
Extended Abstract

Motivation Novel view generation is an important problem that has a wide range of applications in
many fields of work. Fields like robotics and self-driving cars require fast and efficient representations
of scenes to calculate safe physical movement, while other fields like virtual reality and augmented
reality can take advantage of solutions to create more immersive experiences for entertainment and
education. Historically, the most successful methods for novel view generation have been using
algorithms that make point cloud reconstructions using SfM and MVS. These methods are a tried and
tested method that uses geometric information to gather scene data. However, this method lacks the
ability to recreate the scene in a way that actually looks like the original, only the geometry. This is
where newer methods like NeRF and 3D Gaussian Splatting have an edge. While requiring more
computational resources and training time, their ability to perform scene reconstruction in a online
environments makes them well suited for problems that involves dynamic views.

Method and Implementation Our approach uses a combination of reinforcement learning and
computer vision to create an agent that can explore a scene in a way that optimizes the performance
of the two computer vision models we are testing, 3D Gaussian Splatting and Neural Radiance Fields.
On the DRL side, we will be training a PPO algorithm, with additional experimentation of various
RL methods to improve the training process. These methods include behavioral cloning to initialize
the model, multi-modal rewards based on both the vision model metrics as well as proxy metrics
that we use in place of the full metric calculations, and hyperparameter adjustments. We also use
a multi-step pipeline, with different training iterations using unique rewards to improve the overall
model performance. For the environment, we use Habitat-Sim, a 3D environment rendering simulator
that allows us to manipulate a seeing agent in a preset 3D scene. We use our own implementation of
PPO for this project, as well as our own agent class. On the computer vision side, we use the original
paper’s implementation of 3D Gaussian Splatting with some modifications to the COLMAP feature
matching pipeline by using sequential matching as opposed to the exhaustive matching since we are
using a video-like input in the form of an agent’s rollout. For NeRF, we use a mostly vanilla version
of Instant Neural Graphics Primatives, a faster version that has some image quality improvements
and performance speedups compared to the original NeRF implementation. To evaluate our model,
we will be using pixel signal to noise ratio (PSNR) of the generated images.

Results Our baseline algorithm, which trains PPO using a novelty-based reward calculated using
the pose novelty and image novelty, achieves a low PSNR of 11.82. The first of our two iterations
upon these initial weights, SIFT keypoint-based rewards, achieves a PSNR of 37.26. Finally, our
alternative method, COLMAP feature-based rewards combined with the PSNR metrics obtained a
PSNR of 25.68. Since we were attempting to optimize the performance of our CV models, the most
obvious method was to use the PSNRs outputted by the models themselves. However, that turned
out to be not very effective. The problem we found was that because this metric was unable to get
a per-step reward, sparsely rewarding PPO only for the last step of a training epoch, PPO did not
learn very effectively. This is on top of the fact that this method takes much longer to train and is
computationally much more expensive than the SIFT keypoints-based reward.

Discussion While we are happy with the performance that our agent allowed the models to achieve,
we have some limitations. The first is that due to time and computational constraints, we were unable
to run on a variety of scenes, and had to stick with a relatively simple scene. This was disappointing
because the whole point of using novelty-based rewards instead of a frontier-exploration type map
was that it was more effective in larger scenes. Furthermore, the number of iterations that the full
model was deployed on to get rewards was relatively small, meaning that COLMAP + PSNR could
potentially have a higher PSNR, but couldn’t reach it.

Conclusion Novel view generating models such as 3DGS and Instant-NGP are an interesting
model to optimize for in terms of agent performance, as they require a balance of view novelty and
"redundancy" (so that feature matching between images can be done). By combining novelty and
matching keypoint counts, we ended up with a model that has decent performance. In the future,
we would like to apply our model to a larger dataset like HM3D to see how generalizable it is, and
whether it would be easy to fine tune it to retain performance.

Optimizing 3D Scene Agent Exploration for Novel
View Generation

Brian Lee
Department of Computer Science

Stanford University
bjlee25@stanford.edu

Allison Tee
Department of Computer Science

Stanford University
ateecup@stanford.edu

Abstract

We implement a reinforcement learning-based approach to optimize 3D scene
exploration for novel view generation using two novel view generation models: 3D
Gaussian Splatting (3DGS) and Instant Neural Graphics Primitives (Instant-NGP).
Using Habitat-Sim for simulated environments, we train an agent using Proximal
Policy Optimization (PPO) to navigate scenes in ways that maximize view quality.
Due to the sparsity and cost of directly using PSNR as a reward, we experiment with
alternative training strategies, including multi-stage rewards with pose/image nov-
elty, SIFT keypoint matches, and COLMAP-based proxy metrics. Our experiments
show that SIFT-based rewards significantly outperform baseline novelty metrics
and even the more costly PSNR-based fine-tuning approach, achieving an average
PSNR of 37.26 for novel views. These findings suggest that combining view
novelty with keypoint matchability results in more effective exploration behavior,
and future work will test generalizability to larger datasets such as HM3D.

