
Extended Abstract

Motivation We are interested in the challenges many traditional RL algorithms face in sparse-
reward environments, especially when long-term planning is required. We investigate the effectiveness
of offline RL algorithms relative to online algorithms which often fail in these sparse-reward environ-
ments. We also aim to explore the differences between different offline algorithms, specifically DPO
and SFT.

Method Our environment is Microsoft’s TextWorld, which provides a framework for automatically
generating randomized text-based games with very sparse rewards. We generated approximately
3000 unique cooking training games and used the provided oracle trajectories as training data. In
order to investigate learning strategies in this setting, we employ three different techniques – SFT,
DPO, and PPO – and evaluate them separately and in combination with one another. We evaluate the
performance of our agents trained under each paradigm on a separate set of 500 test games and report
the success rate (number of games completed), average score (overall average non-zero rewards
obtained per game), and average steps (average trajectory length).

Implementation To interface with the TextWorld environment for our purposes, we wrote our own
module called textworld_utils, which exposes functions to efficiently generate TextWorld games at
scale. We obtained expert preference data using the built-in oracle trajectories for each game provided
by the TextWorld library. We use that data to finetune the pre-trained LLama 3.2-3B. We ablate
with 5 different models: SFT, DPO, SFT+DPO, SFT+DPO+PPO, PPO. We intentionally chose a
low parameter count base model for novelty since much larger models have already been shown to
do well in TextWorld. We evaluate the performance of each trained agent using our textworld_utils
module on a standardized set of 500 systematically generated test games and implemented logging
for the success metrics mentioned above.

Results During evaluation, our trained models act as the agent to play all of the games in our
testing set, receiving a score for each. Evaluated on our test set of 500 games, we found that the
baseline LLaMa-3.2-3B agent results in long trajectories that are unsuccessful. This performance is
significantly improved by the application of SFT, as the fine-tuned agent becomes able to solve more
than 1/3 of the games in our test set with a far lower average trajectory length. While DPO alone only
marginally improves the agent’s success rate, it does result in significantly lowered average trajectory
length, and training with SFT + DPO retains SFT’s performance gains while making the trajectories
more efficient (shorter). Our PPO-trained agent obtains a lower-than-baseline average score, but
reduces the average trajectory length (although less so than DPO). Finally, our SFT + DPO + PPO
trained agent achieves basically the same success rate than SFT + DPO, with a slight improvement
on average score and reduced average trajectory length.

Discussion Our results suggest that different training paradigms are better suited to long-horizon,
reward-sparse tasks than others. As suggested by theoretical intuition, the offline preference-based
algorithms performed much better than PPO in this setting. We also noted through our ablation
analysis of SFT and DPO that SFT outperforms DPO in terms of success rate and average score,
suggesting that DPO in isolation did not encourage the model to take advantageous actions. However,
when the agent was first finetuned with SFT and then finetuned further using DPO, we saw the agent
become more efficient. This reinforces the theoretical notion that, while DPO is not very useful
to teach a model a task from scratch, it can be useful to refine model responses and decrease the
frequency of sub-optimal responses once the model already has a sufficient success rate.

Conclusion We studied the effectiveness of offline preference-based learning in sparse-reward,
long-horizon environments using TextWorld as a testbed. Our experiments demonstrate that SFT
yields substantial gains in success rate and average reward, outperforming both the baseline and PPO.
DPO, while weaker in isolation, improves trajectory efficiency when applied after SFT, validating
its utility as a second-stage fine-tuning method. PPO underperforms across all metrics, highlighting
the limitations of online RL in sparse-reward settings without many steps. Our results reinforce the
theoretical expectation that offline methods paired with high-quality training data are better suited
and more efficient than online methods for environments with sparse, hard-to-specify, or delayed
rewards. We also happily find the great strength of smaller LLMs in these difficult environments.

