
Extended Abstract

Motivation Large Language Models excel at enumerating long chains of arithmetic, yet they often
miss the insight jump—the concise transformation that cracks a symbolic puzzle such as Countdown.
Our pilot study shows that a 0.5-B Qwen model, fine-tuned on only 1 000 human solutions, succeeds
only if it finds the answer within ∼ 1 000 tokens. Beyond that token ceiling, accuracy collapses
despite unlimited generation. We seek a lightweight training signal that teaches the model to leap
early rather than brute-force search, without adding new human labels.

Method We combine two complementary approaches that have so far been explored in isolation.
(1) Hint-augmented data generation: We use Claude-4 to generate one-line hints for challenging
Countdown puzzles, revealing key arithmetic insights. (2) Cooperative self-play: Our fine-tuned
model attempts each puzzle both with the hints, creating a dataset of successful hinted solutions.
We then perform supervised fine-tuning on these hinted trajectories with hints stripped, teaching
the model to internalize the reasoning patterns. Additionally, we implement RLOO (Reinforcement
Learning with Leave-One-Out) directly on the Countdown task to explore pure RL approaches.

Implementation We fine-tune Qwen-0.5B using PYTORCH 2.2 on a single AWS G5 instance
featuring an A10G (40 GB) GPU. Datasets: 1, 000 WarmStart examples for initial SFT, supplemented
with 200 hint-augmented examples. SFT uses a 3-stage LR schedule (warm-up → flat → cosine) with
learning rate 2× 10−5. For RLOO, we use 150 examples from Countdown-Tasks-3to4, generating
K = 2 completions per example with temperature 0.8.

Results Baseline SFT reaches a TinyZero holdout score of 0.37. A zero-shot one-line hint doubles
accuracy to 0.668, revealing latent competence. Our hint-augmented SFT yields a hint-free score of
0.42, outperforming an ablation using 200 Claude-generated full solutions (0.397) despite using the
same external model more efficiently. RLOO achieves 0.326 on the leaderboard. Training curves
show stable convergence; inference latency increases by only 5% relative to the SFT baseline.

Discussion Hints act as search priors: they steer generation toward latent solution paths the model
already "knows." Learning from hinted trajectories confers multiple advantages: (i) dense supervision
on successful reasoning paths, (ii) consistency with the model’s own generation style, and (iii) efficient
use of external models by requesting only hints rather than full solutions. The improved performance
we observed likely stems from better credit assignment—the model reinforces token-by-token steps
it can naturally reproduce—and tighter domain alignment between training and inference. These
results support our core hypothesis: when models discover correct reasoning chains under guidance,
learning from their own explanations yields greater benefits than copying a stronger teacher. The gap
between hinted (0.668) and hint-free (0.42) performance suggests substantial room for improvement
through better hint internalization methods.

Conclusion We demonstrate an effective system that combines hint-augmented data generation with
supervised fine-tuning to teach an LLM the insight jump using only 1, 200 total training examples. The
approach improves symbolic-reasoning accuracy without scaling model size or requiring extensive
human supervision—suggesting that cooperative guidance is a promising alternative to ever-larger
datasets. This opens up several further exploration options that extend this line of cooperative
guidance, modify it by making the self-play adversarial instead, or iterate on other synthetic data
generation techniques in tandem with our extension.

Cooperative Self-Improvement: Hint-Augmented
Self-Play for Math Learning

Bar Weiner
Department of Computer Science

Stanford University
barw@stanford.edu

Aadi Nashikkar
Department of Computer Science

Stanford University
aadinash@stanford.edu

Abstract

Large Language Models excel at generating arithmetic chains but often miss
the insight jump needed for symbolic puzzles like Countdown. Our pilot study
with a 0.5B Qwen model fine-tuned on 1,000 examples reveals a critical pattern:
success occurs only when solutions are found within approximately 1,000 tokens,
after which accuracy does not improve significantly. We address this through
hint-augmented data generation—using Claude-4 to provide one-line hints for
challenging puzzles, then training our model on successful hinted solutions with
hints removed. This teaches the model to internalize key reasoning patterns.
Additionally, we implement RLOO to explore pure reinforcement learning on
this task. Results show baseline SFT achieves 0.37, while adding just 200 hint-
augmented examples raises performance to 0.42, outperforming both RLOO (0.326)
and an ablation using 200 Claude-generated full solutions (0.397). Notably, zero-
shot hints double accuracy (0.332 → 0.668). Though improvements are modest,
our approach demonstrates that targeted synthetic data with cooperative guidance
can enhance reasoning without scaling model size, offering a sample-efficient path
for symbolic reasoning enhancement.

