
CS 224R Spring 2022/2023 Homework 4
Goal-Conditioned Reinforcement Learning &

Meta-Reinforcement Learning
Due Wednesday May 31st, 11:59 PM PT

SUNet ID:
Name:

Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all of
this is my own work.

Overview
This assigment consists of two parts.

In Part 1, we will be looking at goal-conditioned reinforcement learning and hindsight
experience replay (HER). In particular, you will:

1. Adapt an existing model (Deep Q-Network) to be goal-conditioned.

2. Run goal-conditioned DQN on two environments.

3. Implement Hindsight Experience Replay (HER) [1,2] on top of goal-conditioned
DQN.

4. Compare the performance with and without HER.

In Part 2, we will be exploring meta-reinforcement learning algorithms. In particular, you
will:

1. Experiment with a black-box meta-RL method [3] trained end-to-end.

2. Implement components of DREAM [4] to replace the end-to-end optimization ob-
jective.

3. Compare the performance of end-to-end versus decoupled optimization.

We have provided you with starter code, which can be downloaded from the course web-
site. All code for Part 1 is located in the directory hw4/goal conditioned rl and all code
for Part 2 is located in hw4/meta rl.

1

Submitting the PDF: Submit a PDF report to Gradescope containing the written answers,
plots, and Tensorboard graphs (screenshots are acceptable) to the questions. The PDF
should include your name and any students you talked to or collaborated with.

Submitting theCode andExperimentRuns: In order to turn in your code and experiment
logs, create a folder that contains the following:

• data/goal conditioned rl folder with all logged runs for Part 1 of the assignment.
Note: Please remove any redundant run folders. Remove any empty/incomplete
logs that correspond to interrupted/failed runs.

• data/meta rl folder with all logged (tensorboard only) runs for Part 2 of the assign-
ment. Note: Please remove any redundant run folders. Remove any empty/incom-
plete logs that correspond to interrupted/failed runs. Finally, please only include
tensorboard logs.

• code/goal conditioned rl folder with the files trainer.py and run episode.py

from Part 1.

• code/meta rl folder with the file encoder decoder.py from Part 2.

Important: In order to avoid issues with the autograder, when submitting a zipped folder
with your code and data to Gradescope, make sure to zip the folder from the command
line. For example:
zip -r submission.zip submission/

Gradescope: Submit both the PDF and the code and experiment runs in the appropriate
assignments on Gradescope. An autograder will be provided to evaluate the performance
of your policies from the generated tensorboard files.

Use of GPT/Codex/Copilot: For the sake of deeper understanding on implementing im-
itation learning methods, assistance from generative models to write code for this home-
work is prohibited.

2

Part 1: Goal-Conditioned Reinforcement Learning
In Part 1, wewill be running goal-conditionedQ-learning on two problems: (a) a toy prob-
lemwherewe flip bits in a bit vector tomatch it to the current goal vector and (b)move the
end effector of a simulated robotic arm to the desired goal position. Applying hindsight
relabeling to a goal-conditioned reinforcement learning setting is one of the most promis-
ing and commonly-used ways to improve sample efficiency and exploration challenges of
RL!

Setup: Part 1 requires the use of physics simulator MuJoCo, and installing the related
python bindings. While we have provided instructions to setup MuJoCo and install the
corresponding python bindings mujoco-py in hw4/goal conditioned rl/README.md, the
setup can be dependent on the machine and it may require additional steps to be setup
successfully. We recommend completing the setup as soon as possible. In particu-
lar, we recommend setting up the virtual environment and installing the requirements,
and then running python test installation.py. The script should print Dependencies
successfully installed! if the setup was successful. In case the local setup is unsuc-
cessful after following the troubleshooting guide, we recommend completing the assign-
ment by creating a virtual machine on AWS. Please follow the detailed instructions in
hw4/goal conditioned rl/README.md.

Part 1 Code Overview: The code consists of several files to enable Q-learning. All code
for Part 1 is located in the directory hw4/goal conditioned rl You are expected to write
the code in the following files: run episode.py, trainer.py. A brief description for the
codebase is provided here:

• trainer.py: Themain training loop train. Alternates between collecting transitions
using Q-value networks and training the networks on collected transitions.

