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RL-Generated Chip Floorplans used in TPU!
Now for multiple generations, including the latest)
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In the past decade, systems and hardware have transformed ML.




In the past decade, systems and hardware have transformed ML.

Now, it's time for ML to transform systems and hardware.




Demand for Compute Outpacing Supply (Moore’s Law)
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Implications of achieving performance on the computation, carbon emissions,

and economic costs from deep learning on projections from polynomial
models. The Computational Limits of Deep Learning, Thompson et al., 2020
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Scaling Laws: Compute Fuels Progress in ML
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, Dario
Amodei. Scaling Laws for Neural Language Models. OpenAl 2020.


https://arxiv.org/search/cs?searchtype=author&query=Kaplan%2C+J
https://arxiv.org/search/cs?searchtype=author&query=McCandlish%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Henighan%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Brown%2C+T+B
https://arxiv.org/search/cs?searchtype=author&query=Chess%2C+B
https://arxiv.org/search/cs?searchtype=author&query=Child%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Gray%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Radford%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Wu%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Amodei%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Amodei%2C+D

Value of Machine Learning for Chip Design

e Enabling cheaper, faster, and more environmentally friendly chips

e Potential to reduce the design cycle from 1.5-2 years to weeks
o Today, we design chips for the NN architectures of 2-5 years from now
o Shortening the chip design cycle would enable us to be far more adaptive to the
rapidly advancing field of machine learning

e New possibilities emerge if we evolve NN architectures and chips together
o Discovering the next generation of NN architectures (which would not be
computationally feasible with today’s chips)



Chip Floorplanning Problem
e A form of graph resource optimization

e Place the chip components to minimize the latency of computation, power
consumption, chip area and cost, while adhering to constraints, such as
congestion, cell utilization, heat profile, etc.
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Complexity of Chip Placement Problem

Go Chip Placement

Number of states ~ 10123 Number of states ~ 1036° Number of states ~ 109



Prior Approaches to Chip Placement

Partitioning-Based Methods
(e.g. MinCut)

Stochastic/Hill-Climbing Methods
(e.g. Simulated Annealing)

Analytic Solvers
(e.g. RePlAce)




Prior Approaches to Chip Placement

Partitioning-Based Methods Stochastic/Hill-Climbing Methods
(e.g. MinCut) (e.g. Simulated Annealing)
Analytic Solvers Learning-Based Methods

(e.g. RePlAce)




Chip Placement with Reinforcement Learning

— a, ~ n(als)

State: Graph embedding of chip
netlist, embedding of the current _
node, and the canvas. Floorplanning

Environment

Action: Placing the current
node onto a grid cell. A

Reward: A weighted average of
total wirelength, density, and
congestion
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Our Objective Function

Reward corresponding to
placement p of netlist (graph) g

J( E : Eg p~Te [Rp 9]
Set of G RL policy
gN
training parameterized
graphs G K'is size of by theta
training set
R,,=  —Wirelength(p, g)

—\ Congestion(p, g) — yDensity(p, g)



We Take a Hybrid Approach to Placement Optimization

Chip RL Agent Places Macros One at a Time Force-Directed Method
ATV Places Standard Cells
L a, r,=0 a r,=0 3 | r.=-HPWL-c*Congestion

55 s
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Results on a TPU-v4 Block

White area are macros and the green area is composed of standard cell clusters
Our method finds smoother, rounder macro placements to reduce the wirelength

Human Expert ML Placer

[

e
Time taken: ~6-8 weeks Time taken: 24 hours
Total wirelength: 57.07m Total wirelength: 55.42m (-2.9% shorter)
Route DRC’ violations: 1766 Route DRC violations: 1789 (+23 - negligible difference)

DRC: Design Rule Checking



Moving Towards Generalized Placements

Before: Training from scratch for each chip netlist Now: Pre-training the policy and fine-tuning on new netl_i_s_t_s
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First Attempts at Generalization

Using the previous RL policy architecture, we trained it on multiple chips and
tested it on new unseen chips.
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First Attempts at Generalization

Using the previous RL policy architecture, we trained it on multiple chips and
tested it on new unseen chips. -> Didn’'t work!

