / in-context learning / prompting.

Bai et al. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. 12 Apr 2022.

How to Perform RLHF

Bai et al. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. 12 Apr 2022.

Step 1: Collect Human Judgments

Playground task

Talk to the assistant

Task 1 of 5

Decide on a task you'd like the assistant to help with and enter it into the task box. Interact with the AI assistant. When you're finished, select a final response from the assistant and leave a comment on how the assitant did in the comment box. Click to go to the next task.

		h
iting		
\bigcirc	000	\bigcirc
Bad		Good

Next Task

I have to come up with a conversation with an AI assistant for the purposes of showing it off in a demo. What sorts of conversation topics would you recommend?

🎃 Assistant

Human

I think the best topics for conversation are common themes and interests that everyone could have. Things like weather, sports, hobbies, current events, popular culture, and general life topics like relationships and work would all be good conversation topics. You could also have more advanced conversations discussing philosophy and morality if you want to demonstrate some higher level Al capabilities.

Human

I think I'm more interested in an advanced conversation. What's a good starter question if I wanted to discuss something philosophical, like epistemology or the nature of language?

Assistant

I think an excellent philosophical topic would be epistemology, which is the theory of knowledge, and specifically how we can know and understand the world around us. A really good starting question would be something like "How can we truly know and understand the world?", or "What is the nature of knowledge?". If you want to go even deeper, I think philosophy of language would also be fascinating – questions like "What is meaning?", "How do language and thought relate?", and "How can language mislead and deceive?" would be great discussion topics.

🤠 Human

How would you answer a question like: How do language and thought relate?

A is better

Choose the most helpful and honest response

I think a good answer to that would be that language helps us to structure our thoughts and express what we are thinking. Language gives us a symbolic system of signs and meanings that we use to communicate our ideas and make sense of the world. It's critical for how we record and relate knowledge, and I think it's impossible to completely understand and express our thoughts without the use of language. Without language, our thoughts would just remain as instinctual impulses and basic desires, and we would have a much harder time comprehending and reflecting on the world around us.

I think the key relationship between language and thought is that language allows us to communicate and express our thoughts and ideas to others. Language is a system of symbols and signs that we use to organize and express our thoughts and mental concepts. So language is how we translate our inner thoughts and ideas into something shared and communicable with others. Without language, we wouldn't be able to express or understand the thoughts and ideas of others, and so language is essentially bridge between our inner minds and the shared external world.

A A A B B B B

B is better

Step 2: Train Preference Models (PMs)

- Train PM to assign a higher score to the response preferred by a human rater
- Base models from 13M through 52B parameters (in increments of 4x)

Step 3: Perform RL-Finetuning with PM as Reward Signal

- Extract all prompts from the previous steps, prompt the base LM to respond, and then use the PM score as the reward signal
- Train with Proximal Policy Optimization (PPO) with an auxiliary KL penalty

$$r_{\text{total}} = r_{\text{PM}} - \lambda_{\text{KL}} D_{\text{KL}} (\text{policy} \parallel \text{policy}_0)$$

Takeaways

- Alignment tax for small models but alignment bonus for 13B+ models
- Tradeoff between helpfulness and harmlessness, but performance improves on both distributions as model scale up
- RLHF improves programming ability for models pretrained on code
- RLHF boosts performance on MMLU, Lambada, Hellaswag, OpenBookQA, and ARC, but hurt performance on TriviaQA compared to a base models

Next Step: RL from AI Feedback (RLAIF)!

- **Motivation:** Scaling supervision as models approach or exceed human-level performance, it becomes difficult for humans to supervise them.
- RLAIF: Perform RL-finetuning using AI feedback derived from a "constitution" describing desired behavior. Humans don't need to be in the loop, except to write the constitution!

Bai et al. Constitutional AI: Harmlessness from AI Feedback. 15 Dec 2022.