• run episode.py: Collects an episode using the currentQ-value network, and returns
the transitions, collected reward and whether the agent was successful during the
episode.

• replay buffer.py: Buffer for storing the transitions collected in the environment.

• q network.py: Creates a feedforward neural network with one hidden layer. This
neural net represents our Q-network.

• bit flip env.py: The source code for the bit flipping environment, which is set up
to follow the gym API with an init , reset and step functions.

• sawyer action discretize.py: Wraps the SawyerReachXYEnv from multiworld en-
vironment and converts the continuous action space into a discrete action spacewith
a simplified 2D observation space.

• main.py: Main file to configure the experiment.

3

A detailed description for every function can be found in the comments. You are not
expected to change any code except for sections marked with TODO. Next, we provide de-
scription of the environments followed by the exact expectations for this assignment.

Environments
You will be running RL methods on two environments:

Environment 1: Bit Flipping Environment

Figure 1: Illustration of an example bit flipping en-
vironment with n = 6. The initial state of the envi-
ronment is [1, 0, 0, 0, 1, 1] and the goal is to reach the
state [0, 0, 0, 1, 1, 0].

In the bit-flipping environment,
the state is a binary vector with
length n. The goal is to reach a
known goal vector, which is also
a binary vector with length n. At
each step, we can flip a single bit
in the vector (changing a 0 to 1 or
a 1 to 0). This environment can
very easily be solved without re-
inforcement learning, but we will
use the DQN algorithm to under-
stand how adding hindsight rela-
belling (HER) can improve per-
formance.

The bit flipping environment is an example of an environment with sparse rewards. At
each step, we receive a reward of -1 when the goal and state vector do not match and
a reward of 0 when they do. With a larger vector size, we receive fewer non-negative
rewards.

Environment 2: 2D Sawyer Arm

Figure 2: Illus-
tration of an
example Sawyer
environment.

The Sawyer Arm is amulti-jointed robotic arm for grasping and reach-
ing (https://robots.ieee.org/robots/sawyer/). The arm operates
in a 2D space, and the goal is to move the robot to a set of coordi-
nates. The sawyer reach is an example of a dense reward environment,
where the reward is given by negative Euclidean distance between the
robot arm and the goal state. The end-effector (EE) is constrained to
a 2-dimensional rectangle parallel to a table. The action controls EE
position. The state is the XY position of the EE and the goal is an XY
position of the EE.

4

https://robots.ieee.org/robots/sawyer/

Problem 1: Implementing Goal-conditioned RL

We start this problem with a goal-conditioned implementation of
DQN. The Q-function takes in the concatenated state and goal as in-
put. You can think of the goal-conditioned implementation as an ex-
tended Markov decision process (MDP), where your state space con-
tains both the original state and the goal. We will use this goal-conditioned Q-network to
collect episodic data in run episode.py.

For this part of the assignment, complete run episode.py and run the following com-
mand:

python main.py --env bit_flip --num_bits 6 --num_epochs 250 --her_type no_hindsight

The evaluation metrics should be available in tensorboard events logged in logs/ by de-
fault. Verify the eval metrics, that is total reward should be above−40.0 and success rate

should be 1.0. This plot illustrates the performance without using HER. You do not need
to include this in the homework.

Implementation notes:

• For simplicity, we will only consider the greedy action with respect to Q-network.
Pass this action to env.step.

• The env.step function returns next state, reward, done, info, where info is a
dictionary containing the a boolean under the key ‘successful this state’, indi-
cating whether the state was successful or not. Use this value to update succeeded,
such that run episode returns True if the policy was successful at any step of the episode.
To understand more about env.step, read the documentation for the function in
bit flip env.py.

• Ensure that floating point numpy arrays use np.float32. You may need to recast
some of the arrays to ensure that.

Problem 2: Adding HER to Bit Flipping

WithHER, themodel is trained on the actual (state, goal, reward) tuples alongwith (state,
goal, reward) tuples where the goal has been relabeled after the fact. The goals are rela-
beled to the state thatwas actually reached and the rewards should be relabeled correspond-
ingly. In other words, we pretend that the state we reached was our goal all along. HER
gives us more examples of actions that lead to positive rewards, effectively doubling our
experience (since we use the original episode as well as the relabeled one). The reward
function for relabeled goals is the same as the environment reward function; for the bit
flipping environment, the reward is -1 if the state and goal vector do not match and 0 if
they do match.