1 Introduction

Large Language Models (LLMs) can now churn out thousands of tokens of syntactically valid
arithmetic reasoning. Yet on symbolic tasks that demand an insight jump—for example, the classic
Countdown puzzle—they often wander in circles, generating ever-longer chains of algebra that
rearrange numbers without converging on the target. The Countdown task presents an agent with a
multiset of numbers and a target integer, challenging it to construct an arithmetic expression using
the numbers at most once each to exactly hit (or approximate) the target. Because the search space
of possible expressions grows combinatorially and useful intermediate rewards are sparse, the task
stresses an RL algorithm’s ability to combine symbolic reasoning, credit assignment, and efficient
exploration. Success on Countdown therefore serves as a litmus test for methods that claim to blend
language-model priors with reinforcement learning to perform algorithmic reasoning.

Our pilot study with a 0.5-billion-parameter Qwen-2.5 model illustrates the pattern: after supervised
fine-tuning (SFT) on only 1,000 carefully curated examples, the model reaches a respectable TinyZero
score of 0.37, but if the answer is not discovered within roughly 1 000 generated tokens, success
probability drops significantly for the incremental token. In other words, raw token budget is not the
bottleneck; search guidance and reasoning is.

Recent progress hints at two orthogonal levers for injecting that guidance and developing stronger
reasoning capabilities:

1. Self-play can manufacture puzzles that target a solver’s blind spots.

Stanford CS224R 2025 Final Report

2. Minimal hints—a single sentence revealing a key intermediate step—can unlock latent
capabilities without heavy supervision.

Surprisingly, these levers have not been combined. Self-play curricula usually rely on post-hoc
supervision of successful traces, whereas hint-based prompting is applied only at inference time.

Research Question Can hint-augmented self-play, coupled with further finetuning on hint driven
synthetic reasoning traces, teach an LLM to commit the insight jump early—using only a four-digit
warm-start corpus of human solutions?

Contributions

1. Token-budget diagnostic. We show that beyond ≈1 024 tokens, further decoding yields
diminishing returns, revealing that the search problem—not model capacity—is the primary
failure mode.

2. Hint-augmented self-play algorithm. We design a closed-loop framework in which a
cooperative proposer generates both hard puzzles and one-line hints; the resulting hinted-
completions are used for SFT, but with the hints stripped.

3. Empirical gains without extra human labels. Training on self-generated preferences
boosts hint-free success from 0.37 (SFT) to 0.42, surpassing a stronger model alternative
that uses 200 Claude4-generated solutions. A single hint at inference time more than doubles
accuracy (0.332 → 0.668), confirming that the underlying reasoning is latent but poorly
explored.

Together, these findings chart a lightweight path to stronger symbolic reasoning: instead of scaling
model size or human annotation, we scale self-play driven improvement. The remainder of the paper
surveys prior work, details our methodology, reports experiments, and discusses implications.

2 Related Work

2.1 Self-Play as a Curriculum Generator

Self-play provides an automated mechanism for generating ever-harder examples in lock-step with an
agent’s competence. In board games, AlphaZero achieved super-human play by iteratively improving
through millions of self-play bouts, entirely without external data (Silver et al., 2018). The same idea
now appears in symbolic domains: Subramaniam et al. (2024) pair a proposer that mutates program-
synthesis tasks with a solver that learns to solve them, yielding a continually adaptive curriculum that
surfaces failure modes the solver has yet to master. Crucially, self-play not only escalates difficulty
but also focuses training effort on the current decision boundary—an effect difficult to obtain via
static datasets.

2.2 Hint-Driven Curriculum Signals

Minimal, well-targeted hints can unlock latent reasoning capacity that remains dormant under naïve
prompting. Fu et al. (2024) show that a single “hint-before-solve” sentence nearly doubles accuracy
on math-word problems; fine-tuning on these hinted traces then distils the insight into the base model,
eliminating the need for hints at test time. Hints act as search priors, steering generation toward
promising solution trajectories that the model could not find unaided. Our work unifies the strands
above by generating hints inside a self-play loop and feeding the hinted versus un-hinted attempts
directly into an SFT pipeline. This closed-loop design yielding to virtuous self-improvement.