Freezing different layers of the RL policy and then testing it on new unseen chips
-> Didn't work either!

What did work? Leveraging supervised learning to find the right architecture!



Achieving Generalization by Training Accurate Reward Predictors

Key observation: A value network trained only on placements generated by
a single policy is unable to accurately predict the quality of placements
generated by another policy, limiting the ability of the policy network to
generalize.



Achieving Generalization by Training Accurate Reward Predictors

Key observation: A value network trained only on placements generated by
a single policy is unable to accurately predict the quality of placements
generated by another policy, limiting the ability of the policy network to
generalize.

To decompose the problem, we trained models capable of accurately
predicting reward from off-policy data.



Compiling a Dataset of Chip Placements

To train a more accurate
predictor, we generated a
dataset of 10k placements

Each placement was labeled
with their wirelength and
congestion, which were drawn
from vanilla RL policies.
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Searching for Effective Neural Architecture for Encoder

Input Features

Node Features dicti
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???
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fc Congestion

Netlist Metadata
(Total number of
wires and macros,
name of netlist)

*Node type: One-hot category {Hard macro, soft macro}



Searching for Effective Neural Architecture for Encoder

|nput Features while Not converged dof ( ool feoloi) ]
Update edge: e;; = fci(concat|feco(vs)|feo(vy)|ws;
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*Node type: One-hot category {Hard macro, soft macro}



Edge-based Graph Convolution: Node Embeddings




Edge-based Graph Convolution: Edge Embedding




Edge-based Graph Convolution: Edge Embedding
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Edge-based Graph Convolution: Propagate




Edge-based Graph Convolution: Repeat



Final Step: Get Graph Embedding




Discovered Reward Model Architecture and Features
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Label Prediction Results on Test Chips
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Overall RL Policy/Value Network Architecture
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Comparisons with Manual and SOTA Baselines

Name | Method Timing Area Power | Wirelength | Congestion
WNS (ps) | TNS (ns) | Total (um?) | Total (W) (m) H(%) | V(%)
Block 1 | RePlAce 374 233.7 1693139 3.70 52.14 1.82 0.06
Manual 136 47.6 1680790 3.74 51.12 0.13 0.03
Ours 84 233 1681767 3.59 51.29 0.34 0.03
Block 2 | RePlAce 97 6.6 785655 3.52 61.07 1.58 0.06
Manual 75 98.1 830470 3.56 62.92 0.23 0.04
Ours 59 170 694757 3.13 59.11 0.45 0.03
Block 3 | RePlAce 193 3.9 867390 1.36 18.84 0.19 0.05
Manual 18 0.2 869779 1.42 20.74 0.22 0.07
Ours 11 2.2 868101 1.38 20.80 0.04 0.04
Block 4 | RePlAce 58 11.2 944211 2.21 27.37 0.03 0.03
Manual 58 17.9 947766 2.17 29.16 0.00 0.01
Ours 52 0.7 942867 2.21 28.50 0.03 0.02
Block 5 | RePlAce 156 254.6 1477283 3.24 31.83 0.04 0.03
Manual 107 97.2 1480881 3.23 37.99 0.00 0.01
Ours 68 141.0 1472302 3.28 36.59 0.01 0.03

We freeze the macro placements generated by each method and report the place opt results by the commercial EDA.
RePlAce: C. Cheng, A. B. Kahng, I. Kang and L. Wang, "RePlAce: Advancing Solution Quality and Routability Validation in
Global Placement," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018
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Ariane (RISC-V) Placement Visualization

Training policy from scratch Finetuning a pre-trained policy

Ariane is an open-source RISC-V processor. See: https://github.com/pulp-platform/ariane


https://github.com/pulp-platform/ariane

Convergence Curve: Training from Scratch vs. Finetuning

== Train Policy From Scratch == Finetune a Pre-Trained Policy
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Effects of Training Set Size on Convergence