5

There are three different variations of HER: final, random, and future. Suppose the data
collected in an episode consists of the following (state, goal, reward) tuples: {(st, g, rt)}Tt=0,
where t indicates each time step in the episode. Given a (state, goal, reward) tuple (si, gi, ri)
each variation of HER relabels the goal gi differently:

• final: The final state of the episode is used as the goal.

• random: A random state in the episode is used as the goal.

• future: A random future state of the episode is used as the goal. Specifically, if you
want to relabel the goal in the tuple (si, gi, ri), only states sj with j > i can be used.

Implementation Notes:

• Always use copy()when assigning an existing numpy array to a newvariable. NumPy
does not create a new copy by default.

• When choosing a newgoal for relabelling, choose the state corresponding to next state

from the experience.

More details of these three implementations are in the comments of trainer.py. Imple-
ment the three variations of HER in the function update_replay_buffer in trainer.py.
You do not need to submit a plot for this.

Problem 3: Analyzing HER for Bit Flipping Environment

Once you have completed the previous problems, we can analyze the role of HER in goal-
conditioned RL. We analyze the performance of HER as the size of the bit vector is in-
creased from 6 to 25. For each of the parts (a) to (d), submit a tensorboard screenshot
showing the eval metrics for different runs on the same plot (check the correct event
files). A total of 4 screenshots should be submitted for this section.

a) Run the following commands:
python main.py --env=bit_flip --num_bits=6 --num_epochs=250 --her_type no_hindsight

python main.py --env=bit_flip --num_bits=6 --num_epochs=250 --her_type final

Include your screenshot here.

b) Run the following commands:
python main.py --env=bit_flip --num_bits=15 --num_epochs=500 --her_type no_hindsight

python main.py --env=bit_flip --num_bits=15 --num_epochs=500 --her_type final

Include your screenshot here.

6

c) Run the following commands:
python main.py --env=bit_flip --num_bits=25 --num_epochs=1000 --her_type no_hindsight

python main.py --env=bit_flip --num_bits=25 --num_epochs=1000 --her_type final

Include your screenshot here.

Explain your findings in parts (a)-(c) and why you expect the methods to perform
in the observed manner for the varying numbers of bits.
Write your response here.

d) Finally, we will compare the three versions of HER, with the baseline of not using
HER:
python main.py --env=bit_flip --num_bits=15 --num_epochs=500 --her_type no_hindsight

python main.py --env=bit_flip --num_bits=15 --num_epochs=500 --her_type final

python main.py --env=bit_flip --num_bits=15 --num_epochs=500 --her_type random

python main.py --env=bit_flip --num_bits=15 --num_epochs=500 --her_type future

Since twoof the commands (her_type no_hindsight and her_type final) are iden-
tical to part (b), you do not need to run them again.
Explain your findings from these four runs and provide justification as to why you
expect the methods to perform the way it did for the varying relabelling strategies.
Include your screenshot here.
Write your response here.

Problem 4: Analyzing HER for Sawyer Reach

If implemented correctly, HER should work for the second environment, Sawyer Reach.

Compare the performance of the Sawyer arm with and without HER. Run the following
commands:

python main.py --env=sawyer_reach --num_epochs=1000 --her_type no_hindsight

python main.py --env=sawyer_reach --num_epochs=1000 --her_type final

a) Submit the tensorboard screenshot comparing the eval metrics in your report.
Include your screenshot here.

b) Discuss your findings: Compare the role of HER in Bit Flipping Environment and
Sawyer Reach. Comment on the differences between the contribution of HER, if any.
Write your response here.

7

Part 2: Meta-Reinforcement Learning
Setup: Please navigate to hw4/meta rl and follow the instructions in the README. Please
ensure that you’re using Python3.7. Otherwise, installing the dependencies will not
work.

