
RL in the Real World:
From Chip Design to LLMs

Anna Goldie
Anthropic & Stanford

(Includes work done at Google Brain)

Structure of this Talk

● RL for Chip Design
○ RL for AI Accelerators

● RL for Large Language Models
○ RL from Human Feedback

○ RL from AI Feedback

Structure of this Talk

● RL for Chip Design
○ RL for AI Accelerators

● RL for Large Language Models
○ RL from Human Feedback

○ RL from AI Feedback

RL-Generated Chip Floorplans used in TPU!
(Now for multiple generations, including the latest)

Published in Nature

Systems ML

In the past decade, systems and hardware have transformed ML.

Systems ML

In the past decade, systems and hardware have transformed ML.
Now, it’s time for ML to transform systems and hardware.

Implications of achieving performance on the computation, carbon emissions,
and economic costs from deep learning on projections from polynomial
models. The Computational Limits of Deep Learning, Thompson et al., 2020

P
et

af
lo

ps
-D

ay

Year
1959 2012 2020

Since 2012, the amount of compute used in the largest
AI training runs doubled every 3.4 months, OpenAI, 2019

Demand for Compute Outpacing Supply (Moore’s Law)

Scaling Laws: Compute Fuels Progress in ML

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, Dario
Amodei. Scaling Laws for Neural Language Models. OpenAI 2020.

https://arxiv.org/search/cs?searchtype=author&query=Kaplan%2C+J
https://arxiv.org/search/cs?searchtype=author&query=McCandlish%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Henighan%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Brown%2C+T+B
https://arxiv.org/search/cs?searchtype=author&query=Chess%2C+B
https://arxiv.org/search/cs?searchtype=author&query=Child%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Gray%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Radford%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Wu%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Amodei%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Amodei%2C+D

Value of Machine Learning for Chip Design

● Enabling cheaper, faster, and more environmentally friendly chips

● Potential to reduce the design cycle from 1.5-2 years to weeks
○ Today, we design chips for the NN architectures of 2-5 years from now
○ Shortening the chip design cycle would enable us to be far more adaptive to the

rapidly advancing field of machine learning

● New possibilities emerge if we evolve NN architectures and chips together
○ Discovering the next generation of NN architectures (which would not be

computationally feasible with today’s chips)

Chip Floorplanning Problem
● A form of graph resource optimization

● Place the chip components to minimize the latency of computation, power
consumption, chip area and cost, while adhering to constraints, such as
congestion, cell utilization, heat profile, etc.

Macro pin

Macro(M0)Port P0

Stdcell(S0) Stdcell(S1) Macro(M1)
Port P1

P0_M0

P1_M1P0_M1P1_M0

 Number of states ~ 10123 Number of states ~ 10360 Number of states ~ 109000

Chess Go Chip Placement

Complexity of Chip Placement Problem

Proprietary + Confidential

Prior Approaches to Chip Placement

P 14

Partitioning-Based Methods
(e.g. MinCut)

Stochastic/Hill-Climbing Methods
 (e.g. Simulated Annealing)

Analytic Solvers
(e.g. RePlAce)

Proprietary + Confidential

Prior Approaches to Chip Placement

P 15

Partitioning-Based Methods
(e.g. MinCut)

Stochastic/Hill-Climbing Methods
 (e.g. Simulated Annealing)

Analytic Solvers
(e.g. RePlAce)

Learning-Based Methods

Proprietary + Confidential

Chip Placement with Reinforcement Learning

P 16

State: Graph embedding of chip
netlist, embedding of the current
node, and the canvas.

Action: Placing the current
node onto a grid cell.

Reward: A weighted average of
total wirelength, density, and
congestion

Our Objective Function

17

Reward corresponding to
placement p of netlist (graph) g

RL policy
parameterized
by theta

Set of
training
graphs G K is size of

training set

18

We Take a Hybrid Approach to Placement Optimization

Results on a TPU-v4 Block

Human Expert ML Placer

White area are macros and the green area is composed of standard cell clusters
Our method finds smoother, rounder macro placements to reduce the wirelength

Time taken: ~6-8 weeks
Total wirelength: 57.07m
Route DRC* violations: 1766

DRC: Design Rule Checking

Time taken: 24 hours
Total wirelength: 55.42m (-2.9% shorter)
Route DRC violations: 1789 (+23 - negligible difference)

Training

PlacementsPlacer
Policy

PlacementsPre-Trained
Policy

10,000s of iterations

Moving Towards Generalized Placements

New
Netlist

New
Netlist

Final
result

Final
result

Policy

Netlist 1

Netlist 2

Netlist N

Placements

10,000s of iterations

Training

Before: Training from scratch for each chip netlist Now: Pre-training the policy and fine-tuning on new netlists

100s of iterations

Inference

First Attempts at Generalization

Using the previous RL policy architecture, we trained it on multiple chips and
tested it on new unseen chips.

First Attempts at Generalization

Using the previous RL policy architecture, we trained it on multiple chips and
tested it on new unseen chips. -> Didn’t work!