Benefits of Supervised Learning + Reinforcement Learning

- Supervised Learning: Improves initial model, which helps with exploration and sample efficiency
- Reinforcement Learning: Significantly boosts performance and reliability of the final policy

Supervised Phase

- 1. Sample from an initial policy
- 2. Generate "self-critiques" and revisions
- 3. Finetune the original model with the revised responses

Reinforcement Learning Phase

- 1. Sample from a finetuned model
- 2. Use a model to evaluate which of two responses is "better"
- 3. Train a preference model on the Al-labeled data
- 4. Perform RL-finetuning with the PM as the reward signal (just like RLAIF)

Takeaways

• Finetuning with AI-generated feedback can generate results that match or exceed models that are finetuned with human feedback

Questions?

- RL for Chip Design
 - RL for AI Accelerators
- RL for Large Language Models
 - \circ RL from Human Feedback
 - RL from AI Feedback

Bonus Content: RL for Device Placement!

Structure of this Talk

- RL for Chip Design
 - \circ RL for AI Accelerators
- RL for Large Language Models
 - RL from Human Feedback
 - RL from AI Feedback
- RL for Systems Optimization
 - RL from Device Placement / Model Parallelism

Hierarchical Learning for Device Placement

Azalia Mirhoseini*, Anna Goldie*, Hieu Pham, Benoit Steiner, Quoc V. Le, Jeff Dean

(*): Equal contribution

SUMMARY

We propose a Reinforcement Learning algorithm that learns to automatically design model parallelism for TensorFlow graphs.

PROBLEM

- · Given:
- TensorFlow computational graph G with N ops
- List of computing devices D (GPUs, CPUs, etc.)
- Find:
- \circ Placement P = {p₁, p₂, ..., p_N }, with p_i ∈ D \circ Minimizes the running time of G

A REINFORCEMENT LEARNING APPROACH

- Using policy gradient to learn a policy π that: Proposes placement and then measures runtime
- Minimizes expected runtime $J(\theta_q, \theta_d) = \mathbf{E}_{\mathbf{P}(\mathbf{d};\theta_q,\theta_d)}[R_d]$

DISTRIBUTED TRAINING

- N controllers share a parameter server.
- · Each controller sends placements to its children.
- Each child executes its placement.
- Each controller receives runtimes and updates the policy asynchronously.

MODEL

A two-level hierarchical network, consisting of a Grouper (which partitions the graph into groups) and a Placer (which places those groups onto devices)

TRAINING WITH REINFORCE

The goal is to minimize the expectation of runtime: $J(\theta_g, \theta_d) = \mathbf{E}_{\mathbf{P}(\mathbf{d}; \theta_{\mathbf{g}}, \theta_{\mathbf{d}})}[R_d] = \sum_{g \sim \pi_g} \sum_{d \sim \pi_d} p(g; \theta_g) p(d|g; \theta_d) R_d$ $\nabla_{\theta g} J(\theta_g, \theta_d) = \sum_{g \sim \pi_g} \nabla_{\theta g} p(g; \theta_g) \sum_{d \sim \pi_d} p(d|g; \theta_d) R_d$ $\approx \frac{1}{m} \sum_{q=1}^{1 \le i \le m} \nabla_{\theta g} \log p(g_i; \theta_g) \cdot \frac{1}{k} (\sum_{q=1}^{1 \le j \le k} R_{d_j})$ $\nabla_{\theta d} J(\theta_g, \theta_d) = \sum_{d \sim \pi_d} \sum_{g \sim \pi_g} p(g; \theta_g) \nabla_{\theta d} p(d|g; \theta_d) R_d$ $\approx \frac{1}{k} \sum_{j=1}^{1 \le j \le k} \frac{1}{m} \left(\sum_{j=1}^{1 \le i \le m} \nabla_{\theta d} \log p(d_j | g_i; \theta_d) R_{d_j} \right)$