1 Introduction

3D scene reconstruction is an important problem that has a wide range of applications in many fields
of work. Fields like robotics and self-driving cars require fast and efficient reconstruction for safe
physical movement, while other fields like virtual reality and augmented reality can take advantage
of solutions to create more immersive experiences for entertainment and education.

Historically, the most successful methods for reconstruction have been point cloud reconstructions
using SfM and MVS. These methods are a tried and tested method that uses geometric information to
gather scene data. However, this method lacks the ability to recreate the scene in a way that actually
looks like the original, only the geometry. This is where newer methods like NeRF and 3D Gaussian
Splatting have an edge. While requiring more computational resources and training time, their ability
to perform scene reconstruction in a online environments makes them well suited for problems that
involves dynamic views.

1.1 NeRF

Neural Radiance Fields (NeRF) Mildenhall et al. (2020) is a method for novel view synthesis that
represents a 3D scene as a continuous volumetric field encoded by a neural network. Given a 3D
position and a viewing direction, NeRF predicts the color and volume density at that point. These
predictions are integrated along camera rays using volumetric rendering to produce photorealistic
images from arbitrary viewpoints. NeRF has demonstrated impressive results in rendering complex
scenes with high visual fidelity, especially in terms of view-dependent effects such as reflections and
lighting changes.

Stanford CS224R 2025 Final Report

Despite its rendering quality, NeRF has several limitations. Training is computationally expensive
and typically requires hours on a GPU for a single scene. Rendering is also slow, as it involves ray
marching and evaluating the neural network many times per pixel. Furthermore, NeRF lacks explicit
geometry and is difficult to edit or integrate into standard 3D workflows. However, its flexibility
and differentiable nature make it an important baseline for evaluating novel view generation and
reconstruction methods.

1.2 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) Kerbl et al. (2023) is a recent technique that represents a scene using
a set of anisotropic 3D Gaussians, each with attributes like position, color, opacity, and scale. These
Gaussians are directly rendered onto the image plane using a fast differentiable rasterization pipeline.
Unlike NeRF, which models the scene implicitly through a neural network, 3DGS provides an explicit,
geometry-aware representation of the scene, enabling real-time rendering and interactive editing.

One of the key strengths of 3DGS is its efficiency. Training can be completed in minutes, and
rendering can be done in real time, making it suitable for real-world applications such as AR/VR and
robotics. However, because 3DGS does not model view-dependent appearance in its basic form, it
can sometimes fall short of NeRF’s photorealism in specific scenes. Even so, its speed and practicality
make it a compelling alternative for scene reconstruction, especially in scenarios where rendering
latency and sample efficiency are important.

2 Related Work

We initially came to this idea through a paper by Lei et al. on GaussNav Lei et al. (2025). GaussNav
combines 3DGS and agentic movement to optimize for object finding in cluttered scenes. Their work
builds on another paper by Li et al. on Semantic Gaussians, a way of segmenting a view generated
by Gaussian splatting using traditional 2D encoders combined with embeddings of a 3D semantic
network Li et al. (2024). While their work was relevant in combining 3DGS and agentic movement,
we differ from their work in two main ways. The first is that while GaussNav is specifically training
for object detection and navigation, our model aims for a higher-level understanding of the scene
as a whole through an agent’s optimization of these vision models. The second is that, on the
reinforcement learning side, GaussNav uses frontier-based exploration to have the model explore
parts of the environment that haven’t been explored yet by keeping track of a global map. We were
inspired by this idea, and used a similar method that mimicked this idea of unknown-exploration by
using a novelty-based reward, which made a global map unnecessary.

The second paper we build off of is AutoNeRF by Marza et al. Their work is very similar to ours
in that they are also using an agent to gather images to train an implicit representation-based novel
view generation algorithm. However, their agent exploration strategy, like AutoNeRF, is based on
frontier-based exploration. It keeps track of an explicit top-down semantic map at each step, updating
it with each action the agent takes. Furthermore, their final model is evaluated using the accuracy of
the semantic map as opposed to the reconstructions themselves, which is different from our approach.

3 Method

Our approach uses a combination of reinforcement learning and computer vision to create an agent
that can explore a scene in a way that optimizes the performance of the two computer vision models
we are testing, 3D Gaussian Splatting and Neural Radiance Fields.

On the computer vision side, we use the original paper’s implementation of 3D Gaussian Splatting
with some modifications to the COLMAP feature matching pipeline by using sequential matching as
opposed to the exhaustive matching since we are using a video-like input in the form of an agent’s
rollout. For NeRF, we use a mostly vanilla version of Instant Neural Graphics Primatives, a faster
version that has some image quality improvements and performance speedups compared to the
original NeRF implementation. To evaluate our model, we will be using pixel signal to noise ratio
(PSNR) of the generated images.