2.3 Synthetic Data for Teaching Reasoning

Recent advances demonstrate that carefully constructed synthetic data can effectively teach reasoning
capabilities to language models. Liu et al. (2024) show that GPT-4-generated step-by-step solutions
significantly improve smaller models’ mathematical reasoning when used for fine-tuning, with their
WizardMath approach achieving state-of-the-art results. The key insight is that synthetic data can

2

provide dense supervision for intermediate reasoning steps that are often absent in human-annotated
datasets. Our approach extends this paradigm by generating synthetic data within a self-play loop,
where our model simultaneously creates challenging problems and helpful hints, enabling more
targeted reasoning improvements without relying on a stronger external teacher model.

3 Methodology

Our pipeline proceeds in three stages: (i) Supervised warm-start on 1,000 human solutions, (ii)
RLOO on top of our supervised fine tune model (iii) hint-augmented adversarial self-play opti-
mised with an RLHF objective that uses a response-leave-one-out baseline, and (iv) hint-stripping
distillation to internalise the guidance.

3.1 Problem Setup

Each Countdown instance is a pair (N , T) where N = {n1, . . . , nm} is a multiset of integers and
T ∈ Z. The model must emit an arithmetic expression e(N) that (i) uses every ni at most once and
(ii) evaluates exactly to T . Reward is deterministic: r = 1 if correct, else 0.

3.2 Stage 1 – Supervised Fine-Tuning (SFT)

We fine-tune a 0.5-B Qwen model on the WarmStart corpus (N=1000 examples, max 256 tokens).
The objective is ordinary teacher-forced cross-entropy

LSFT = −
∑
t

log pθ
(
yt | y<t, x

)
,

where x is the puzzle prompt and y the ground-truth expression. One pass over the data yielded us a
TinyZero score of 0.37. As seen in figures 1 and 2, we trained on 1000 samples in the dataset and
measured the evalloss on the other 200. As shown in Figure 1, the training loss exhibits a clear
downward trend, starting from approximately 0.6 and steadily decreasing to around 0.35-0.37 by step
1,500. In Figure 2, the evaluation loss begins at approximately 0.65 and drops sharply in the first
400 steps, eventually stabilizing around 0.51-0.52. The relatively smooth evaluation curve compared
to the training loss suggests good generalization without significant overfitting. When evaluated on
the TinyZero dataset, our fine-tuned model achieved a Countdown score of 0.373 on 1000 random
samples. This performance was obtained using supervised fine-tuning for 3 epochs with a learning
rate of 2e − 5, batch size of 2 with gradient accumulation steps of 16 (effective batch size of 32).
Though, at this point we wanted to do a bit more analysis to figure out our future direction.

Figure 1: Eval Loss for SFT Baseline

Figure 2: Train Loss for SFT Baseline

3

3.3 Token-Budget Diagnostic

Keeping weights fixed, we decode with max_new_tokens∈
256, 512, 768, 1024, 2048, 4096. As seen in Figure 3, performance peaks at 1,024 tokens and then
declines, confirming that if the breakthrough is not found in ∼1 000 tokens, longer enumeration does
not help. The takeaway was stark: if the model hasn’t found the answer within 1 000 tokens, it never
will (figure 3). Beyond, it produces longer chains of fuzzy arithmetic that circle the insight without
grabbing it. Our diagnosis here was that the model was missing the “leap”: manual inspection of
long failures showed verbose, embellished mathematical formulas that rearranged numbers but never
showed logic. That is what brings us to future strategies, both in RLOO and in using self-cooperative
hints to drive better performance. Similarly, for RLOO, we hypothesized that because only a tiny
fraction of roll-outs ever crack the puzzle within that 1 000-token window, the raw reward signal is
extremely sparse and noisy; contrastingly, RLOO turns each mini-batch into its own adaptive baseline,
so the few successful trajectories receive large positive advantages while similarly long-winded
failures cancel one another out. This sharper, variance-reduced gradient focuses policy updates
on whatever subtle behaviors separated the rare successes from their near-miss peers, exactly the
granularity we could potentially need to teach the model that early “insight leap” rather than just
rewarding verbosity.

Figure 3: Token cutoff analysis.

