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RL-Generated Chip Floorplans used in TPU!
(Now for multiple generations, including the latest)



Published in Nature
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Systems ML

In the past decade, systems and hardware have transformed ML.
Now, it’s time for ML to transform systems and hardware.



Implications of achieving performance on the computation, carbon emissions, 
and economic costs from deep learning on projections from polynomial 
models. The Computational Limits of Deep Learning, Thompson et al., 2020
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Since 2012, the amount of compute used in the largest 
AI training runs doubled every 3.4 months, OpenAI, 2019

Demand for Compute Outpacing Supply (Moore’s Law)



Scaling Laws: Compute Fuels Progress in ML

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, Dario 
Amodei. Scaling Laws for Neural Language Models. OpenAI 2020.

https://arxiv.org/search/cs?searchtype=author&query=Kaplan%2C+J
https://arxiv.org/search/cs?searchtype=author&query=McCandlish%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Henighan%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Brown%2C+T+B
https://arxiv.org/search/cs?searchtype=author&query=Chess%2C+B
https://arxiv.org/search/cs?searchtype=author&query=Child%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Gray%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Radford%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Wu%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Amodei%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Amodei%2C+D


Value of Machine Learning for Chip Design

● Enabling cheaper, faster, and more environmentally friendly chips

● Potential to reduce the design cycle from 1.5-2 years to weeks
○ Today, we design chips for the NN architectures of 2-5 years from now
○ Shortening the chip design cycle would enable us to be far more adaptive to the 

rapidly advancing field of machine learning

● New possibilities emerge if we evolve NN architectures and chips together
○ Discovering the next generation of NN architectures (which would not be 

computationally feasible with today’s chips)



Chip Floorplanning Problem
● A form of graph resource optimization

● Place the chip components to minimize the latency of computation, power 
consumption, chip area and cost, while adhering to constraints, such as 
congestion, cell utilization, heat profile, etc.

Macro pin

Macro(M0)Port P0

Stdcell(S0) Stdcell(S1) Macro(M1)
Port P1

P0_M0

P1_M1P0_M1P1_M0



 Number of states ~ 10123  Number of states ~ 10360  Number of states ~ 109000

Chess Go Chip Placement

Complexity of Chip Placement Problem
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Prior Approaches to Chip Placement

P 14

Partitioning-Based Methods
(e.g. MinCut)

Stochastic/Hill-Climbing Methods
        (e.g. Simulated Annealing)

Analytic Solvers
(e.g. RePlAce)



Proprietary + Confidential

Prior Approaches to Chip Placement

P 15

Partitioning-Based Methods
(e.g. MinCut)

Stochastic/Hill-Climbing Methods
        (e.g. Simulated Annealing)

Analytic Solvers
(e.g. RePlAce)

Learning-Based Methods
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Chip Placement with Reinforcement Learning

P 16

State: Graph embedding of chip 
netlist, embedding of the current 
node, and the canvas.

Action: Placing the current 
node onto a grid cell.

Reward: A weighted average of 
total wirelength, density, and 
congestion



Our Objective Function
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Reward corresponding to 
placement p of netlist (graph) g

RL policy 
parameterized 
by theta

Set of 
training 
graphs G K is size of 

training set
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We Take a Hybrid Approach to Placement Optimization



Results on a TPU-v4 Block

Human Expert ML Placer

White area are macros and the green area is composed of standard cell clusters 
Our method finds smoother, rounder macro placements to reduce the wirelength

Time taken: ~6-8 weeks
Total wirelength: 57.07m
Route DRC* violations: 1766

DRC: Design Rule Checking 

Time taken: 24 hours
Total wirelength: 55.42m (-2.9% shorter)
Route DRC violations: 1789 (+23 - negligible difference)



Training

PlacementsPlacer 
Policy

PlacementsPre-Trained
Policy

10,000s of iterations

Moving Towards Generalized Placements

New 
Netlist

New
Netlist

Final 
result

Final 
result

Policy

Netlist 1

Netlist 2

Netlist N

Placements

10,000s of iterations

Training

Before: Training from scratch for each chip netlist Now: Pre-training the policy and fine-tuning on new netlists

100s of iterations

Inference



First Attempts at Generalization

Using the previous RL policy architecture, we trained it on multiple chips and 
tested it on new unseen chips.
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First Attempts at Generalization

Using the previous RL policy architecture, we trained it on multiple chips and 
tested it on new unseen chips. -> Didn’t work!