CodeOverview: Themain entry point for the code is via scripts/dream.py and scripts/rl2.py,
which are the training scripts for Dream andRL2 respectively. Both of these can be invoked
as follows:

$ python scripts/{script}.py {experiment name} -b environment=\"map\"

In this invocation, {script} can either be dream.py or rl2.py and {experiment name}
can be any string with no white spaces. Results from this invocation are saved under
experiments/{experiment name}. For example, to launch the Dream training script and
save the results to experiments/dream, you would run:

$ python scripts/dream.py dream -b environment=\"map\"

To overwrite previous results, you would run:

You can pass the --force overwrite flag to run another experiment with the same exper-
iment name, which will overwrite any previously saved files at the corresponding exper-
iment directory. An example command for running Dream is below:

$ python scripts/dream.py dream -b environment=\"map\" --force overwrite

If you do not pass this flag, the scripts will not allow you to run two experiments with the
same experiment name.

There are two important subdirectories in each experiment directory:

• Tensorboard: Each experiment includes a experiments/experiment name/tensorboard

subdirectory, whichwill log important statistics about the training run, including the
meta-testing returns under the rewards/test tag and the meta-training returns un-
der the rewards/training tag. To view these, point Tensorboard at the appropriate
directories. All curves are plotted with two versions, one where the x-axis is number
of meta-training trials under tensorboard/episode and one where the x-axis is the
number of environment steps tensorboard/step.

• Visualizations: Each experiment also includes a experiments/experiment name/visualize

subdirectory. This directory includes .gif videos of the agent during meta-testing
and is structured as follows. The top level of subdirectories identify howmanymeta-
training trials have elapsed before the video.
In experiments run with dream.py, the exploration episode is saved under
{video num}-exploration.gif and the exploration episode is saved under

8

{video num}-exploitation.gif. For example, the video under
experiments/dream/visualize/10000/0-exploration.gif is the first exploration
meta-testing episode after 10000 meta-training trials.
In experiments runwith rl2.py, {video num}.gif contains both the exploration and
exploitation episodes, with the exploration episode first. For example, the video
under experiments/rl2/visualize/10000/0.gif contains the first exploration and
exploitation episode after 10000 meta-training trials.

You will implement two short methods inside the embed/encoder decoder.py file.

Problem 0: Grid World Navigation with Buses

mapagent bus potential goal

Figure 3: Two example tasks in the grid
world domain. There are 4! different tasks,
corresponding to different permutations of
the buses in the corners.

We consider a grid world illustrated in Fig-
ure 3. From a high level, the agent is given
a goal each episode and must reach it in as
few steps as possible. To quickly get to the
goal, the agent may ride a bus. This brings
the agent to the destination of that bus,
which is the other bus of the same color.
In different tasks, the buses in the corners
permute, while the buses in the center re-
main fixed. For example, in the left task in
Figure 3, the center light blue bus’s desti-
nation is the bottom right corner, while in
the right task, its destination is the top right
corner. Note that the goal is not part of the
task, and all four corners are potential goals in all tasks. There is also a map at a fixed
location in all of the tasks, which tells the agent the destination of each bus, when visited.

More concretely, the state consists of 4 components

• The agent’s (x, y)-position in the grid

• A one-hot indicator of the object at the agent’s current position (none, bus, map).

• A one-hot goal g corresponding to one of the four possible goal locations in the cor-
ners (shown in green).

• Aone-hot that is equal to the problem IDµ (definedbelow) if the agent is standing on
the map, and 0 otherwise. Standing on the map effectively encodes the destination
of each bus.

The agent begins every episode at the center of the grid, as in Figure 3. During an episode,
the goal is held fixed, while it is re-sampled uniformly across the 4 potential goal locations
in each new episode.

9

At each timestep, the agent can take one of 5 actions:

• Move one cell up, down, left or right.

• Ride the bus that the agent is currently on. This teleports the agent to the other bus
of the same color.

The agent receives +1 reward for reaching the correct goal position. The agent receives
−0.3 reward at each timestep it is not at the correct goal, incentivizing it to reach the goal as
quickly as possible. The episode ends if either the agent goes to any goal location (correct
or incorrect) or if 20 timesteps have passed.

Each task is associated with a problem ID µ. The only thing that changes between tasks
is the bus destinations: i.e., which colored bus appears in which outer corner. Therefore,
there are 4! = 24 different tasks. These tasks are uniformly sampled duringmeta-training
and meta-testing.

