Extended Abstract

Motivation Training time remains a significant expense for those creating AI models in both
academia and industry. Costs for state-of-the-art GPUs rise to many thousands of dollars, hindering
progress for those less resourced. While efforts to create more efficient or cheaper GPUs are underway
(Etched, Cerebras), we are motivated to reduce training costs via algorithmic methods. Curriculum
Learning (CL) stands out to us as a promising avenue; our goal is to use a novel method of Self-Paced
CL to speed up model training.

Method For our project, we fine-tune a Qwen2.5-0.5B model (HuggingFace ID:
https://huggingface.co/Qwen/Qwen2.5-0.5B) on the Countdown arithmetic task through
Direct Preference Optimization (DPO) and Supervised Fine-Tuning (SFT), using a CL regime.

To give context on the premise behind CL: Curriculum Learning builds on the idea that models train
more efficiently when given easier examples first before expanding to harder ones. In our novel
method, we use initial loss as a difficulty heuristic; this is not commonly used, because models are
usually randomly initialized, making loss a poor indicator of difficulty. However, in this situation we
have a pre-trained model that already possesses some capability for the task, so initial loss serves as a
good indicator of what the model finds difficult or easy.

Implementation We first fine-tune the Qwen2.5-0.5B model via SFT on the
cog_behav_all_strategies dataset (HuggingFace ID: Asap7772/cog_behav_all_strategies) of
language-based arithmetic challenges. The train and test examples are each formatted as a query
plus a ground-truth correct arithmetic expression preceded by a <think> reasoning trace. We
then further fine-tune the model via DPO on the Countdown-Tasks-3to4 dataset (HuggingFace ID:
Jiayi-Pan/Countdown-Tasks-3to4), creating the preference dataset through a rule-based reward
function.

For both SFT and DPO training, we utilize the following CL regime: we first calculate the initial loss
for every example in the dataset as a heuristic for difficulty, and while calculating these initial losses
we do not update the model. We then split the dataset into n smaller mini-datasets, each containing
one-n-th of the examples sorted by difficulty. We start training on the easiest mini-dataset and then
append the next-easiest mini-dataset at each epoch.

We also experiment with Anti-Curriculum learning, which follows the same process but in reverse
(i.e., training on the hardest examples first).

Results In terms of training time, we find that across both SFT and DPO, the CL regime reduces
time to convergence by as much as around 20%; we are by and large able to achieve similar loss
values in less time.

Looking more in depth, in our initial CL implementation with SFT alone, we reach similar loss values
values for 2-4 epochs. However, the CL regime leads to worse loss values as the number of epochs
grows past that. With the SFT + DPO implementation, we consistently achieve similar or better loss
values under our CL regime.

Discussion Examining our results, it is clear that our CL regime speeds up training times. The
higher loss values for larger number of epochs, however, appear to stem from our segmentation of the
training dataset into mini-datasets; our SFT dataset is much smaller than the DPO dataset, and so
when we split it into even smaller chunks for CL, we expose the model to less data, producing higher
loss values initially. This may be causing under-fitting that is not fully recovered later. On the other
hand, for our DPO implementation, the dataset is much larger, yielding larger mini-datasets. The
model is therefore exposed to more data and is able to achieve lower loss values.

Conclusion To conclude, we successfully show that our CL implementation reduces time to conver-
gence while being able to achieve similar loss values - provided that the mini-dataset segmentation is
not too granular. Such findings matter because they allow more optimal use of training resources for
less-funded academic and industrial labs. Future steps may include combining the loss heuristic with
more rule-based heuristics or developing new dataset-segmentation methods that limit initial data
exposure less.
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Abstract