Cook or be Cooked: The Bitter Lesson

Derek Askaryar
Department of Computer Science

Stanford University
askaryar@stanford.edu

Parthav Shergill
Department of Computer Science

Stanford University
parthav@stanford.edu

Christy Thompson
Department of Computer Science

Stanford University
cthomps@stanford.edu

Sam Wondsen
Department of Computer Science

Stanford University
swondsen@stanford.edu

Abstract

Sparse-reward, long-horizon environments remain a major obstacle for
reinforcement-learning agents, especially when the action and observation spaces
are expressed in natural language. We study this setting through Microsoft
TextWorld and ask whether offline preference-based techniques can train com-
pact language-model agents that rival far larger systems. Leveraging a scalable
generation pipeline, we synthesize 3000 procedurally-generated cooking games
for training and 500 disjoint games for evaluation, each accompanied by oracle
winning trajectories. From these games, we build a dataset of 6,300 expert trajecto-
ries and preference pairs for Supervised Fine-Tuning (SFT) and Direct Preference
Optimization (DPO); we also benchmark an online PPO baseline. All methods
fine-tune the 3 B-parameter LLaMA 3.2 model. SFT alone raises the zero-shot
success rate from 0% to 37% and cuts average trajectory length six-fold. DPO
in isolation offers limited gains, but when applied after SFT it further trims tra-
jectories by 11% without sacrificing success. PPO struggles to discover reward
from scratch, yet provides a marginal score boost when appended to the SFT +
DPO pipeline. Our results show that a lightweight model, trained entirely offline
on expert demonstrations and contrastive preferences, can solve over one-third of
unseen TextWorld tasks while remaining action-efficient—outperforming much
costlier online exploration. The study highlights offline preference learning as
an effective, compute-conscious strategy for long-horizon language environments
and suggests a promising path toward small-model alignment in sparse-reward
domains.

1 Introduction

In this work, we investigate the performance of offline preference-based methods in sparse-reward,
long-horizon environments, with a focus on Microsoft’s TextWorld, which is a benchmark suite
for text-based interactive fiction games. These games present a combinatorially large action space,
partial observability, and minimal external reward, making them a compelling evaluation setting for
long-term planning and efficient learning.

We compare three paradigms for training language-model-based agents in this setting:

• Supervised Fine-Tuning (SFT) using expert demonstrations or high-quality trajectories.
• Direct Preference Optimization (DPO) trained on ranked trajectory pairs from expert or

model-generated comparisons.

Stanford CS224R 2025 Final Report

• Proximal Policy Optimization (PPO) as a baseline online RL algorithm.

To generate training and evaluation data, we develop a scalable game generation and evaluation
pipeline using a custom utility layer over the TextWorld API. We also explore two strategies for
collecting preference data: expert rollouts using the environment’s built-in oracle, and synthetic
comparisons generated using an LLM (Claude via AWS Bedrock). For all approaches, we fine-
tune a compact 3B-parameter LLaMA 3.2 model, allowing us to study knowledge distillation and
generalization under compute-constrained conditions.

Our experiments show that SFT significantly improves success rates and reward acquisition, while
DPO enhances action efficiency when used after SFT. In contrast, PPO struggles to learn effective
behavior in this sparse-reward regime. These results highlight the value of offline preference-based
methods in long-horizon settings and motivate further exploration of hybrid approaches to sequential
decision-making under limited supervision.

2 Related Work

Sparse-reward, long-horizon environments pose fundamental challenges for reinforcement learning
algorithms. In such settings, rewards are either delayed or infrequent, making credit assignment
difficult and hindering exploration. These limitations are amplified in language-based environments,
where the action space is combinatorially large and observations come in the form of natural language.
Our work builds on and contributes to four core areas in the literature: early reinforcement learning
in text environments, the emergence of controlled benchmarks, preference-based learning methods,
and the limitations of online RL in sparse-reward domains.

2.1 Reinforcement Learning in Text-Based Environments

One of the earliest and most influential attempts to apply RL in language environments came from
Narasimhan et al., who proposed the Deep Reinforcement Relevance Network (DRRN) (Narasimhan
et al. (2015)). In this model, observations and actions are represented as separate embeddings
and scored via a relevance function. Although effective on simple interactive fiction tasks, DRRN
struggled with exploration in environments where success requires long-term planning. This work
illuminated a key difficulty in text-based RL: the agent must interpret a natural language description
of the world, decide on a valid action (also in natural language), and maintain memory of past states
— all without frequent reward feedback.

These limitations also motivate the need for environments where learning progress can be more
rigorously measured and controlled.

2.2 Benchmarks and the Role of TextWorld

To support reproducibility and experimentation in text-based RL, TextWorld was introduced by Côté
et al. as a gym-style environment for generating structured interactive fiction games. TextWorld
provides the ability to procedurally generate thousands of games with controlled properties (e.g.,
number of required actions, object complexity), making it an ideal testbed for research in sparse
reward learning and long-horizon planning.