RESULTS

Tasks	CPU Only	GPU Only	#GPUs	Human Expert	Scotch	MinCut	Hierarchical Planner	Runtime Reduction
Inception-V3	0.61	0.15	2	0.15	0.93	0.82	0.13	16.3%
ResNet		1.18	2	1.18	6.27	2.92	1.18	0%
RNNLM	6.89	1.57	2	1.57	5.62	5.21	1.57	0%
NMT (2-layer)	6.46	OOM	2	2.13	3.21	5.34	0.84	60.6%
NMT (4-layer)	10.68	OOM	4	3.64	11.18	11.63	1.69	53.7%
NMT (8-layer)	11.52	OOM	8	3.88	17.85	19.01	4.07	-4.9%

EXAMPLE PLACEMENTS

- Each color is a GPU: transparent is the CPU.
- Neural Machine Translation with 2 layers

UNDERSTANDING THE PLACEMENTS

- Our method learns to optimize for different objectives for different models.
- For RNNLM: learns that it is best to put all ops on a single GPU.
- · For NMT: learns to balance computation across devices.
- For Inception-V3: learns to mitigate the time spent on inter-device memory copy.

On the left, we show the computational load profiling of NMT model for RL-based and expert-designed placements. Smaller blocks of each color correspond to forward pass and same-color upper blocks correspond to back-propagation. On the right, we show memory copy time profiling. All memory copy activities in Synchronous tower are between a GPU and a CPU, which are in general slower than GPU copies that take place in the RL-based placement.

What is device placement and why is it important?

Trend towards many-device training, bigger models, larger batch sizes

BigGAN'18 355 million parameters, trained on 512 TPU cores

Standard practice for device placement

- Often based on greedy heuristics
- Requires deep understanding of devices: nonlinear FLOPs, bandwidth, latency behavior
- Requires modeling parallelism and pipelining
- Does not generalize well

ML for device placement

- ML is repeatedly replacing rule based heuristics
- We show how RL can be applied to device placement
 - Effective search across large state and action spaces to find optimal solutions
 - Automated learning from underlying environment only based on reward function (e.g. runtime of a program)

Posing device placement as an RL problem

Posing device placement as an RL problem

An end-to-end hierarchical placement model

Learned placement on NMT

White represents CPU (Ixion Haswell 2300) Each other color represents a separate GPU (Nvidia Tesla K80) Searching over a space of 5²80 possible assignments

Profiling placement on NMT

Learned placement on Inception-V3

White represents CPU (Ixion Haswell 2300) Each other color represents a separate GPU (Nvidia Tesla K80) Searching over a space of 5⁸³ possible assignments
Profiling placement on Inception-V3

Profiling placement on Inception-V3

Results (runtime in seconds)

Tacks	CDU	GDU	#GDUs	Human	Scotch	MinCut	Hierarchical	Puntima	_
14585	CIU	010	$\pi 0105$	Human	Scottin	WinCut	Inclaicincai	Runnine	
	Only	Only		Expert			Planner	Reduction	
Inception-V3	0.61	0.15	2	0.15	0.93	0.82	0.13	16.3%	
ResNet	-	1.18	2	1.18	6.27	2.92	1.18	0%	
RNNLM	6.89	1.57	2	1.57	5.62	5.21	1.57	0%	
NMT (2-layer)	6.46	OOM	2	2.13	3.21	5.34	0.84	60.6%	
NMT (4-layer)	10.68	OOM	4	3.64	11.18	11.63	1.69	53.7%	
NMT (8-layer)	11.52	OOM	8	3.88	17.85	19.01	4.07	-4.9%	

Summary

- Deep RL for resource allocation optimization
- Papers:
 - ICLR'18: A Hierarchical Model for Device Placement,
 - Azalia Mirhoseini*, Anna Goldie*, Hieu Pham, Benoit Steiner, Quoc V. Le and Jeff Dean
 - ICML'17: Device Placement Optimization with Reinforcement Learning,
 - Azalia Mirhoseini*, Hieu Pham*, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, Jeff Dean

• Open-source TensorFlow code:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/grappler

Comparing Models with Elo Scores