Placement Cost
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Open-Source Release of RL Framework (“Circuit Training”

O Search or jump to... Pull requests Issues Codespaces Marketplace Explore

E google-research / circuit_training ' public ©Watch 21 v % Fork 15 ~ Y Star 558~

<> Code (O Issues 14 1 Pullrequests 1 ® Actions (@ Security |~/ Insights

¥ main ~ ¥ 3branches ©1tag Go to file Add file ~ <> Code ~ About

No description, website, or topics

Circuit Training Team and Copybara-Service Allow for finetuning only the valu... ... e416dbb 2 days ago ) 206 commits provided.
. i : . . - O] Readme
circuit_training Allow for finetuning only the value head during an initial warmup per... 2 days ago
&8 Apache-2.0 license
docs Adds the release branch 0.0.3 and adds improved instructions to buil... last week
& Code of conduct
tools Fixes git checkout to have -C so it works without cd and fix tox ... last week ¥ 558 stars
D .gitignore Initial commit 2 years ago ® 21 watching
115 fork
[ CODE_OF_CONDUCT.md Initial commit 2 years ago ¥ orks
Report repository
[ CONTRIBUTING.md Initial commit 2 years ago
[ LICENSE Initial commit 2 years ago
Releases
[ PRINCIPLES.md Add Google Al Principles. 2 years ago
© 1tags
[ README.md Fixes git checkout to have -C so it works without cd and fix tox ... last week
@ conftest.py Initial commit 2 years ago
Packages
D setup.py Removes python 3.8 support and adds a warning about it. 3 months ago
No packages published
M tox.ini Adds unit tests for stable tf-agents[reverb] and removed locking pyg... last week
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What to do in domains where reward is hard to specify?

e One solution is to ask humans to provide feedback - however, this is prohibitively expensive
in the naive formulation, as RL typically requires thousands to millions of labels to learn an
effective policy (depending on the complexity of the task)

e But what if you train a model to predict human judgments and then use this predictive model

as the reward signal?

predicted reward predictor [«
reward/

RL algorithm

__observation

human
feedback

<

action

Y

environment




Deep RL from Human Preferences

e Without access to the true reward function and labeling <1% of the
environment interactions, able to perform complex tasks, including Atari
games and MudJoCo.
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Paul Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep Reinforcement Learning from
Human Preferences. NeurlPS 2017.



https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf

RL from Human Feedback in LLMs (aka RLHF)

e “Secret sauce” behind powerful LLMs like ChatGPT and Anthropic’s Claude!

e Humans rank-order pairs of behavior, train a preference model, use
preference model as reward, and RL-finetune to optimize “good” behavior

e Performing RLHF on top of pretrained large language models (LLMs) greatly
improves instruction-following / in-context learning / prompting.

Bai et al. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. 12 Apr 2022.



https://arxiv.org/pdf/2204.05862.pdf

How to Perform RLHF

Pretrained
LM

HHH prompt
context distillation

s

Initial Policy

B—

|

Preference Model Human-Feedback N Preference
Pretraining (PMP) — Fine-Tuning Model
J Human-Feedback
Comparison
[ Data
WV
RLHF
RLHF (PPO) > Policies
\/ Human Feedback Interface
N e

Bai et al. Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. 12 Apr 2022.



https://arxiv.org/pdf/2204.05862.pdf

Playground task @

Talk to the
assistant

Task 10of §

Decide on a task you'd like
the assistant to help with
and enter it into the task
box. Interact with the Al
assistant. When you're
finished, select a final
response from the assistant
and leave a comment on
how the assitant did in the
comment box. Click to go to
the next task.

Comments
| thought the assistant was ...

Rating
e @ 0® @®
Bad Good

Step 1: Collect Human Judgments

& Human
| have to come up with a conversation with an Al assistant for the purposes of showing it off in a demo. What sorts of conversation
topics would you recommend?

@ Assistant
I think the best topics for conversation are common themes and interests that everyone could have. Things like weather, sports,
hobbies, current events, popular culture, and general life topics like relationships and work would all be good conversation topics.
You could also have more advanced conversations discussing philosophy and morality if you want to demonstrate some higher level
Al capabilities.