Freezing different layers of the RL policy and then testing it on new unseen chips 
-> Didn’t work either!

What did work? Leveraging supervised learning to find the right architecture! 

 



Achieving Generalization by Training Accurate Reward Predictors

Key observation: A value network trained only on placements generated by 
a single policy is unable to accurately predict the quality of placements 
generated by another policy, limiting the ability of the policy network to 
generalize.



Achieving Generalization by Training Accurate Reward Predictors

Key observation: A value network trained only on placements generated by 
a single policy is unable to accurately predict the quality of placements 
generated by another policy, limiting the ability of the policy network to 
generalize.

To decompose the problem, we trained models capable of accurately 
predicting reward from off-policy data. 



Compiling a Dataset of Chip Placements
To train a more accurate 
predictor, we generated a 
dataset of 10k placements

Each placement was labeled 
with their wirelength and 
congestion, which were drawn 
from vanilla RL policies.

Each color 
represents a 
different netlist



Searching for Effective Neural Architecture for Encoder

Netlist Metadata
(Total number of 

wires and macros, 
name of netlist)

fc

fc

Wirelength

Congestion

Node Features
(x, y, w, h, type*)

Graph (macro, 
standard cells, 
clusters)

Input Features

Predictions

*Node type: One-hot category {Hard macro, soft macro}

???



Searching for Effective Neural Architecture for Encoder

Graph Conv
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Edge-based Graph Convolution: Node Embeddings

x

y

w

h

fc



Edge-based Graph Convolution: Edge Embedding
Edge weight



Edge-based Graph Convolution: Edge Embedding

fc



Edge-based Graph Convolution: Propagate

mean



Edge-based Graph Convolution: Repeat



Final Step: Get Graph Embedding 

reduce 
mean



Discovered Reward Model Architecture and Features

Graph Conv

Netlist Metadata
(Total number of 

wires and macros, 
name of netlist)

fc

fc

Wirelength

Congestion

Node Features
(x, y, w, h, type*)

Graph (macro, 
standard cell)

Input Features

Predictions

*Node type: One-hot category {Hard macro, soft macro}



Label Prediction Results on Test Chips



Overall RL Policy/Value Network Architecture 64x64x1



Comparisons with Manual and SOTA Baselines
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● We freeze the macro placements generated by each method and report the place opt results by the commercial EDA.
● RePlAce: C. Cheng, A. B. Kahng, I. Kang and L. Wang, "RePlAce: Advancing Solution Quality and Routability Validation in 

Global Placement," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018



Ariane (RISC-V) Placement Visualization

Training policy from scratch Finetuning a pre-trained policy

The animation shows the macro placements as the training progresses. Each square shows the center of a macro.

Ariane is an open-source RISC-V processor.  See: https://github.com/pulp-platform/ariane

https://github.com/pulp-platform/ariane


Convergence Curve: Training from Scratch vs. Finetuning
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Effects of Training Set Size on Convergence

44



Open-Source Release of RL Framework (“Circuit Training”)
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What to do in domains where reward is hard to specify?

● One solution is to ask humans to provide feedback - however, this is prohibitively expensive 
in the naive formulation, as RL typically requires thousands to millions of labels to learn an 
effective policy (depending on the complexity of the task)

● But what if you train a model to predict human judgments and then use this predictive model 
as the reward signal?



Deep RL from Human Preferences

● Without access to the true reward function and labeling <1% of the 
environment interactions, able to perform complex tasks, including Atari 
games and MuJoCo. 

Paul Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep Reinforcement Learning from 
Human Preferences. NeurIPS 2017.

https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf


RL from Human Feedback in LLMs (aka RLHF)

● “Secret sauce” behind powerful LLMs like ChatGPT and Anthropic’s Claude!
● Humans rank-order pairs of behavior, train a preference model, use 

preference model as reward, and RL-finetune to optimize “good” behavior
● Performing RLHF on top of pretrained large language models (LLMs) greatly 

improves instruction-following / in-context learning / prompting.