One of the earliest successes using TextWorld came from the introduction of KG-A2C, a model that
augmented Advantage Actor-Critic with a dynamic knowledge graph and graph attention mechanism.
This design enabled the agent to track world state and relational structure more effectively, resulting in
more than a 2× improvement on cooking games compared to vanilla A2C. These gains demonstrated
the importance of structured representations in solving text-based tasks with delayed rewards and
sequential dependencies.

Most recently, advances in large language models have reshaped the landscape. In 2024, a prompt-
engineered GPT-4 model with constrained decoding achieved nearly 70% success on the TextWorld
CommonSense benchmark — a significant leap in performance. These results suggest that large
pretrained models, when guided correctly, can exhibit strong planning and reasoning capabilities in
sparse-reward environments, even without explicit RL training.

2

However, these gains come with trade-offs: models like GPT-4 are computationally expensive to
deploy and fine-tune. A key open question — and one central to our work — is whether similar
performance can be achieved using smaller models, particularly by leveraging distillation and
preference-based offline training from larger model outputs. Our project explores this hypothesis
by using a small model (LLaMA 3.2-3B), aiming to replicate some of GPT-4’s capabilities more
efficiently.

2.3 Preference-Based Learning and Offline Fine-Tuning

When rewards are difficult to define or learn from directly, alternative supervision strategies are
needed. One such approach is preference-based learning, where models are trained to prefer one
behavior over another. Ziegler et al. demonstrated that large language models could be fine-tuned
using preference data to align better with human intent (Ziegler et al. (2020)). Their method collected
pairwise human judgments between model outputs and trained a reward model that was then used
to fine-tune the base model with reinforcement learning. This became a foundational technique in
human feedback alignment and later informed models like InstructGPT and ChatGPT.

More recently, Rafailov et al. proposed Direct Preference Optimization (DPO) (Rafailov et al. (2024)),
which bypasses reward modeling entirely. Instead of fitting a reward model and training a policy on
it, DPO directly updates the model to assign higher likelihood to preferred responses. This makes it
well-suited for offline, data-efficient training in settings like ours.

In our project, we explore the interplay between SFT and DPO. While SFT gives the model a general
understanding of task structure and valid action patterns, DPO serves to refine its responses, reducing
suboptimal behavior and improving trajectory efficiency.

2.4 Online RL in Sparse-Reward Environments

As a point of comparison, we evaluate our models against a PPO-trained model, a widely used online
RL algorithm known for its robustness and ease of implementation (Schulman et al. (2017)). PPO has
shown success in many domains, but it assumes frequent, well-shaped rewards to guide learning. In
sparse environments like TextWorld, we find that PPO often fails to learn meaningful behavior from
scratch, and forebodes needing orders of magnitude more steps to show some learning. Even when it
slightly reduces trajectory length, it underperforms on success rate and total reward as a baseline,
confirming that online exploration-based learning by itself is not competitive in environments with
minimal intrinsic reward signals.

These findings echo broader themes in the literature: that offline learning from curated data — partic-
ularly preference-based signals — can offer more effective supervision than reward maximization
alone in complex, reward-sparse environments.

3 Method

Our goal is to evaluate the effectiveness of preference-based offline learning strategies in sparse-
reward, long-horizon environments. We use Microsoft’s TextWorld environment to benchmark
three learning paradigms: Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO),
and Proximal Policy Optimization (PPO). This section details our game generation pipeline, data
preparation strategies, model architecture and prompting, training procedures, and evaluation protocol.

3.1 Environment: TextWorld Cooking Games

We use the TextWorld gym environment to generate thousands of procedurally generated cooking-
themed games. Each game defines an end objective, such as preparing and eating a specific dish,
and unfolds as a sequence of natural language observations and action commands. To win, you
must execute the right commands in order such as "fry onion", "prepare meal", and "eat meal".
The environment is only partially observable at the beginning and must be explored. Players only
receive sparse reward signals. Only the commands in the winning trajectory yield positive reward.
The number of required commands to win depends on the difficulty settings used to generate that
specific game, but usually not many commands are needed. However, it may take many exploratory
commands aside from the winning commands to reach the winning state and those exploratory

3

commands give no reward feedback. Trajectories can get long with rewards few and far in between
making this a canonically difficult RL environment.