On the DRL side, we will be training our agent using proximal policy optimizaiton (PPO), with
additional experimentation of various RL methods to improve the training process. We use our own

2

Figure 1: NeRF Sample using 50 images of Axiom Axolotl

basic implementation of PPO for this project, as well as our own agent class. This was because
Habitat-Sim’s RL environment counterpart, Habitat-Lab, had complex dependency issues that seemed
very common based on feedback on their official page. For our agent, we implemented basic action
selection by sampling logits, and created a customizable reward function so that we could test various
ones. This reward function would be dense rewards that PPO traditionally excels at using. In our
harness that ran the PPO and initialized the agent, we also added sparse reward integration for an
additional reward.

We initially experimented with behavioral cloning by creating an "expert trajectory." However, we did
not see a noticeable difference between runs that used BC and runs that didn’t. We hypothesize that
this was because we had provided expert trajectories in the form of a predetermined action sequence,
but because of random scene initialization, the trajectories were being rendered unhelpful at best, or
actively damaging at worst. While we looked into further experimentation, we decided that we would
rather look into alternative RL methods.

Our main contribution comes in the form of the various rewards we tested. As a baseline, we
implemented a novelty-based reward at each step of the rollout, calculated by combining the image
novelty and pose novelty:

Reward = 0.5 · rpose + 0.5 · rimage

rpose =

{
1.0 if ∥pnew − pprev∥ ≥ novelty_radius for all previous poses
0.0 otherwise

rimage =

{
1.0 if SSIM(graynew, grayprev) ≤ 0.95 for all previous images
0.0 otherwise

Then, we fine tuned the weights from training on the above rewards using two different rewards. The
first reward we tried was a combination of COLMAP and PSNR metrics. While the view generation
part of the models are quite fast (a few seconds for each novel view), we found that the training
process was quite long (10 minutes per epoch). This meant that if we wanted to use the PSNR of the
models, the training time would be quite long. As such, we combined it with a faster proxy in the
form of COLMAP. Every 25 epochs, we would run the model training pipeline, but in every other
epoch, we would instead use the number of registered images COLMAP ended up with when doing
feature matching. While this itself also took some time (1 to 2 minutes per epoch), it was much
faster than using the full model. We also ensured that the two reward types, full and proxy, were
normalized to be around 1.0 so that we wouldn’t get one overpowering the other, or other problems
with gradient calculations.

The second reward we tried was a much simpler one that didn’t involve any actual model metrics.
We used SIFT to calculate the number of matching keypoints as a measure of the quality of the
rollout’s matchability. We used the OpenCV library SIFT implementation. The benefit to this was
that, while the first method would result in a much more accurate metric of model performance (since

3

we directly used the metrics themselves), it was a sparse reward; we couldn’t reward each action of
the rollout directly, and could only evaluate the rollout as a whole, which meant that the agent would
have difficulty learning exactly which actions in a rollout were good and bad. This could potentially
be remedied by more epochs, but the first method also takes more time to run, so we hypothesized
that the SIFT method would have comparable performance to the first. We then planned to use SIFT
combined with the first method’s rewards as well.

4 Experimental Setup

We ran our scripts and simulation on a local installation of Ubuntu 24.02 Python 3.9.21. The machine
has an Intel i9 12900K with 64 GB of RAM, and an Nvidia RTX 4090 24 GB VRAM. We set
up a Miniconda environment that used modified dependencies of Habitat-Sim, instant-ngp, 3DGS,
and COLMAP to support all installations. We used the Skokloster Castle scene that came with
Habitat-Sim as our simulation environment.

5 Results

After training our initial baseline, we found that the policy would relatively consistently collapse
before the end of training.

The above figure shows the longest run without collapse for our original model, most runs collapsed
at epochs less than 10. To combat this, we introduced an entropy bonus that would reward more
exploration:

PolicyLoss = −min(surr1, surr2)− α · Entropy

We experimented with α until we found one that saw entropy decrease but not collapse, and got
α = 0.01 to be effective.

We also modified the COLMAP + PSNR run to use minibatch updates.

4

Table 1: Performance Comparison
Method PSNR (3DGS) PSNR (Instant-NGP)

Baseline 11.82 8.53
COLMAP + PSNR 25.68 24.02
SIFT Keypoints 37.26 33.59

5.1 Quantitative Evaluation

Our final baseline algorithm, which trains PPO using a novelty-based reward calculated using the
pose novelty and image novelty, achieves a low PSNR of 11.82. The first of our two iterations upon
these initial weights, SIFT keypoint-based rewards, achieves a PSNR of 37.26. Finally, our alternative
method, COLMAP feature-based rewards combined with the PSNR metrics of 3DGS / Instant-NGP
obtained a PSNR of 25.68 (3DGS for evaluation). We found that 3DGS consistently outperformed
Instant-NGP, which looking back, was to be expected considering it does outperform Instant-NGP on
many popular scene datasets anyway.