Bai et al. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. 12 Apr 2022.

https://arxiv.org/pdf/2204.05862.pdf


How to Perform RLHF

Bai et al. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. 12 Apr 2022.

https://arxiv.org/pdf/2204.05862.pdf


Step 1: Collect Human Judgments



Step 2: Train Preference Models (PMs)

● Train PM to assign a higher score to the response preferred by a human rater
● Base models from 13M through 52B parameters (in increments of 4x)



Step 3: Perform RL-Finetuning with PM as Reward Signal

● Extract all prompts from the previous steps, prompt the base LM to respond, 
and then use the PM score as the reward signal

● Train with Proximal Policy Optimization (PPO) with an auxiliary KL penalty



Takeaways

● Alignment tax for small models but alignment bonus for 13B+ models
● Tradeoff between helpfulness and harmlessness, but performance improves 

on both distributions as model scale up
● RLHF improves programming ability for models pretrained on code
● RLHF boosts performance on MMLU, Lambada, Hellaswag, OpenBookQA, 

and ARC, but hurt performance on TriviaQA compared to a base models



Next Step: RL from AI Feedback (RLAIF)!

● Motivation: Scaling supervision - as models approach or exceed human-level 
performance, it becomes difficult for humans to supervise them.

● RLAIF: Perform RL-finetuning using AI feedback derived from a “constitution” 
describing desired behavior. Humans don’t need to be in the loop, except to 
write the constitution!

Bai et al. Constitutional AI: Harmlessness from AI Feedback. 15 Dec 2022.

https://arxiv.org/pdf/2212.08073.pdf


Benefits of Supervised Learning + Reinforcement Learning

● Supervised Learning: Improves initial model, which helps with exploration and 
sample efficiency

● Reinforcement Learning: Significantly boosts performance and reliability of 
the final policy



Supervised Phase

1. Sample from an initial policy
2. Generate “self-critiques” and revisions
3. Finetune the original model with the revised responses



Reinforcement Learning Phase

1. Sample from a finetuned model
2. Use a model to evaluate which of two responses is “better”
3. Train a preference model on the AI-labeled data
4. Perform RL-finetuning with the PM as the reward signal (just like RLAIF)



Takeaways

● Finetuning with AI-generated feedback can generate results that match or 
exceed models that are finetuned with human feedback



Questions?

● RL for Chip Design
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○ RL from Human Feedback

○ RL from AI Feedback



Bonus Content: RL for Device Placement!
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● RL for Systems Optimization
○ RL from Device Placement / Model Parallelism





  Trend towards many-device training, bigger models, larger batch sizes 

What is device placement and why is it important?

Google neural machine translation’16
300 million parameters,
trained on 128 GPUs

BigGAN’18
355 million parameters,

trained on 512 TPU cores

Sparsely gated mixture of experts’17 
130 billion parameters,
trained on 128 GPUs



Standard practice for device placement

● Often based on greedy heuristics 
● Requires deep understanding of devices: nonlinear FLOPs, bandwidth, latency behavior 
● Requires modeling parallelism and pipelining
● Does not generalize well



ML for device placement

● ML is repeatedly replacing rule based heuristics
● We show how RL can be applied to device placement 

○ Effective search across large state and action spaces to find optimal solutions
○ Automated learning from underlying environment only based on reward function 

(e.g. runtime of a program)



Posing device placement as an RL problem

CPU GPU

Set of available devices

Neural model

Policy Assignment of ops in 
neural model to devices

Input OutputRL model



Posing device placement as an RL problem

CPU GPU

Set of available devices

Neural model

Policy Assignment of ops in 
neural model to devices

Input OutputRL model

Evaluate 
runtime



An end-to-end hierarchical placement model



Learned placement on NMT

Layer-2
Layer-1
Embedding

White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of 5^280 possible assignments

Softmax
Attention
Layer-2
Layer-1
Embedding

Decoder

Encoder



Profiling placement on NMT



Learned placement on Inception-V3

White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of 5^83 possible assignments



Profiling placement on Inception-V3 



Profiling placement on Inception-V3 



Results (runtime in seconds)



Summary
● Deep RL for resource allocation optimization
● Papers:

○ ICLR’18: A Hierarchical Model for Device Placement,                                                      
■ Azalia Mirhoseini*, Anna Goldie*, Hieu Pham, Benoit Steiner, Quoc V. Le and Jeff Dean

○ ICML’17: Device Placement Optimization with Reinforcement Learning,                        
■ Azalia Mirhoseini*, Hieu Pham*, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen 

Kumar, Mohammad Norouzi, Samy Bengio, Jeff Dean

● Open-source TensorFlow code: 
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/grappler



Comparing Models with Elo Scores