3.2 Game Generation and Data Collection

Using Microsoft’s TextWorld Python library, we implemented our own module called
textworld_utils to automate the generation and evaluation of game instances. This tool supports:

• Procedural generation of thousands of training and test games with fixed or randomized
seed control, and various generation flags to change game difficulty: These flags represent
things that are required to finish the recipe for that game. For example, generation flags
include cutting, cooking, number of ingredients that must be collected for the recipe, and
more. The more flags that are enabled usually means more commands needed to win.
Additionally, the adjective-noun pairs of food ("fried fish", "chopped chicken", etc) are split
into three different distributions which are train, valid, and test. The train and test games we
generated were generated using their respective distributions which allows us to better test
the generalization ability of our learned agents.

• Environment rollouts using oracle and learned agents.

• Logging of observations, admissible commands, actions taken, rewards received, and ground-
truth objectives.

We use this tool to construct:

• A training set of approx. 3,000 games each generated with different random seeds and
different combinations of difficulty flags so the agent can learn many different difficulty
levels of games.

• A test set of 500 unseen games for final evaluation.

3.3 Data Collection for Offline Algorithms

We collect two forms of training data:

Expert Demonstrations for SFT Collecting expert demonstrations for the SFT fine-tuning was
quite simple because TextWorld games that generated from the training distributions actually come
with the "oracle", or fastest winning, trajectory of commands. We were then able to create a dataset
of expert trajectories recorded as (observation, admissible commands, oracle command) tuples.

Action Preferences for DPO To support DPO, we construct preference pair data point in the form
of (observation, chosen action, rejected action) tuples. These are generated by using the TextWorld
oracle optimal action as the "chosen" action, and a random incorrect action as the "rejected" action.

An interesting note to add is that since previous work in the TextWorld environment was fairly
successful by using very large models such as GPT-4 or Claude we wanted this paper to train a much
smaller model and conduct knowledge distillation by using Claude to generate synthetic trajectory
data. However, we quickly found that Claude was actually not very good at TextWorld and the
number of tokens needed for the input prompts were very costly. Therefore, we used the TextWorld
oracle trajectories as a proxy for an expert who we are conducting knowledge distillation on. Overall,
we had a total of 6,300 expert trajectories. Each game-state in the trajectory is accompanied by the
corresponding oracle-generated optimal action (used for both SFT and DPO), and a randomly-chosen
non-optimal action (used only for DPO).

3.4 Prompting and Model Interface

For all prompting and training involving LLMs (SFT and DPO), we use a consistent structured
prompt template designed to:

• Summarize the overall game goal.

• Include recent history as observation–action pairs.

4

• Display the current observation and admissible commands.

In terms of the actual request for completion, the agent is asked to:

“Choose a NEW action from the ‘Available commands’ list that will help you
complete your objectives... Your response MUST be **exactly one** command...
DO NOT explain your choice.”

This format enforces consistent input formatting and response constraints for efficient token-level
supervision. The same prompt is used for fine-tuning and preference evaluation to ensure consistency.

3.5 Evaluation Protocol

We evaluate all agents on a standardized set of 500 held-out test games. For each game, we compute:

• Success Rate: Percentage of games in which the agent achieves the full 4.0 score.
• Average Score: Mean total reward over all test games.
• Average Trajectory Length: Mean number of steps per episode, truncated at environment

max length (more than sufficient to win games).

Evaluations are run using our textworld_utils module, with deterministic seeds and consistent
command filters. Each agent’s outputs are logged and parsed into trajectory metrics. We further con-
duct ablation studies by selectively disabling SFT or DPO during training to isolate their contributions.
In total, we have 4 experimental models, excluding the baseline.

4 Experimental Setup

All agents are fine-tuned on the LLaMA 3.2–3B model, chosen for its lightweight footprint and
suitability for distillation and preference tuning. All models share a decoder-only, autoregressive
architecture with frozen tokenizer and vocab.

SFT Using Hugging Face’s TRL library, we fine-tune the base model on expert demonstration data
using cross-entropy loss over the target action token in the prompt-completion format. We train for
multiple epochs with early stopping on held-out trajectory data.

DPO We use Hugging Face’s implementation of Direct Preference Optimization. Each training
step samples a preference pair and applies the DPO objective to maximize the margin between the
log-likelihood of the preferred and rejected completions. We use DPO in two experiments. For the
first, we just fine-tune base LLaMa 3.2 using DPO and our preference dataset. For second, we apply
DPO on top of an already SFT-fine-tuned LLaMa. We do this to see if two offline algorithms can be
combined to further improve model performance.