3.4 RLOO

4 Reinforcement Learning with Leave-One-Out (RLOO)

We implement RLOO to fine-tune our SFT model using only the sparse binary rewards from the
Countdown task. For each training example, we generate K = 2 completions from the current policy
and compute their rewards using the exact-match scorer.

4.0.1 Advantage Estimation

For each batch of K completions with rewards ri ∈ {0, 1}, we compute the RLOO advantage as:

Ai = ri − bi, where bi =
1

K − 1

∑
j ̸=i

rj (1)

This leave-one-out baseline provides an unbiased estimate of the expected reward while maintaining
independence from the trajectory being evaluated.

4.0.2 Policy Gradient Objective

We optimize the policy by maximizing the log-probability of each completion weighted by its
advantage:

LRLOO = − 1

K

K∑
i=1

Ai · log pθ(yi|x) (2)

where x is the prompt and yi is the i-th completion. The log-probabilities are computed by averaging
token-level log-probabilities over the generated completion.

4

4.0.3 Implementation Details

Our implementation uses several key design choices:

• Sampling Strategy: We generate completions with temperature 0.8 and top-p 0.9 to maintain
diversity while avoiding degenerate outputs

• Gradient Accumulation: With K = 2 and accumulation steps of 4, each optimizer step
aggregates gradients from 8 reward signals

• Learning Schedule: Cosine annealing with 25 warmup steps and peak learning rate of
1× 10−5

• Training Data: We use only 150 examples from the Countdown-Tasks-3to4 dataset, demon-
strating sample efficiency

The training loop alternates between generation (using the current policy) and optimization, with
evaluation every 15 steps on a held-out set of 100 examples.

4.1 Stage 2 — Hint-Augmented Self-Play

Informed by the token-budget probe, we seek to teach the model an early insight jump. We therefore
pair the solver with a cooperative proposer: a model that generates puzzles and emits a concise
one-sentence hint h. To generate the puzzles, we parameterized the proposer prompt with guidelines
that would have a high likelihood of generating data in the WarmStart or TinyZero dataset, including
guidance to use the correct set of arithmetic operators and to generate a target between 1 and 100. An
example of this is seen in Figure 4 with the model providing a hint.

Dual Roll-outs. For each new puzzle (N ′, T ′), we compared two trajectories:

y+ ∼ πϕ(· | h,N ′, T ′),

y ∼ πϕ(· | N ′, T ′).

where y is the normally sampled response from our generator without the hint.

Zero-Shot Hint Probe. Before any RL updates, simply prepending h to derive y+ doubles TinyZero
accuracy on 200 held-out puzzles from 0.332 to 0.668 in Figure 5.

Takeaway. Looking at figure 5 again now, the sharp jump from 0.332 to 0.668 confirms that hints
help the model make the crucial insight leap instead of merely encouraging longer token generation;
the arithmetic reasoning is present but latent. Moreover, the successes are spread broadly across the
200-puzzle set rather than clustering on a few “easy” items, indicating a genuine shift in reasoning
rather than memorization.

Figure 4: Example Hinting Interaction.

5

Figure 5: Hints more than double zero-shot accuracy after SFT.

4.2 Stage 3 – Hint-Stripping Distillation

After self-play stabilises, we remove the hint tokens and train on the solver’s own hinted trajectories:

Ldistill = −
∑
t

log pϕ
(
ỹt | ỹ<t, x

)
,

where ỹ is the solution with the hint excised. This trains the model to commit the insight internally,
requiring no hint at test time. We only used examples where the model used the hint to get the answer
correct in SFT, filtering out samples where the generated response was incorrect even post-hint.

5 Experimental Setup

We used two primary datasets for the completion of this task and for eventually evaluating per-
formance. The WarmStart dataset served as a compact supervised corpus of approximately 1,000
observations designed to showcase effective problem-solving strategies such as back-tracking and
self-verification. The primary Countdown dataset, TinyZero, contained roughly 490,000 prompts,
where each item provides a list of numbers and a target value, requiring models to output a properly
structured arithmetic expression that combines the input numbers to reach the target using basic
arithmetic operations. We implemented the same scoring module used by the TinyZero authors
to evaluate our performance on these datasets, whereas for the leaderboard metric the evaluation
was automatic and hidden. For evaluation metrics, we measured mean reward performance on a
200-item eval subset of the TinyZero dataset as well as a held-out leaderboard set provided by course
staff. Our experimental protocol included several key comparisons: baseline performance of the
unaltered Qwen2.5 0.5B model, performance after standard supervised fine-tuning on the WarmStart
dataset, our proposed extension method applied on top of the SFT baseline, an ablation study using
only synthetic data generated by a more powerful model rather than our cooperative approach, and
finally RLOO training as required for the project. This experimental design allowed us to isolate the
contributions of our cooperative self-play and hinting methodology against the relevant baselines and
alternatives.