%  Human
1 think I'm more interested in an advanced conversation. What's a good starter question if | wanted to discuss something
philosophical, like epistemology or the nature of language?

@ Assistant
| think an excellent philosophical topic would be epistemology, which is the theory of knowledge, and specifically how we can know
and understand the world around us. A really good starting question would be something like "How can we truly know and
understand the world?", or "What is the nature of knowledge?". If you want to go even deeper, | think philosophy of language would
also be fascinating - questions like "What is meaning?", "How do language and thought relate?", and "How can language mislead and
deceive?" would be great discussion topics.

& Human
How would you answer a question like: How do language and thought relate?

Choose the most helpful and honest response

1 think a good answer to that would be that language helps us to structure our thoughts and express what we are thinking. Language
gives us a symbolic system of signs and meanings that we use to communicate our ideas and make sense of the world. It's critical for
how we record and relate knowledge, and | think it's impossible to completely understand and express our thoughts without the use of
language. Without language, our thoughts would just remain as instinctual impulses and basic desires, and we would have a much
harder time comprehending and reflecting on the world around us.

| think the key relationship between language and thought is that language allows us to communicate and express our thoughts and
ideas to others. Language is a system of symbols and signs that we use to organize and express our thoughts and mental concepts. So
language is how we translate our inner thoughts and ideas into something shared and communicable with others. Without language,
we wouldn't be able to express or understand the thoughts and ideas of others, and so language is essentially bridge between our
inner minds and the shared external world.

A
Ais better

B | B
B is better




Step 2: Train Preference Models (PMs)

e Train PM to assign a higher score to the response preferred by a human rater
e Base models from 13M through 52B parameters (in increments of 4x)

HH PM Learning and Dataset Size Dependence
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Step 3: Perform RL-Finetuning with PM as Reward Signal
e Extract all prompts from the previous steps, prompt the base LM to respond,

and then use the PM score as the reward signal
e Train with Proximal Policy Optimization (PPO) with an auxiliary KL penalty

Ttotal = TPM — AKLDKL (policy || POliC}’o)



Takeaways

e Alignment tax for small models but alignment bonus for 13B+ models

e Tradeoff between helpfulness and harmlessness, but performance improves
on both distributions as model scale up

e RLHF improves programming ability for models pretrained on code

e RLHF boosts performance on MMLU, Lambada, Hellaswag, OpenBookQA,
and ARC, but hurt performance on TriviaQA compared to a base models



Next Step: RL from Al Feedback (RLAIF)!

e Motivation: Scaling supervision - as models approach or exceed human-level
performance, it becomes difficult for humans to supervise them.

e RLAIF: Perform RL-finetuning using Al feedback derived from a “constitution”
describing desired behavior. Humans don’t need to be in the loop, except to

write the constitution!
. e
Generate Respt_mses / 4 Finetuned
ey > [EREI ()~
ode Harmful Samples 2 e
(Revision ) <

! !

Constitutional Al Feedback
for Self-Improvement RLAIF
Generate Responses Finetuned Training Final
to“Red Teaming” | SEEN Preference > with > RL-CAI
Prompts Eliciting — Model (PM) PM + SL-CAI Model
Pairs of Samples Models

Bai et al. Constitutional Al: Harmlessness from Al Feedback. 15 Dec 2022.



https://arxiv.org/pdf/2212.08073.pdf

Benefits of Supervised Learning + Reinforcement Learning

e Supervised Learning: Improves initial model, which helps with exploration and

sample efficiency
e Reinforcement Learning: Significantly boosts performance and reliability of

the final policy
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Supervised Phase

1. Sample from an initial policy
2. Generate “self-critiques” and revisions
3. Finetune the original model with the revised responses

., Response
// T
Generate Responses /,/ v Finetuned
to “Red Teaming” # Critique 2 SL-CAI
Helpful RLHF — T 4 Y