PPO Finally, We use a custom PPO training system for Llama 3.2-3B-Instruct on TextWorld
cooking games. Our approach uses an LLMValueWrapper that extends the base language model with
a learned value head for critic functionality. The policy leverages the language model’s generation
capabilities through batched token probability ranking, where action selection is performed by com-
puting log-probabilities for each admissible command and sampling from the resulting distribution.
Training involves collecting rollouts through environment interaction, computing advantages using
Generalized Advantage Estimation (GAE), and performing multiple epochs of PPO optimization
with clipped policy gradients. Unlike approaches that require auxiliary shaping or demonstrations,
our method trains directly from environmental rewards using the native TextWorld API.

5 Results

5.1 Quantitative Evaluation

We evaluated all trained agents on a held-out set of 500 games from the TextWorld test distribution.
These games were sampled from a distribution disjoint from the training set, both in terms of random

5

seed and recipe components. Table 1 summarizes the key metrics: success rate (percentage of games
completed with a perfect score of 4.0), average score (total reward per game), and average steps
(trajectory length until termination or max limit). We also conducted an ablation to examine the
impact of dataset size on SFT performance (Table 3).

Table 1: Evaluation results on 500 held-out TextWorld test games.
Model Success Rate Average Score Average Steps
Baseline (LLaMA-3.2-3B) 0.00 1.13 56.30
SFT 0.37 1.88 9.96
DPO 0.06 1.43 11.79
PPO 0.00 0.43 17.30
SFT + DPO 0.36 1.91 8.88
SFT + DPO + PPO 0.36 1.94 8.84

Key Findings.

• Baseline model performed poorly, with zero success rate and long average trajectories. This
shows the difficulty of the environment and the need for supervision or reward shaping.

• SFT significantly improved performance, solving over a third of all test games and drastically
reducing trajectory length. This supports the hypothesis that direct supervision using oracle
actions enables meaningful learning in sparse reward environments.

• DPO alone yielded marginal improvement in success rate and average score over the baseline,
but reduced average trajectory length. This suggests DPO encourages more efficient actions
even if success is not frequently achieved.

• PPO in isolation performed worst across all metrics except average steps, confirming that
online RL with sparse rewards is ineffective without extensive reward shaping or auxiliary
objectives.

• SFT + DPO performed best overall in terms of trajectory length, with close to the highest
success rate and average score. This supports the idea that DPO is more effective when used
as a second-stage refinement after SFT.

• SFT + DPO + PPO performed similarly to SFT and SFT + DPO in terms of success rate and
and average steps, with a slight improvement in average score. This supports the notion that
PPO is not very effective on its own in a sparse-reward setting like TextWorld, and the bulk
of performance gains come from the application of SFT and DPO, but with a much greater
scaling of steps PPO could show marked improvement, as shown by the slight improvements
in average score and steps over the SFT + DPO model here.

5.2 Qualitative Analysis

Game ID Steps Score Key Behavior and Notes
1 (Success) 4 3.0 Efficient minimal plan: opened fridge, took

cilantro, prepared meal, ate meal. No unneces-
sary actions.

2 (Success) 4 3.0 Similar to Game 1. Took correct ingredient (red
onion), prepared and ate meal in optimal steps.

0 (Failure) 3 1.0 Took yellow bell pepper, cooked it without check-
ing recipe. Did not prepare or eat, terminated early.

499 (Failure) 80 0.0 Long, degenerate episode. Repeatedly
dropped/picked objects, cooked random items
(burned bell pepper, ate onion), examined
fridge/cheese 30 times. Never prepared a valid
meal.