5.2 Qualitative Analysis

(a) Ground Truth (b) Rendered Image

Figure 2: Comparison between ground truth image and rendered image using SIFT-based exploration
(best performing generation).

(a) Ground Truth (b) Rendered Image

Figure 3: Comparison between ground truth image and rendered image using SIFT-based exploration
(worst performing generation).

5

(a) Ground Truth (b) Rendered Image

Figure 4: Comparison between ground truth image and rendered image using COLMAP + PSNR
rewards.

While most rendered novel images for SIFT look like the best performing one, we did find some rare
instances of visual artifacts in the scene, suggesting that the model still has some places to improve.
For the COLMAP + PSNR model, there were no clear visual artifacts in any of the other scenes that
were a good point of comparison.

Since we were attempting to optimize the performance of our CV models, the most obvious method
was to use the PSNRs outputted by the models themselves. However, that turned out to be not very
effective. The problem we found was that because this metric was unable to get a per-step reward,
sparsely rewarding PPO only for the last step of a training epoch, PPO did not learn very effectively.
This is on top of the fact that this method takes much longer to train and is computationally much
more expensive than the SIFT keypoints-based reward. We had initially planned to then take the
model of the SIFT keypoints-based reward and fine tune it with the rewards of COLMAP + PSNR,
but given that SIFT was already achieving such high performance, it was unnecessary. Therefore, the

6 Discussion

While we are happy with the performance that our agent allowed the models to achieve, we have
some limitations. The first is that due to time and computational constraints, we were unable to run
on a variety of scenes, and had to stick with a relatively simple scene. This was disappointing because
the whole point of using novelty-based rewards instead of a frontier-exploration type map was that it
was more effective in larger scenes. Furthermore, the number of iterations that the full model was
deployed on to get rewards was relatively small, meaning that COLMAP + PSNR could potentially
have a higher PSNR, but couldn’t reach it.

7 Conclusion

Novel view generating models such as 3DGS and Instant-NGP are an interesting model to optimize
for in terms of agent performance, as they require a balance of view novelty and "redundancy" (so
that feature matching between images can be done). By combining novelty and matching keypoint
counts, we ended up with a model that has decent performance. In the future, we would like to apply
our model to a larger dataset like HM3D to see how generalizable it is, and whether it would be easy
to fine tune it to retain performance. When reflecting on the possible applications of our work, while
it definitely could be useful in the industries we described above, we believe that it is most useful in
finding a proxy measure for agentic novel image generation quality in the form of keypoints.

6

8 Team Contributions

• Group Member 1: Brian Lee Brian worked on implementing the basic PPO and logging,
and helped work on the reward design and debugging the dependencies for the vision
algorithms. Brian also worked on the paper and the poster.

• Group Member 2: Allison Tee Allison took the lead in setting up the vision algorithms
and code that allowed all components of the vision algorithm to be used in PPO for reward
and training, and helped design which rewards to use. Allison also worked on the paper and
edited the poster.

Changes from Proposal We pivoted from doing agentic object search with 3DGS to more general
scene representation / novel view generation with 3DGS and instant-NGP.

References
Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023. 3D Gaussian

Splatting for Real-Time Radiance Field Rendering. In ACM SIGGRAPH Conf. Proc. https:
//repo-sam.inria.fr/fungraph/3d-gaussian-splatting/ arXiv:2306.03816.

Xiaohan Lei, Yinhao Liang, Qi Xu, Xinshuo Wang, Yuchen Li, Roberto Martín-Martín, Li Fei-Fei,
and Silvio Savarese. 2025. GaussNav: Gaussian Splatting for Visual Navigation. arXiv preprint
arXiv:2403.11625 (2025). https://arxiv.org/abs/2403.11625 to appear in ICRA 2025.

Yuxuan Li, Fanbo Wu, Yichao Jiang, and Ziwei Deng. 2024. Semantic Gaussians: Open-Vocabulary
Scene Understanding on 3D Gaussian Splatting Scenes. arXiv preprint arXiv:2402.05149 (2024).
https://semantic-gaussians.github.io/

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In
Proc. European Conf. on Computer Vision (ECCV). 405–421. https://doi.org/10.1007/
978-3-030-58452-8_24

7

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://arxiv.org/abs/2403.11625
https://semantic-gaussians.github.io/
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24

	Introduction
	NeRF
	3D Gaussian Splatting

	Related Work
	Method
	Experimental Setup
	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Conclusion
	Team Contributions