Throughout the assignment, we consider the meta-RL setting with one exploration episode
and one exploitation episode. The objective is to maximize the returns achieved in the ex-
ploitation episode, which we refer to as the exploitation returns. Note that the returns
achieved in the exploration episode do not matter. During the exploitation episode, the
agent is allowed to condition on the exploration episode τ exp = (s0, a0, r0, . . .).

a) What returns are achieved by only taking the move action to get to the goal, without
riding any buses: i.e., directly walking to the goal?
Write your response here.

b) If the bus destinations (i.e., the problem ID)were known, what is the optimal returns
that could be achieved in a single exploitation episode? Describe an exploitation
policy that achieves such returns given knowledge of the bus destinations.
Write your response here.

c) Describe the exploration policy that discovers all of the bus destinations within the
fewest number of timesteps.
Write your response here.

d) Given your answers in b) and c), what is the optimal exploitation returns achievable
by a meta-RL agent?
Write your response here.

For Problems 1 and 2, note that in the visualizations saved under
experiments/experiment name/visualize:

• The agent is rendered as a red square.

10

• The grid cells that the agent has visited in the episode are rendered as small origin
squares.

• There are four pairs of buses, rendered as blue, pink, cyan, and yellow squares.

• The map is rendered as a black square.

• The goal state is rendered as a green square, which obscures one of the buses.

Problem 1: End-to-End Meta-Reinforcement Learning

In this problem, we’ll analyze the performance of end-to-end meta-RL algorithms on the
grid world. To do this, start by running the RL2 agent on the grid world navigation task
for 50, 000 trials by running the below command. This should take approximately 2 hours.

python scripts/rl2.py rl2 -b environment=\"map\"

a) Examine the Tensorboard results under the tag reward/test in the experiments/rl2
directory. To 1 decimal place, what is the average meta-testing exploitation returns
RL2 achieves after training?
Include your screenshot here.
Write your response here.

b) Examine the videos saved under experiments/rl2/visualize/36000/. Describe the
exploration and exploitation behaviors that RL2 learns. Does RL2 achieve the optimal
returns?
Write your response here.

Problem 2: DREAM

In Problem1,we observed some shortcomings of end-to-end and existingdecoupledmeta-
RL approaches. In this problem, we’ll implement some components of Dream , which
attempts to address these shortcomings, given the assumption that eachmeta-training task
is assigned a unique problem ID µ. During meta-testing, Dream does not assume access to
the problem ID.

From a high level, Dream works by separately learning exploration and exploitation. To
learn exploitation, Dream learns an exploitation policy πtask

θ (a | s, z) that tries to maximize
returns during exploitation episodes, conditioned on a task encoding z. Dream learns a
encoder Fψ(z | µ) to produce the task encoding z from the problem ID µ. Critically, this
encoder is trained in such a way that z contains only the information necessary for the
exploitation policy πtask

θ to solve the task and achieve high returns.

By training the encoder in this way, Dream can then learn to explore by trying to recover
the information contained in z. To achieve this, Dream learns an exploration policy π

exp
ϕ ,

11

which produces an exploration trajectory τ exp = (s0, a0, r0, . . .)when rolled out during the
exploration episode. To recover the information contained in z, Dream tries to maximize
the mutual information between the encoding z and the exploration trajectory τ exp:

max
ϕ

I(Fψ(z | µ), τ exp).

This objective can be optimized by maximizing the following variational lower bound:

J (ω, ϕ) = Eµ,z∼Fψ ,τ exp∼πexp
ϕ
[log qω(z | τ exp)]

where qω(z | τ exp) is a learned decoder. Note that this decoder enables us to convert an
exploration trajectory τ exp into a task encoding z that the exploitation policy uses. This is
critical for meta-test time, where the problem ID is unavailable, and z cannot be computed
via the encoder Fψ(z | µ).