Table 2: Qualitative Examples of SFT + DPO + PPO Agent Behavior in TextWorld

6

These qualitative examples serve to demonstrate the ceiling our model is currently hitting. It can
successfully execute short, linear recipes when it comes to opening the fridge, picking an ingredient,
preparing it, and then eating it. However, it also tends to either fail sooner than the length of a win
or fail much later. This is due to behavior exemplified by the two failure cases, the first of which
demonstrates a breakdown in the correct order of actions leading to early termination. It still gets a
point for taking the yellow bell pepper from the fridge, but it cooks it on the stove without preparing
it. The second example demonstrates the other frequent fail case with our current agent, where it
goes on forever due to earlier actions. On multiple occasions, the agent falls into loops of actions,
onset by first frying the block of cheese, then taking it and dropping it because of the observation that
the block is now fried being different from what it expects. The repeated examination of the cheese
and the fridge spanning dozens of steps suggests the agent becomes fixated on an invalid plan with
no internal mechanism to redirect its behavior. In both cases, failure is not due to a lack of individual
action competence, but rather a failure in sequencing and goal inference. Although great bounds
were made to generalize this far, gaining greater success would most likely reside in using richer
preferences in a multi-stage alignment process.

6 Discussion

6.1 SFT Discussion

(a) SFT Training Loss on Half Dataset (b) SFT Training Loss on Full Dataset

Figure 1: SFT Training Loss

As we see from the results above, SFT by itself seems to provide the most performance gains in all
metrics compared to both DPO and PPO in isolation. However, there are interesting things to note.
For one, we see from Figure 1 that the training loss curve for SFT converges to its minimum very
quickly, within almost only 50 steps of our 600 step training episode. This could mean many things,
but one thing it tells us is that the base LLaMa 3.2 model might already have most of the intelligence
needed to solve these TextWorld games, but it just needed to be fine-tuned very slightly on the task
with just some prompt-completion expert pairs. We also decided to run another experiment whether
we trained LLaMa on half the data (only 3,150 expert trajectories) to see how much the diversity and
size of the dataset mattered. The results are shown in Table 3.

Table 3: Effect of training dataset size on SFT agent performance.
Training Set Size Success Rate Average Score Average Steps
Full (6,300 trajectories) 0.36 1.916 9.96
Half (3,150 trajectories) 0.368 1.876 12.60

The results reveal that halving the dataset size has minimal impact on success rate and average
score, though it increases trajectory length. This suggests that SFT is relatively robust to moderate
reductions in data volume and that smaller, high-quality datasets may be sufficient in constrained
settings. Additionally, it may signify the high level of intelligence of the base LLaMa model.

7

6.2 DPO

The poor performance of isolated DPO was initially surprising to us, but makes sense given its actual
loss function given here:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
where:

• πθ is the language model we want to fine-tune.

• πref is the reference (frozen) model.

• D is the dataset of preference tuples (x, yw, yl).

• x is the prompt.

• yw is the preferred response.

• yl is the dispreferred response.

• β is a temperature hyperparameter that controls the regularization strength.

• σ denotes the sigmoid function.

From the function, we see that DPO does not necessarily increase the log-prob of the preferred
response, or chosen action, but rather just wants to increase the distance in log-probs of the chosen
and rejected actions. We graph the log-probs of the chosen and rejected actions over the course of
training in Figure 2. From these curves, we see that our training achieves the DPO objective by
decreasing the logprobs of the rejected actions and only slightly increasing, if at all, the log-prob of
the chosen actions. This explains the model’s poor performance because it isn’t really learning what
is most optimal, rather it is just learning what is not optimal which is a much more indirect way of
learning. Since the log-probs of the chosen actions were likely not high enough to begin with, the
agent never really gets better. This also explains the very choppy training loss curve for isolated DPO.

(a) Log Probability of Chosen Actions

(b) Log Probability of Chosen Actions

Figure 2: Chosen vs. Rejected Log Probabilities

8

6.3 SFT + DPO

Our most successful model was first fine-tuned with SFT and then with DPO. SFT obviously provided
the vast majority of the performance gains, but DPO was still able to further refine the model with the
most significant benefit being a decrease in the average number of steps to finish a game. We theorize
that DPO was able to do so by decreasing the log-probs of the rejected actions, as seen in Figure 2,
which made it so the model was less likely to take suboptimal actions and therefore the model more
often took the quickest winning trajectory rather than a longer winning trajectory.

6.4 PPO

Finally, the PPO-only trained model does the poorest and does not improve on the baseline besides
average steps. This is, however, completely expected because PPO is an online algorithm which
heavily depends on the reward signals received throughout the games which are extremely sparse in
TextWorld. With this level of sparsity, the agent has very little hope to learn and improve without an
enormous amount of steps.