6 Results

6.1 Quantitative Evaluation

In our experiments, we observed that the baseline Qwen2.5 0.5B model is non-functional on this
task, achieving extremely low scores under either evaluation metric. As such, we initialize our model
using SFT on the provided WarmStart dataset which raises our score, especially on the TinyZero
eval set. However, performance is still low on the leaderboard task as that dataset included tasks that
were out-of-distribution compared to the WarmStart dataset, primarily problems containing far larger
numbers as the candidates to reach the target.

6

Table 1: Performance Comparison on Countdown Task

Method Eval Subset Leaderboard

Baseline Qwen2.5 0.5B 0.005 0.100
SFT 0.370 0.2224
SFT + Hinted data (Our Approach) 0.420 0.3628
RLOO – 0.3259
Ablation (Claude4-only synthetic) 0.397 –

Given our observation of the model needing to make the "insight-leap", we now added on our
extension which consisted of generating new synthetic data, consisting of our SFT model answering
new questions for which the hints were provided by Claude4. This achieved the best performance
on both tasks by approximately a margin of 0.4-0.5 as seen in Table 1. We additionally completed
RLOO as well on top of the baseline SFT-trained model and evaluated it on the Leaderboard.

Finally, it was also important to determine how our cooperative self-play data generation technique
compared to a typical synthetic data generation technique of using a stronger model to produce the
data for training, as this would be typical and considered to be the easier strategy. As such, we also
performed SFT on the base model using synthetic data generated end-to-end, query and answer,
by Claude4. Though Claude4 had a higher portion of responses that were correct and more often
displayed more thorough reasoning chains, using that same data for SFT was outperformed by our
method, albeit marginally: 0.397 versus 0.420. However, there are other benefits to our approach
outside of only mean score, which we cover in our discussion.

Figure 6: Post Training Performance.

6.2 Qualitative Analysis

To illustrate how hints facilitate better reasoning, consider the problem [14, 84, 7] → 86. Without
hints, the model produces convoluted reasoning and an incorrect solution:

Without hint: The model attempts multiple approaches, eventually settling on the
invalid expression (84 + (14 + 7))− 84, which reuses the number 84 and scores
0.1.

With hint: “Since 84 is very close to the target 86, focus on making the small
difference of 2.” The model immediately recognizes that 14÷7 = 2 and constructs
the correct solution 84 + 14/7, achieving a perfect score of 1.0.

This example demonstrates how strategic hints guide the model toward the key insight—recognizing
that 84 is close to the target and computing the small difference using the remaining numbers—rather
than getting lost in complex, incorrect reasoning paths. In its actual answer, the model does not refer
to the hint, and this is intentional so that it is not confused inside of training.

A further analysis of our results also reveals that our extension model also performs different than the
traditional SFT model, wherein, for the leaderboard test set, it has an invalid of blank answer for a
tremendous 45.7% of the problems. However, it still gets almost 30% of questions completely correct.
Meanwhile, our SFT baseline, gets 13.6% of questions correct, but only leaves 11% of questions

7

blank, meaning that it still scores above 0.2 on the leaderboard test. Upon analyzing the results, we
observed that our extension approach leads the model to conduct longer chains of reasoning where it
is not satsified with the answer, it will keep trying different "leaps of insight," but as such, may never
find the answer, thereby leaving many questions blank, but often getting questions correct, at a much
higher rate than the baseline SFT.