First Attempts at Generalization

Using the previous RL policy architecture, we trained it on multiple chips and
tested it on new unseen chips. -> Didn’t work!

Freezing different layers of the RL policy and then testing it on new unseen chips

First Attempts at Generalization

Using the previous RL policy architecture, we trained it on multiple chips and
tested it on new unseen chips. -> Didn’t work!

Freezing different layers of the RL policy and then testing it on new unseen chips
-> Didn’t work either!

First Attempts at Generalization

Using the previous RL policy architecture, we trained it on multiple chips and
tested it on new unseen chips. -> Didn’t work!

Freezing different layers of the RL policy and then testing it on new unseen chips
-> Didn’t work either!

What did work?

First Attempts at Generalization

Using the previous RL policy architecture, we trained it on multiple chips and
tested it on new unseen chips. -> Didn’t work!

Freezing different layers of the RL policy and then testing it on new unseen chips
-> Didn’t work either!

What did work? Leveraging supervised learning to find the right architecture!

Achieving Generalization by Training Accurate Reward Predictors

Key observation: A value network trained only on placements generated by
a single policy is unable to accurately predict the quality of placements
generated by another policy, limiting the ability of the policy network to
generalize.

Achieving Generalization by Training Accurate Reward Predictors

Key observation: A value network trained only on placements generated by
a single policy is unable to accurately predict the quality of placements
generated by another policy, limiting the ability of the policy network to
generalize.

To decompose the problem, we trained models capable of accurately
predicting reward from off-policy data.

Compiling a Dataset of Chip Placements
To train a more accurate
predictor, we generated a
dataset of 10k placements

Each placement was labeled
with their wirelength and
congestion, which were drawn
from vanilla RL policies.

Each color
represents a
different netlist

Searching for Effective Neural Architecture for Encoder

Netlist Metadata
(Total number of

wires and macros,
name of netlist)

fc

fc

Wirelength

Congestion

Node Features
(x, y, w, h, type*)

Graph (macro,
standard cells,
clusters)

Input Features

Predictions

*Node type: One-hot category {Hard macro, soft macro}

???

Searching for Effective Neural Architecture for Encoder

Graph Conv

Netlist Metadata
(Total number of

wires and macros,
name of netlist)

fc

fc

Wirelength

Congestion

Node Features
(x, y, w, h, type*)

Graph (macro,
standard cells,
clusters)

Input Features

Predictions

*Node type: One-hot category {Hard macro, soft macro}

Edge-based Graph Convolution: Node Embeddings

x

y

w

h

fc

Edge-based Graph Convolution: Edge Embedding
Edge weight

Edge-based Graph Convolution: Edge Embedding

fc

Edge-based Graph Convolution: Propagate

mean

Edge-based Graph Convolution: Repeat

Final Step: Get Graph Embedding

reduce
mean

Discovered Reward Model Architecture and Features

Graph Conv

Netlist Metadata
(Total number of

wires and macros,
name of netlist)

fc

fc

Wirelength

Congestion

Node Features
(x, y, w, h, type*)

Graph (macro,
standard cell)

Input Features

Predictions

*Node type: One-hot category {Hard macro, soft macro}

Label Prediction Results on Test Chips

Overall RL Policy/Value Network Architecture 64x64x1

Comparisons with Manual and SOTA Baselines

41
● We freeze the macro placements generated by each method and report the place opt results by the commercial EDA.
● RePlAce: C. Cheng, A. B. Kahng, I. Kang and L. Wang, "RePlAce: Advancing Solution Quality and Routability Validation in

Global Placement," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018

Ariane (RISC-V) Placement Visualization

Training policy from scratch Finetuning a pre-trained policy

The animation shows the macro placements as the training progresses. Each square shows the center of a macro.

Ariane is an open-source RISC-V processor. See: https://github.com/pulp-platform/ariane

https://github.com/pulp-platform/ariane

Convergence Curve: Training from Scratch vs. Finetuning

43

Effects of Training Set Size on Convergence

44

Open-Source Release of RL Framework (“Circuit Training”)

Structure of this Talk

● RL for Chip Design
○ RL for AI Accelerators

● RL for Large Language Models
○ RL from Human Feedback

○ RL from AI Feedback

What to do in domains where reward is hard to specify?

● One solution is to ask humans to provide feedback - however, this is prohibitively expensive
in the naive formulation, as RL typically requires thousands to millions of labels to learn an
effective policy (depending on the complexity of the task)

● But what if you train a model to predict human judgments and then use this predictive model
as the reward signal?

Deep RL from Human Preferences

● Without access to the true reward function and labeling <1% of the
environment interactions, able to perform complex tasks, including Atari
games and MuJoCo.

Paul Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep Reinforcement Learning from
Human Preferences. NeurIPS 2017.

https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf

RL from Human Feedback in LLMs (aka RLHF)

● “Secret sauce” behind powerful LLMs like ChatGPT and Anthropic’s Claude!
● Humans rank-order pairs of behavior, train a preference model, use

preference model as reward, and RL-finetune to optimize “good” behavior
● Performing RLHF on top of pretrained large language models (LLMs) greatly

improves instruction-following / in-context learning / prompting.