Reducing the computational cost of large-language-model fine-tuning is crucial as
GPU prices soar. We explore a novel method of Self-Paced Curriculum Learning
(CL), using a regime that feeds a model progressively harder examples based
on their initial loss to accelerate training without new hardware. Leveraging the
pretrained Qwen2.5-0.5 B model, we first apply supervised fine-tuning (SFT) on
the cog_behav_all_strategies arithmetic dataset, then refine the model with
Direct Preference Optimization (DPO) on Countdown-Tasks-3to4. For each
dataset we rank examples by their forward-pass loss (no updates), partition them
into n equal mini-datasets, and append the next-harder mini-dataset each epoch.
An Anti-Curriculum (hard-to-easy) schedule is also tested. Across both SFT and
DPO, CL cuts training time to convergence by up to around 20%. On the smaller-
sized SFT corpus, overly fine binning (large n) degrades final loss because early
epochs expose the model to too little data; 2-4 epochs (comprised of 2-4 mini-
datasets respectively) balance runtime and accuracy. On the larger DPO corpus,
CL consistently attains equal or lower loss than a non-curricular baseline while
preserving the runtime gains. These results show that loss-based CL is an effective,
hardware-agnostic lever for faster training, with performance trade-offs governed
by dataset size and mini-dataset granularity. Future work should blend loss with
rule-based difficulty signals and develop segmentation schemes that retain broader
early coverage.

1 Introduction

In the last five years, the capabilities of large language models (LLMs) have grown at an extremely
rapid pace, enabling near-human performance on an ever expanding set of reasoning and generation
tasks. This progress, however, has come with a steep rise in computational cost: state-of-the-art
fine-tuning runs can require 10> GPU-hours, as well as hardware budgets that are out of reach for
most academic and early-stage company labs. As the marginal gains from ever-larger models begin
to taper, finding algorithmic ways that lower the time to convergence is increasingly critical.

Curriculum Learning (CL) Bengio et al.|(2009); |[Soviany et al.| (2022) is one such lever. By presenting
a learner with easier examples before harder ones - mimicking the natural progression of human
instruction - CL can smooth the loss landscape and accelerate optimisation. Yet in practice, many
mainstream language-model pipelines rarely exploit CL. The central hurdle is difficulty estimation:
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prior NLP curricula rely on hand-crafted, rule-based heuristics (e.g., sentence length, word rarity),
ancillary labels (e.g., problem ratings), or surrogate statistics such as expected loss|Campos| (2021);
Kocmi and Bojar| (2017). These proxies are often task-specific and can be brittle when transferred to
new domains.

In this work we test the most direct signal available: the model’s own per-example loss. Modern
LLMs are commonly fine-tuned from a strong, pre-trained starting point; their forward-pass loss
therefore provides a continuous, self-supervised estimate of how hard each example is — effectively
the model’s confidence in failure. We leverage this insight to construct a Loss-Based Curriculum
Learning (LCL) regime that requires no auxiliary annotations. A single, annotation-free forward pass
sorts the dataset by initial loss, after which we train in a self-paced manner that gradually appends
higher-loss (harder) mini-datasets epoch by epoch.

We evaluate LCL on two complementary fine-tuning regimes: Supervised Fine-Tuning (SFT) and
Direct Preference Optimisation (DPO) [Rafailov et al.| (2023). SFT uses the 0.5-billion-parameter
Qwen2.5 model as a base, whereas DPO uses the best-trained SFT model. Target arithmetic reasoning
tasks are drawn from cog_behav_all_strategies and Countdown-Tasks-3to4. The resulting model is
then assessed on the Countdown arithmetic task |Gandhi et al.[(2024).

2 Related Work

Examples of successful early curriculum learning strategies were first laid out in Bengio et al (2009)
[L], which defined difficulty in training examples using noise and margin to improve training in
models. In our case, using loss can be seen as a comparable substitute for margin, as margin, like
loss, reflected the magnitude of misclassification in this example. Soviany et al. (2022)[[L0] provides
a survey of the current applications of Curriculum Learning, including the common methods of
determining difficultly. Here we see that loss and forms of self-paced learning are rare with NLP
tasks, making our attempt a novel approach; furthermore, when loss is used as a heuristic for difficulty
of task, it is often indirectly calculated (e.g. via surrogate or expected-loss calculations).

Various efforts have applied Curriculum Learning in different domains: Shi et al (2025) [9] proposed
the ADARFT method which dynamically adjusts problem difficulty during PPO-based finetuning,
demonstrating convergence twice as fast on math tasks (but relying on pre-annotated difficulty labels).
Campos (2021) [2] on the other hand attempted to fine-tune BERT, estimating difficulty of tasks with
sentence entropy, finding no compelling evidence that it improved language model training. Another
effort on language models by Kocmi and Bojar (2017) [S] examines bucketing by linguistic features
for English—Czech neural machine translation (NMT). The features selected for (among others)
include the length of the target sequence, number of conjunctions, frequency of commonly-used
words. They managed to show that mini-batching based on increasing difficulty increases translation
quality by up to 1 BLEU point.