ﬁnodel > Prompts Eliciting T ’/ Model

Harmful Samples o

(Revision ) <
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Constitutional Al Feedback

for Self-Improvement RLAIF
inetuned Training Final

Fi

to “Red Tegn:n(ng" — SEEN Preference = with > RL-CAI
Prompts Eliciting — Model (PM) PM + SL-CAI Model
Pairs of Samples els
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Reinforcement Learning Phase

LN~

Sample from a finetuned model

Use a model to evaluate which of two responses is “better”

Train a preference model on the Al-labeled data

Perform RL-finetuning with the PM as the reward signal (just like RLAIF)

. Response
Generate Responses : J Finetuned
to “Red Teaming” Critique 2 SL-CAI
Helmzldzll_HF - Prompts Eliciting ’ % Model
Harmful Samples 2 4
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inetuned Training Final
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Takeaways

e Finetuning with Al-generated feedback can generate results that match or
exceed models that are finetuned with human feedback
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Questions?

e RL for Chip Design
o RLfor Al Accelerators

® RL for Large Language Models

o RL from Human Feedback
o RL from Al Feedback



Bonus Content: RL for Device Placement!



Structure of this Talk

e RL for Chip Design
o RL for Al Accelerators

® RL for Large Language Models

o RL from Human Feedback
o RL from Al Feedback

e RL for Systems Optimization
o RL from Device Placement / Model Parallelism



Google Hierarchical Learning for Device Placement @ Google

Azalia Mirhoseini*, Anna Goldie”, Hieu Pham, Benoit Steiner, Quoc V. Le, Jeff Dean
(*): Equal contribution

SUMMARY MODEL EXAMPLE PLACEMENTS
We propose a Reinforcement Learning algorithm A two-level hierarchical network, consisting of a e Each color is a GPU; transparent is the CPU.
that learns to automatically design model Grouper (which partitions the graph into groups) and a o Neural Machine Translation with 2 layers
parallelism for TensorFlow graphs. Placer (which places those groups onto devices)
PROBLEM =)
e Given:
o TensorFlow computational graph G with N ops 4 1—~LuLJuJLquuuulpJLuuuuLuuuuuuuuuuuuuuuJuJu
o List of computing devices D (GPUs, CPUs, etc.) m]
e Find: e |nception-V3
o Placement P ={p,, p,, ..., py }, with p, € D
o Minimizes the running time of G
A REINFORCEMENT LEARNING APPROACH
e Using policy gradient to learn a policy T that: TRAINING WITH REINFORCE
° Pr.opo.ses placement anq then measures runtime The goal is to minimize the expectation of runtime: UNDERSTANDING THE PLACEMENTS
o Minimizes expected runtime J(0,,04) = Ep(a.0, 6a)[Rdl
J(89,00) = Ep(apg0m Rl = D D p(g:0,)p(d|g; ) R
Placement Runtime 97y dvma e Our method learns to optimize for different objectives for
VogJ(0g,00) = D Vagp(g:05) > p(dlg; 0a)Ra different models.
g~y d~my o For RNNLM: learns that it is best to put all ops on a single
1 1<i<m 1<j<k GPU.
Pt Z Voglogp(gi; 0,). ( Z Ry;) o For NMT: learns to balance computation across devices.
ginTgy dj~ma o For Inception-V3: learns to mitigate the time spent on
DISTRIBUTED TRAINING Voad (05,04) = Z S p(9:0,)Voap(dlg: 0a) Ra inter-device memory copy.
o N controllers share a parameter server. dvma gy v sorRlbeciplanen - Poodeipelpuenen ||| R SR
e Each controller sends placements to its children. 1 1$ISk ) 1Sism . e
e Each child executes its placement. =g m Voalogp(d;lgi; 0a)Ra,) £ 2
e Each controller receives runtimes and updates the G BT g’ i
olicy asynchronously. £ E..
T e — RESULTS ‘
Tasks CPU™GPU [ #GPUS ~ Human Scorch  MinCut  Hierarchical | Runiime ) m‘_‘,ﬂ_,’mw,“ T ,“,,m,,,‘,‘,;“ S ot | ansEana s o
— — Inception-V3 g“ﬁlly g"llgl 2 E(’)‘.l?;" 093 0.82 Pll'l“.'}'.‘lﬂ Rcl:‘;;““ A f )
ResNet - 118 2 118 6.27 292 LI8 0%
P e\ Ptme by ST Pacement” e\ Ruime RNNLM 689 1357 3 137 360 331 157 0% On the left, we shmov the computational load profiling of NMT model for RL-based and
Pocehort Posmipe Pesipey NMT (2-layer) | 646  OOM 2 213 321 534 084 60.6% pert-desig Smaller blocks of each color correspond to forward pass and
NMT (4-layer) | 1068 OOM 4 364 1118 11.63 169 53.7% lor upper blocks to back- On the right, we show memory copy time
‘ ‘ ‘ ‘ ‘ ‘ NMT (8-layer) | 11.52 OOM | 8 I88: 17ss: 4501 L e profiling. All memory copy activities in Synchronous tower are between a GPU and a CPU, which are
in general slower than GPU copies that take place in the RL-based placement.




