CS224R Spring 2023 Homework 2

Online Reinforcement Learning
Due 5/3/2023
SUNet ID:
Name:
Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all of
this is my own work.

Overview

Goals: In the first part of this assignment, you will experiment with different reward func-
tions in MuJoCo MPC (MJPC), an interactive application for real-time predictive control
with MuJoCo. You will design a reward function to achieve a desired agent behavior and
observe how different reward functions impact agent behavior.

In the second part of the assignment, you will solve a realistic robot task, in which the
agent needs to pick up a tool and use it to hammer a nail. You will implement the main
parts of an actor-critic algorithm that operates directly from pixels and explore some of
the design choices of the algorithm.

Submitting the PDF: Make a PDF report containing: Table 1 for your designed reward
function from Question 1.1, your responses to Question 1.2, as well as your training curves
from Question 2 and your responses.

Submitting the Code and Experiment Runs: For Problem 2, submit the ac.py file and the
Logdir folder containing only the two final runs.

Gradescope: Submit both the PDF and the zipped code and experiment runs in the ap-
propriate assignment on Gradescope.

Use of GPT/Codex/Copilot: For the sake of deeper understanding on implementing
actor-critic methods, assistance from generative models to write code for this homework
is prohibited.

Sample File Submission

For the second part you should submit the ac.py file, as well as the logs from your final
two runs, which are saved in the Logdir folder. Your submission file should look like this

submit.zip
t ac.py
Logdir
t run_date_agent.num critics=2,utd=1

run_date_agent.num critics=10,utd=5

Compute

For this assignment, you will complete all sections on AWS EC2 instances. To complete
Problem 1, you will need a c4.4xlarge instance. To complete Problem 2, you will need a
g4dn.xlarge instance, which is equipped with a GPU. Note that each problem requires
the specified instance type to run correctly.

The CS224R AWS Guide has instructions for setting up and accessing an AWS spot in-
stance.

We advise you to start as early as possible since the assignment requires longer compute
times.

https://docs.google.com/document/d/1MpTh0BejM8Z9cQq5iCd3xUIm3mxM7viiZQIdtqkxKXw/edit?usp=sharing

Problem 1: Impact of Reward Functions

To set up Problem 1, log into your AWS c4.4xlarge instance and run the following;:

wget http://cs224r.stanford.edu/material/hw2.zip
unzip hw2.zip -d hw2
cd hw2/mujoco_mpc

Then, follow the instructions found in mujoco_mpc/README . md. Defining a reward func-
tion is often the first step of running any RL algorithm, and picking a good reward function
in practice can be difficult. In this part of the homework, you will get hands-on experience
with designing reward functions. Since iterating on reward functions by running RL on
them can be slow, we will be using a faster model-based planner to get behavior from the
defined reward functions almost instantaneously. The planner does this by leveraging the
simulator itself to optimize for behavior with respect to the reward function.

1. Design a reward function for the Quadruped task such that the agent walks in a
clockwise circle (watchmujoco_mpc/videos/partl.avi for an example of the desired
behavior). The structure of the reward function for the Quadruped task is:

Ty = —Wq * Tt height — W1 * rt,pos(w% ws) + ¢
where
® 7 height 1S the absolute difference between the agent’s torso height over its feet

and the target height of 1,

® 7 pos(W2, ws) is the % norm of the difference between the agent’s torso position
and the goal position. The goal moves at each time-step according to the desired
walk speed wy and walk direction ws, and

e ¢ consists of other reward terms for balance, effort, and posture.
You will design the reward function by choosing values for wy, w1, w,, and ws, which

can be any real number. Here is how you can run the Quadruped task with w, =
W1 = W2 = W3 = 0:

./build/bin/mjpc --task="Quadruped Flat" --steps=100 \
--horizon=0.35 --w0=0.0 --w1=0.0 --w2=0.0 --w3=0.0

The program will run the simulator for the specified number of time-steps and save
a video in the mujoco_mpc/videos/ directory.

Viewing videos: To view the generated videos, you can scp themujoco_mpc/videos/
directory to your local machine. We recommend trying multiple reward functions at
a time between scp commands, which can slow down testing. Another way to view

3

videos is to convert them to MP4 format via ffmpeg (e.g., ffmpeg -i filename.avi
filename.mp4) and opening them with VSCode’s Remote SSH plugin.

Note: The “objective” in the top right of the videos indicates the negative reward,
also referred to as the cost.

Tip: The green sphere is a visualization of where the goal position is.

Fill in Table 1 with the parameters of your reward function.

Parameter Value
Wy Your answer here
wy Your answer here
Wo Your answer here
W3 Your answer here

Table 1: Parameters of your reward function.

. In this next part, you will see how different reward functions impact the agent’s
behavior in the In-Hand Manipulation task. The structure of the reward function
for the Hand task is:

Tt = —Wo * T't,cube pos — W1 * Tt,cubeori — W2 * T't,cube vel — W3 * T't,actuator
where
® 7 cube pos 1S the (% norm of the difference between the cube’s position and the
hand palm position,

® 7 cubeori 18 the 2 norm of the difference between the cube’s orientation and the
goal orientation,

® 7 cubevel iS the /2 norm of the cube’s linear velocity, and
® 7 actuator iS the 2 norm of the control inputs.
For each part below, you will watch the videos located in mujoco mpc/videos. Then,

in 1-2 sentences, describe the agent’s behavior and why the reward function leads to
this behavior.

Note: While the planning horizon (the --horizon flag) does have an effect on the
planned behavior, you may assume that the visualized behavior is only determined
by the reward function in the following parts.