The objective J (ω, ϕ) is optimized with respect to both the decoder qω and the exploration
policy π

exp
ϕ :

a) For simplicity, we parametrize the decoder qω(z | τ exp) as a GaussianN (gω(τ
exp), σ2I)

centered at a learned gω(τ
exp) with unit variance. Then, log qω(z | τ exp) equals nega-

tive mean-squared error −∥gω(τ exp)− stop gradient(z)∥22 plus some constants inde-
pendent of ω. Overall, maximizing J (ω, ϕ)with respect to the decoder parameters ω
is equal to minimizing the below mean-squared error with respect to ω:

Ez∼Fψ(µ)
[
∥gω(τ exp)− stop gradient(z)∥22

]
.

Code: Fill in the compute lossesmethodof the EncoderDecoder in encoder decoder.py

to implement the above equation for optimize J (ω, ϕ) with respect to the decoder
parameters ω.

b) To optimize J (ω, ϕ)with respect to the exploration policy parameters ϕ, we expand
out J (ω, ϕ) as a telescoping series:

J (ω, ϕ) = Eµ,z∼Fψ(µ)[log qω(z | s0)]+Eµ,z∼Fψ(µ),τ exp∼πexp

[T−1∑
t=0

log qω(z | τ exp:t+1)−log qω(z | τ exp:t)
]
,

where τ exp:t denotes the exploration trajectory up to timestep t: (s0, a0, r0, . . . , st). Only
the second term depends on the exploration policy, and since it occurs per timestep,
it can be maximized by treating it as the following intrinsic reward function r

exp
t ,

which we can maximize with standard reinforcement learning:

r
exp
t (at, rt, st+1, τ

exp
t−1;µ) = Ez∼Fψ(µ)

[
log qω(z | τ exp:t+1])− log qω(z | τ exp:t)

]
. (1)

Note that τ exp:t+1 is equal to τ
exp
:t with the additional observations of (at, rt, st+1). The

exploration policy is optimized to maximize this intrinsic reward r
exp
t instead of the

12

extrinsic rewards rt, whichwill maximize the objectiveJ (ω, ϕ). Intuitively, rexpt is the
“information gain” representing how much additional information about z – which
encodes all the information to solve the task – the tuple (at, rt, st+1) contains over
what was already observed in τ

exp
:t .

Code: Implement the reward function rexpt (at, rt, st+1, τ
exp
t−1;µ) byfilling in the label rewards

function of EncoderDecoder in encoder decoder.py. Note that you’ll need to make
the same substitution for log qω(z | τ exp) in Equation (1) that we used in part a).

c) Check your implementation by running Dream :

python scripts/dream.py dream -b environment=\"map\"

Submit the plot for test returns under the tag rewards/test from the experiments/dream
directory. Submit the plot under tensorboard/step, not the plot under tensorboard/episode.
If your implementation in part a) and b) is correct, you should see the test returns
training curve improve within 30 minutes of training. By around 40 minutes, the
test returns curve should begin to look different from RL2 . The total run should
take around 2 hours. It may take 1-2 hours longer if training locally.
Include your screenshot here.

d) Does Dream achieve optimal returns in your results from c)? Based on what you
know about Dream , do these results align with your expectations? Why or why
not?
Write your response here.

e) Inspect the videos saved under experiments/dream/visualize/28000 or a later step
after Dream converges. Describe the exploration and exploitation behaviors that
Dream has learned.
Write your response here.

13

References
[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, Wojciech Zaremba. Hindsight Experi-
ence Replay. Neural Information Processing Systems (NeurIPS), 2017. https://arxiv.
org/abs/1707.01495

[2] Leslie Kaelbling. Learning to Achieve Goals. International Joint Conferences on Artifi-
cial Intelligence (IJCAI), 1993. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.51.3077

[3] YanDuan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, PieterAbbeel. RL2:
Fast Reinforcement Learning via SlowReinforcement Learning. https://arxiv.org/abs/
1611.02779

[4] EvanLiu, Aditi Raghunathan, Percy Liang, Chelsea Finn. Explore thenExecute: Adapt-
ing without Rewards via Factorized Meta-Reinforcement Learning. https://arxiv.org/
abs/2008.02790v1

14

https://arxiv.org/abs/1707.01495
https://arxiv.org/abs/1707.01495
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.3077
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.3077
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/2008.02790v1
https://arxiv.org/abs/2008.02790v1