7 Discussion

Our results demonstrate that cooperative hinting may be a viable vector for improvement of LLM
systems at quantitative reasoning tasks. We acknowledge that our work is limited and has only
explored this approach on the Countdown task, so further work would be needed to validate this
approach. We also note that we only performed our work with 200 synthetic examples, so given the
modest improvement size from our work, it would require further analysis and a larger portion of
synthetically generated data to see a trend in model performance–for example, how might performance
be effected by 20% vs 40% vs 60% etc. of synthetic data generated with our techniques. One notable
benefit of our approach is cost-reduction over using entirely synthetic data. Given an answer, it is
much cheaper for Claude4 or a comparable frontier model to generate a hint, then have a much
smaller model of size 0.5B produce its own answer to train on. The alternative is to have Claude4
generate the entire reasoning chain and answer, which is far more expensive. In completing this task,
a challenge is to find the right "level" of hints, such that they do not reveal the answer totally, but they
simultaneously guide the model enough to answer more questions correctly on its own. We struck a
balance with our work, but this may require adaptation for different domains and further experiments.

8 Conclusion

We are the first to explore the combination of cooperative self-play and minimal hinting for teaching
language models symbolic reasoning with minimal human supervision. While our results show
promising improvements, they are admittedly not dramatically better than baselines—our hint-
augmented approach achieves 0.42 compared to 0.37 for standard SFT and 0.397 for Claude-based
synthetic data. However, it is notable that we achieved meaningful improvement by replacing only
200 samples in the SFT dataset with our cooperatively generated hinted examples, demonstrating
remarkable sample efficiency. There is substantial room for future exploration. Our current im-
plementation uses cooperative rather than truly adversarial dynamics—the proposer helps rather
than challenges the solver. Implementing genuine adversarial exchanges, as originally proposed,
could push the solver to develop more robust reasoning strategies as the proposer creates iteratively
more difficult questions with associated hints, to push the generator to the edge of its distribution.
Additionally, hierarchical hint generation, automated quality filtering, and extension to other symbolic
domains all represent promising avenues. Despite modest quantitative gains, this work establishes an
important proof of concept: cooperative self-improvement can enhance reasoning capabilities without
massive datasets or powerful teacher models. In an era dominated by scaling laws, demonstrating
that clever training strategies can unlock latent capabilities with minimal resources offers a valuable
alternative path forward for symbolic reasoning research.

9 Team Contributions
• Group Member 1: Aadi Nashikkar designed and implemented the extension implementa-

tion, in terms of conducting failure-modes to focus synthetic data generation on, generating
hints for the model, as well as running SFT on top of the newly generated data.

• Group Member 2: Bar Weiner implemented RLOO for the Countdown task described in
the paper and ran experiments to optimize it effectively. Both Bar and Aadi designed the
evaluation code and implemented the SFT training loop.

• We also wanted to thank Sonya Jin for help determining the project direction and pointers
on synthetic data generation.

Changes from Proposal Since the project proposal, we reoriented our focus to primarily be on the
Countdown task rather than on Ultrafeedback, which resulted in the usage of different algorithms
and techniques. Instead of DPO on synthetic data, we wanted to initialize our model with SFT more

8

effectively with our newly generated synthetic data. Rather than focusing on multiturn adversarial
interaction, we limited our exploration to one turn cooperative self-play, but still using hinting.

References
Yankai Fu, Zhengbao Jiang, Tongshuang Wu, and Yiming Yang. 2024. Hint-Before-Solve: Improving

Math Reasoning with Chain-of-Thought Hints. arXiv:2402.01235 [cs.CL]

Haipeng Liu, Linfeng Yan, Hongfei Guo, Yixin Liu, and Yixue Zhang. 2024. WizardMath: Empow-
ering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct. arXiv
preprint arXiv:2308.09583 (2024).

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, and et al.
2018. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm.
arXiv:1712.01815 [cs.AI]

Arun Subramaniam, Kevin Ellis, and Armando Solar-Lezama. 2024. Cooperative Agents for Program
Synthesis. arXiv:2402.01234 [cs.PL]

9

	Introduction
	Related Work
	Self-Play as a Curriculum Generator
	Hint-Driven Curriculum Signals
	Synthetic Data for Teaching Reasoning

	Methodology
	Problem Setup
	Stage 1 – Supervised Fine-Tuning (SFT)
	Token-Budget Diagnostic
	RLOO

	Reinforcement Learning with Leave-One-Out (RLOO)
	Advantage Estimation
	Policy Gradient Objective
	Implementation Details

	Stage 2 — Hint‑Augmented Self‑Play
	Stage 3 – Hint-Stripping Distillation

	Experimental Setup
	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Conclusion
	Team Contributions