(a) Watch mujoco_mpc/videos/part2a.avi, which was generated with the param-
eters wy = 20, w; = 3, wy = 10, and w3 = 0.1:

4

./build/bin/mjpc --task="Hand" --steps=100 \
--horizon=2.5 --w0=20.0 --w1=3.0 --w2=10.0 --w3=0.1

Tip: The cube on the right is a visualization of the goal orientation.

Describe the agent’s behavior and why the reward function leads to this be-
havior in 1-2 sentences.

Watch mujoco_mpc/videos/part2b.avi, which was generated with the param-
eters wy = 20, w; = 3, wy = 10, and w3 = 1:

./build/bin/mjpc --task="Hand" --steps=100 \
--horizon=0.25 --w0=20.0 --w1=3.0 --w2=10.0 --w3=1.0

Describe the agent’s behavior and why the reward function leads to this be-
havior in 1-2 sentences.

Watch mujoco_mpc/videos/part2c.avi, which was generated with the param-
eterswy =0, w; =0, wy = 0, and ws = 1:

./build/bin/mjpc --task="Hand" --steps=100 \
--horizon=2.5 --w0=0.0 --w1=0.0 --w2=0.0 --w3=1.0

Hint: An episode terminates when the cube falls out of the hand.

Describe the agent’s behavior and why the reward function leads to this be-
havior in 1-2 sentences.

Problem 2:

To get started log into your AWS g4dn.xlarge instance and run the below:

wget http://cs224r.stanford.edu/material/hw2.zip
unzip hw2.zip -d hw2

cd hw2/ac

chmod 777 setup.sh

./setup.sh

This should install all the dependencies you need for this assignment and future deep
RL training pipelines. The process will take around 10 minutes all together. Once done
you can activate you Conda environment with the command:

source /home/ubuntu/.bashrc
conda activate PixelAC

and should be ready to begin!

In this problem we consider a realistic task in which a Sawyer robot needs to grasp a
tool and used it to hammer in a nail. The agent controls a 4-DOF Sawyer robot with a
continuous action space and receives raw RGB images as observations. Providing dense
rewards for real world problems is difficult, so in this environment the agent receives a
sparse reward of 1.0 upon fully completing the task and no intermediate rewards.

We will implement a general actor-critic algorithm that learns to solve the task with
almost 100% success rate. At each step the agent processes observations o;, which consists
of the stacked images from the last three environment steps. The full agent consists of:

e An augmentation pre-processing that that produces random shifts of the input im-
age observations aug(o;). This is implemented as the RandomAug class in ac.py.

e The augmented observations are passed through a convolutional encoder fj(aug(o:))
to produce a low-dimensional feature representation. This is implemented as the
Encoder class in ac.py.

e The actor-critic algorithm utilizes a critic network that Q(fs(aug(o:)), a;) and a target
critic network Qg (fp(aug(ot)), a;). This is implemented as the Critic class in ac.py.

e The final component of the algorithm is an the Actor or policy 7y (fy(aug(o:))). This
is implemented as the Actor class in ac.py.

You should familiarize yourself with these functions and their inputs and outputs. You
should not modify any other files besides ac.py.

1. Optimizing behaviour in environments with sparse reward functions is difficult due
to limited reward supervision. To alleviate that, we have provide the agent with 5
successful demonstrations, which we will use to pre-train with behaviour cloning.
In ac.py complete the pretrain function of the PixelACAgent class to train both the
policy and encoder using the supervised behaviour cloning loss. That is, given state-
action pairs oy, a; optimize the loss

Ly g (01, ar) = —logmo(ar fo(aug(or)))
with respect to both 7y and fy.

2. In the second part, we will try to improve the performance of the policy with addi-
tional fine-tuning with reinforcement learning. Your implementation will be in the
update method of the PixelACAgent class.

e We begin by implementing the critic update using the standard Bellman objec-
tive. Consider transitions (o, a;, ¢, 0¢+1,) and implement the following steps:

(a) Process the observations o, 0,41 through the augmentation and encoder
networks to obtain features fy(aug(o,)) and fy(aug(os11)).

(b) Sample next state actions from the policy a;,; ~ 7g(fo(aug(oi1)))-
(c) Compute the Bellman targets

y = re + v min{Qp: (fo(aug(0i41)), aty 1), Qos (fo(aug(op)), ap, 1)}

where Q4 and Qy; are two randomly sampled critics.
(d) Compute the loss:

N

LQg.10 = Z(Qei(f(%(aug(ot))? ar) —sg(y))?

i=1
where sg stands for the stop gradient operator.

(e) Take a gradient step with respect to both the encoder and critic parameters.

(f) Update the target critic parameters using exponential moving average

Qo = (1 = 7)Qpi + TQp:

Note: Check the soft_update_params function in utils.py.

e In the final part, we will improve the policy. First sample an action from the
actor a; ~ my(sg(fo(aug(o:)))) and compute the objective:

N
1 !/
Lry =% ; Qo: (sg(folaug(or)), at)
Take a gradient step on this objective with respect to the policy only.

7

e Once you are done, run the RL fine-tuning with

python train.py agent.num_critics=2 utd=1

Attach evaluation results from Tensorboard.

e In the final part, we will explore some optimization parameter choices. The
update-to-data (UTD) ratio stands for the number of gradient steps we do, with
respect to each environment step. So far we have used only 2 critics and UTD
of 1. Repeat the previous part with:

python train.py agent.num_critics=10 utd=b

Attach your results and compare them to the previous question. Provide an
explanation of why we observe these effects.

Note: this is slower to run due to the higher computational cost and you
should expect run time of about 4-5 hours for 50,000 steps.