Our proposed approach is significantly different from these past examples. Before training, we run
a forward pass of the pretrained LLM on every example and use the actual per-example loss as a
continuous difficulty score, rather than relying on hand-crafted proxies or surrogate estimates.

3 Method

Our approach consists of two main components: a two-stage fine-tuning pipeline and a novel
curriculum learning regime. We first describe the fine-tuning methods, then detail our curriculum
learning implementation.

3.1 Supervised Fine-Tuning (SFT)

We begin by fine-tuning the Qwen2.5-0.5B model on the cog_behav_all_strategies dataset
Gandbhi et al.| (2025)) using standard supervised learning. Each example consists of a query and a
ground-truth completion that includes a reasoning trace preceded by a <think> token. The model
is trained to predict the next token in the sequence, with the loss computed only on the completion
portion (masking out the query). Specifically, for each example (z,y) where x is the query and y is
the completion, we compute the negative log-likelihood loss:
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where v, is the ¢-th token in the completion, y; represents all previous tokens, and P(y;|x, y<¢) is
the model’s predicted probability of token y; given the query = and previous tokens y.;. The loss
Lsrr measures how well the model predicts each token in the completion sequence.

3.2 Direct Preference Optimization (DPQO)

After SFT, we further refine the model using DPO on the Countdown-Tasks-3to4 dataset. To
create our preference dataset, we use our SFT model to generate pairs of completions for each prompt
using different sampling parameters. Specifically, for each prompt in the dataset:

1. We generate two completions using different temperature settings:
* A high-temperature completion (temperature=0.8) to encourage diverse but potentially
less accurate solutions
* A low-temperature completion (temperature=0.1) to encourage more focused and likely
more accurate solutions

2. We evaluate both completions using a rule-based scoring function Gandhi et al.| (2025) that
checks if the solution:
 Uses only the provided numbers
» Uses each number exactly once
* Uses only basic arithmetic operations (+, -, *, /)
* Correctly reaches the target number

3. We label the completion with the higher score as the preferred completion and the other as
the dispreferred completion

4. We only keep pairs where there is a difference in scores to ensure meaningful preferences

This process creates a dataset of (x,y,,,y;) triples where x is the prompt, y,, is the preferred
completion, and y; is the dispreferred completion. We use this dataset to train our model using DPO,
which optimizes a policy to maximize the probability of preferred completions while minimizing the
probability of dispreferred ones. We use our SFT model as a frozen reference policy (7f) to prevent
large policy deviations from the supervised learning baseline. The DPO loss is computed as:

LDPO = _E(mgw,yl) [10g0 (B (7”0(.%‘, yw) - 7”9(.137 yl)))] (2)

where 3 is a temperature parameter controlling the strength of the preference signal, and r¢(z, y) is
the implicit reward defined as:
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Here 7y is our current policy and 7 is the reference policy (SFT model). The reward function
measures how much more likely our current policy is to generate a completion compared to the
reference policy.

3.3 Loss-Based Curriculum Learning

Our curriculum learning approach uses the model’s own loss as a difficulty metric. This is made
possible by our use of a pre-trained model that already possesses some capability, making initial loss
a meaningful indicator of example difficulty. The curriculum proceeds as follows:

1. Before training begins, we perform a single forward pass through the dataset to compute the
initial loss for each example, without updating the model parameters.
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Figure 1: Curriculum Learning method

2. We sort all examples by their loss values, creating a natural ordering from easiest to hardest.

3. The dataset is partitioned into n equal-sized mini-datasets, where n is the number of training
epochs.

4. During training, we start with only the easiest mini-dataset (lowest loss examples). At each
epoch, we append the next-hardest mini-dataset to the training set.

This approach can be formalized as follows. Let D be the full dataset and L(z, y) be the loss for
example (x,y). Forepoch e € {0,...,n — 1}, the training set D, is:

D. = {(x,y) €D | L(z,y) < L(e+1)k} 4)

where L1y is the loss value of the (e + 1)k-th example when sorted by loss, and k = |D|/n is
the size of each mini-dataset.

We also experiment with an anti-curriculum approach that reverses this ordering, training on the
hardest examples first.