Bai et al. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. 12 Apr 2022.

https://arxiv.org/pdf/2204.05862.pdf

How to Perform RLHF

Bai et al. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. 12 Apr 2022.

https://arxiv.org/pdf/2204.05862.pdf

Step 1: Collect Human Judgments

Step 2: Train Preference Models (PMs)

● Train PM to assign a higher score to the response preferred by a human rater
● Base models from 13M through 52B parameters (in increments of 4x)

Step 3: Perform RL-Finetuning with PM as Reward Signal

● Extract all prompts from the previous steps, prompt the base LM to respond,
and then use the PM score as the reward signal

● Train with Proximal Policy Optimization (PPO) with an auxiliary KL penalty

Takeaways

● Alignment tax for small models but alignment bonus for 13B+ models
● Tradeoff between helpfulness and harmlessness, but performance improves

on both distributions as model scale up
● RLHF improves programming ability for models pretrained on code
● RLHF boosts performance on MMLU, Lambada, Hellaswag, OpenBookQA,

and ARC, but hurt performance on TriviaQA compared to a base models

Next Step: RL from AI Feedback (RLAIF)!

● Motivation: Scaling supervision - as models approach or exceed human-level
performance, it becomes difficult for humans to supervise them.

● RLAIF: Perform RL-finetuning using AI feedback derived from a “constitution”
describing desired behavior. Humans don’t need to be in the loop, except to
write the constitution!

Bai et al. Constitutional AI: Harmlessness from AI Feedback. 15 Dec 2022.

https://arxiv.org/pdf/2212.08073.pdf

Benefits of Supervised Learning + Reinforcement Learning

● Supervised Learning: Improves initial model, which helps with exploration and
sample efficiency

● Reinforcement Learning: Significantly boosts performance and reliability of
the final policy

Supervised Phase

1. Sample from an initial policy
2. Generate “self-critiques” and revisions
3. Finetune the original model with the revised responses

Reinforcement Learning Phase

1. Sample from a finetuned model
2. Use a model to evaluate which of two responses is “better”
3. Train a preference model on the AI-labeled data
4. Perform RL-finetuning with the PM as the reward signal (just like RLAIF)

Takeaways

● Finetuning with AI-generated feedback can generate results that match or
exceed models that are finetuned with human feedback

Questions?

● RL for Chip Design
○ RL for AI Accelerators

● RL for Large Language Models
○ RL from Human Feedback

○ RL from AI Feedback

Bonus Content: RL for Device Placement!

Structure of this Talk

● RL for Chip Design
○ RL for AI Accelerators

● RL for Large Language Models
○ RL from Human Feedback

○ RL from AI Feedback

● RL for Systems Optimization
○ RL from Device Placement / Model Parallelism

 Trend towards many-device training, bigger models, larger batch sizes

What is device placement and why is it important?

Google neural machine translation’16
300 million parameters,
trained on 128 GPUs

BigGAN’18
355 million parameters,

trained on 512 TPU cores

Sparsely gated mixture of experts’17
130 billion parameters,
trained on 128 GPUs

Standard practice for device placement

● Often based on greedy heuristics
● Requires deep understanding of devices: nonlinear FLOPs, bandwidth, latency behavior
● Requires modeling parallelism and pipelining
● Does not generalize well

ML for device placement

● ML is repeatedly replacing rule based heuristics
● We show how RL can be applied to device placement

○ Effective search across large state and action spaces to find optimal solutions
○ Automated learning from underlying environment only based on reward function

(e.g. runtime of a program)

Posing device placement as an RL problem

CPU GPU

Set of available devices

Neural model

Policy Assignment of ops in
neural model to devices

Input OutputRL model

Posing device placement as an RL problem

CPU GPU

Set of available devices

Neural model

Policy Assignment of ops in
neural model to devices

Input OutputRL model

Evaluate
runtime

An end-to-end hierarchical placement model

Learned placement on NMT

Layer-2
Layer-1
Embedding

White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of 5^280 possible assignments

Softmax
Attention
Layer-2
Layer-1
Embedding

Decoder

Encoder

Profiling placement on NMT

Learned placement on Inception-V3

White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of 5^83 possible assignments

Profiling placement on Inception-V3

Profiling placement on Inception-V3

Results (runtime in seconds)

Summary
● Deep RL for resource allocation optimization
● Papers:

○ ICLR’18: A Hierarchical Model for Device Placement,
■ Azalia Mirhoseini*, Anna Goldie*, Hieu Pham, Benoit Steiner, Quoc V. Le and Jeff Dean

○ ICML’17: Device Placement Optimization with Reinforcement Learning,
■ Azalia Mirhoseini*, Hieu Pham*, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen

Kumar, Mohammad Norouzi, Samy Bengio, Jeff Dean

● Open-source TensorFlow code:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/grappler

Comparing Models with Elo Scores