What is device placement and why is it important?

Trend towards many-device training, bigger models, larger batch sizes

~ Google neural machine translation’16 Sparse%gat’ﬁlq mixture oftexperts’17 BigGAN'18
300 million parameters, o 'd'on pf;grgepars, 355 million parameters,
trained on 128 GPUs rained on S trained on 512 TPU cores



Standard practice for device placement

Often based on greedy heuristics

Requires deep understanding of devices: nonlinear FLOPs, bandwidth, latency behavior
Requires modeling parallelism and pipelining

Does not generalize well



ML for device placement

e ML is repeatedly replacing rule based heuristics

e We show how RL can be applied to device placement
o Effective search across large state and action spaces to find optimal solutions
o Automated learning from underlying environment only based on reward function
(e.g. runtime of a program)



Posing device placement as an RL problem
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An end-to-end hierarchical placement model
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Learned placement on NMT

Decoder
Softmax -
Attention
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White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of 52280 possible assignments



Profiling placement on NMT

50 RL-based placement Expert-designed placement
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Learned placement on Inception-V3

White represents CPU (Ixion Haswell 2300)
Each other color represents a separate GPU (Nvidia Tesla K80)
Searching over a space of 5*83 possible assignments



Profiling placement on Inception-V3

~ RL-based placement ~ Synchronous towers
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Profiling placement on Inception-V3

.RL-balsed plac;ementl , Synchronous towers
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Results (runtime in seconds)

Tasks CPU GPU | #GPUs Human Scotch MinCut |Hierarchical | Runtime
Only  Only Expert Planner Reduction

Inception-V3 0.61 0.15 2 0.15 0.93 0.82 0.13 16.3%
ResNet - 1.18 2 1.18 6.27 2,92 1.18 0%
RNNLM 6.89 157 2 157 5.62 321 1.57 0%

NMT (2-layer) | 6.46 OOM 2 2.13 3.21 5.34 0.84 60.6%

NMT (4-layer) | 10.68 OOM 4 3.64 11.18 11.63 1.69 53.7%

NMT (8-layer) | 11.52 OOM 8 3.88 17.85 19:01 4.07 -4.9%




Summary

e Deep RL for resource allocation optimization

e Papers:
o ICLR’18: A Hierarchical Model for Device Placement,
m  Azalia Mirhoseini*, Anna Goldie*, Hieu Pham, Benoit Steiner, Quoc V. Le and Jeff Dean
o ICML'17: Device Placement Optimization with Reinforcement Learning,
m  Azalia Mirhoseini*, Hieu Pham*, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen
Kumar, Mohammad Norouzi, Samy Bengio, Jeff Dean
e Open-source TensorFlow code:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/grappler



Comparing Models with Elo Scores

1

A(Elo Score)

1+10 400

Win Fraction = and A(Elo Score) ~ 174 x A(PM Score)