Further, we investigate using a learning rate scheduler paired alongside our CL scheduling approach.
A larger learning rate is used when training on easier examples and then decreases as we expand
our mini-datasets to include harder examples. This allows the model to converge faster on easier
examples where there are fewer complex abstractions that the model needs to capture.

The curriculum learning regime is applied independently to both SFT and DPO training. For SFT, we
compute the initial losses using the negative log-likelihood on each example’s completion. For DPO,
we compute the initial losses using the DPO loss function, which captures both the model’s ability
to generate preferred completions and its deviation from the reference policy. This ensures that the
curriculum reflects the actual learning objective during each stage of training.

4 Experimental Setup

We use the Qwen2.5-0.5B model as our base model, which is a 500M parameter causal language
model. For supervised fine-tuning (SFT), we use the cog_behav_all_strategies dataset, and for
DPO training, we use the Countdown-Tasks-3to4 dataset.



We experiment with several training configurations:

4.0.1 SFT Training

Base learning rate: 1 x 107% to 1 x 1075, batch size: 4, number of epochs: 2-6 (varied across
experiments), optimizer: AdamW [Loshchilov and Hutter| (2017 with linear learning rate scheduling.

4.0.2 DPO Training

Base learning rate: 1 x 1075 to 1 x 1077, batch size: 2, number of epochs: 2-4, optimizer: RMSprop
Ruder| (2016)), 8 parameter: 0.1 to 0.5 (controls policy deviation from reference).

4.1 Curriculum Learning Variations
We experiment with different curriculum learning strategies:

» Standard Curriculum: Examples ordered by increasing difficulty
* Anti-Curriculum: Examples ordered by decreasing difficulty
* Learning Rate Scheduler: Learning rate is gradually reduced throughout training.
All experiments use a fixed random seed (42) for reproducibility. We run experiments on CUDA-

enabled GPUs, with model checkpoints saved after each epoch. The best model is selected based on
the lowest validation loss achieved during training.

5 Results

Results from implementing different curriculum learning strategies on SFT training:

Epochs Strategy Val Loss Wall-Time
2 No Curriculum 212.45 4.18 min
2 Curriculum 211.37 3.86 min
2 Anti-Curriculum  212.38 3.76 min
4 No Curriculum 214.11 8.26 min
4 Curriculum 212.68 6.48 min
4 Anti-Curriculum 214.58 6.73 min
6 No Curriculum 214.04 12.19 min
6 Curriculum 229.78 9.69 min

6 Anti-Curriculum 230.28 9.43 min

Table 1: Comparison of training strategies with SFT only (Ir = 1 x 10~5). All hyperparameters aside
from number of epochs were kept the same. Curriculum and Anti-Curriculum consistently deliver
lower wall-times.

Results from implementing curriculum learning regime on DPO training:

Setting Val Loss  Wall-time
No curriculum 0.2305 41.9 min
Curriculum 0.2099 33.8 min

Table 2: Ir=1x10"",3=0.5



Setting Val Loss  Wall-time

No curriculum 0.1735 42.7 min
Curriculum 0.1783 33.8 min

Table3: Ir=1x10"",3=0.1

Setting Val Loss  Wall-time
No curriculum 0.2173 41.8 min
Curriculum 0.1799 33.2 min

Table 4: SFT + DPO, Ir =5 x 10~7, 3 = 0.25

5.1 Quantitative Evaluation

As we can see from Table 1, both Curriculum and Anti-Curriculum regimes were able to significantly
reduce Wall-Time across all epochs, with the largest absolute reduction occurring when the number of
epochs was also high. The largest percentage change was from 12.19 mins to 9.43 mins (a reduction
of around 23%). Our best SFT-trained models occurred when Ir = 1 x 1072, achieving similar or
even slightly better Val Loss at 2 and 4 epochs. However, at 6 epochs, the model performed worse
with the CL regime than without; this can perhaps be explained by the fact that as the number of
epochs grows, our dataset gets split into more mini-datasets for our CL regime. Thus, the model
is exposed to much less data across epochs than without the CL regime, and thus a worse model is
trained.

Similarly our CL regime was also able to improve Wall-time during DPO training, with the largest
improvement seen in Table 2 with a decrease from 42.7 mins to 33.8 mins (a reduction of around
21%). Contrary to the above however, DPO training with our CL regime was able to consistently
achieve comparable or better Val-Loss; this may be due to the larger DPO dataset, which would
provide ample examples for the model to learn even when split into more mini-datasets. The best
Val-Loss and Wall-time reduction were also achieved when Ir = 1 x 10~7, and 8 = 0.1.

For our leaderboard submission, we achieved a 0.48 score for our SFT+DPO fine-tuned model
without our CL regime. With our CL regime, this was imrpoved to 0.49. This makes sense; CL does
not inherently improve the quality of the model, but allows it to converge faster.

5.2 Qualitative Analysis

Qualitatively, we can examine our generated responses to the Countdown test prompts. It does fairly
well, reaching the answer through valid reasoning most of the time. Common errors however include
not formatting the eventual answer correctly within the <answer>...</answer> tags, leading it not to
be extracted by the leaderboard script. Furthermore, our model seems to struggle more when there
are more than 4 numbers required to reach the target asnwer. There is also heavy use of parentheses,
even when they are not stricly necessary - this may be due to the high prevalance of parentheses in
preferred responses relative to dispreferred responses in the DPO dataset.

An example generation from our model is below:

<think>

Let me try to find a way to reach 66.

First, let me look for numbers close to 66:
76 is too large, we need to reduce it.

73 is also too large.

49 is closest to 66, we need to add 17 to it.

Let me try working with 76 first:
76 - 34 = 42 (this gets us closer to 66)
42 + 73 = 115 (too large)

Let me try a different approach:



73 - 49
24 + 76

24
100 (too large)

What if I try:

73 - 49 24

24 + 76 = 100

100 - 34 = 66 (This works!)

</think>

<answer> (73 - 49) + 76 - 34 </answer>

6 Discussion

Our results demonstrate that loss-based curricula can reduce time to convergence for both supervised
and preference-based fine-tuning without sacrificing — and in some settings even improving — the
strength of the model.

Across all hyper-parameter sweeps, LCL shaved roughly 20% off training time. In practice this might
translate to freeing an A100 GPU 2 hours sooner for every 10 hour job — which is non-trivial for
resource-constrained academic and industrial groups. The gains stem from two compounding effects:
early epochs process fewer and easier examples, shortening each optimization step; and the smoother
loss landscape eases gradient noise, allowing larger effective steps before the learning rate decays.

On the small SFT corpus, very fine granularities (n > 6) did hurt final loss. Intuitively, restricting
the first epoch to around 16% of the already small dataset starves the model of signal, causing
under-fitting that is not fully recovered later. Conversely, the larger DPO corpus maintained or
exceeded baseline accuracy for all n values; each mini-dataset still contained many diverse examples,
preserving coverage.

7 Conclusion

We introduced loss-based curriculum learning (LCL), an annotation-free schedule that orders training
examples by their initial forward-pass loss. On the Countdown arithmetic-reasoning benchmark, LCL
cut time-to-convergence by around 20% and, on sufficiently large datasets, matched or improved final
validation loss. The approach is simple to implement, task-agnostic, and complementary to both SFT
and DPO pipelines.

Future work. Several extensions are could be explored:

1. Multi-modal difficulty signals. Combining loss with other rule-based heuristic features
(length of sentence/words, complexity of phrases) may yield more robust curricula.

2. Scaling studies. Re-running LCL on 7 B-parameter models and language-rich tasks
(GSMSK, HumanEval) will reinforce whether the gains persist at larger scales.

3. Dense numeric shaping. Replace binary verifier reward for the Countdown task with
r = —|f(x) — T, or other more continuous functions to provide smoother gradients and
denser reward space.

4. Token-Level Ensembling Predictions at the individual token level are combined from
multiple models. This approach aims to leverage the strengths of each model to produce a
more robust and refined output.

8 Team Contributions
» Tomas Coghlan: Implementation/debugging of DPO, creation of DPO preferences dataset,
and editing poster/final report.

* Ismail Mardin: Debugging of SFT and DPO, implementation of evaluation script, creation
of poster, and writing the first-draft of final report.

* Mattheus Wolff: Implementation of SFT, hyperparameter-tuning for SFT, debugging of
DPO, hyperparameter-tuning for DPO, and editing of final report.



Changes from Proposal In our proposal, we were going to do DPO on the Ultrafeedback task.
However, we decided to do it instead on the Countdown task; while this required additional effort
to create an adequate preference dataset, we found it easier to work with the shorter prompts and
responses within the Countdown dataset.
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