6.5 SFT + DPO + PPO

As a way of validating our intuition about the relative efficacy of SFT + DPO vs. PPO, we evaluated
another agent fine-tuned with PPO after SFT + DPO. We found that this agent performs very slightly
better to our SFT + DPO agent, which is expected given the fact that PPO’s online learning does not
yield a significant additional learning benefit in sparse-reward long horizon settings like TextWorld.
However, as mentioned before it would be interesting to see a greater resource project take on
using PPO for orders of magnitude more steps to see if it could actually capitalize off of the small
improvements we saw.

6.6 Difficulties

Working with the TextWorld was uniquely difficult in many ways. Along the course of the project we
had to pivot many times. For one, we originally wanted to do knowledge distillation from Anthropic’s
Claude model by having Claude play games and saving the trajectories as our expert training data.
However, the API requests were prohibitively expensive and Claude was surprisingly bad at playing
which made the training data low-quality. We tried to finetune models using the Claude-generated
data, but they actually decreased in performance because of the poor training signal. Luckily, we were
able to pivot since we found that when TextWorld games are generated the metadata also includes the
fastest winning trajectory which is, by definition, great expert data to train with.

Another difficulty that arose during this project was the environment itself. Since TextWorld is
text-based, the models must play the game by taking a prompt. Designing and using this prompt was
actually extremely nitpicky and difficult. For the model to properly play the game, we had to include
the entire game history up to that step in the prompt. Also, we found that we had to include the set
of admissible commands in the prompt otherwise the model would frequently give non-commands.
All of this information in the prompt then led to the issue of hitting the max content length for the
base models. We actually originally trained our models using Gemma, but were getting very low
performance. We spent an inordinate amount of time bugfixing until we realized that many of the
prompts were getting truncated by the TRL library during training because of Gemma’s context
length limits. This led to us using LLaMa 3.2 instead which has a context length window of 128K
tokens which was many times larger and sufficient for our purposes. Even then, we spent even more
time trying to refine the prompt further to try and improve the performance of the models. Our initial
iterations on the prompt actually made a significant difference which marks the potential necessity of
sufficient prompt-engineering in LLM tasks.

7 Conclusion

In this work, we evaluated the effectiveness of preference-based offline learning in sparse-reward,
long-horizon environments using the TextWorld benchmark. Our experiments demonstrate that
offline methods, specifically those leveraging expert trajectories, can significantly outperform online
reinforcement learning approaches like PPO. Supervised Fine-Tuning (SFT) on oracle data yielded the

9

most substantial improvements in success rate and reward acquisition. Direct Preference Optimization
(DPO), when applied after SFT, served as an effective refinement step, improving trajectory efficiency
by reducing suboptimal actions.

We found that DPO alone was less effective, likely due to its contrastive objective that prioritizes the
suppression of bad actions rather than direct optimization of good ones. PPO, when used in isolation,
underperformed across all metrics, reinforcing the difficulty of online exploration in sparse-reward
domains. However, when applied after SFT and DPO, PPO yielded modest additional gains in
average score and retained the improvement in success rate and trajectory length. This suggests a
limited but complementary role in further fine-tuning a warm-started policy.

Our findings underscore that combining structured supervision (SFT) with preference-based refine-
ment (DPO) forms a highly effective offline training pipeline. Even with a lightweight 3B-parameter
model like LLaMA 3.2, we achieved strong generalization and behavioral efficiency with minimal
online interaction. These results highlight the promise of small-model alignment via distilled expert
knowledge and offline preferences, offering a practical and scalable path forward for RL in sparse,
long-horizon domains.

Future work may explore multi-stage alignment using richer preferences, dynamic curriculum learn-
ing, or extensions to other high-dimensional environments such as embodied agents and interactive
dialogue.

8 Team Contributions

• Derek Askaryar: DPO Implementation, Game Generation
• Parthav Shergill: TextWorld Utils Implementation, Evaluation Pipeline
• Christy Thompson: SFT Implementation, Preference Data Collection
• Sam Wondsen: PPO Implementation, Qualitative Response Analysis

Changes from Proposal We used the TextWorld environment, as opposed to 2048, because rewards
are much sparser and game-playing is based on natural language output. We also used the SFT, DPO,
and PPO algorithms instead of self-alignment, since we were interested in ways that models learn
without a reward framework.

References
Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. 2015. Language Understanding for

Text-based Games Using Deep Reinforcement Learning. arXiv:1506.08941 [cs.CL] https:
//arxiv.org/abs/1506.08941

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. 2024. Direct Preference Optimization: Your Language Model is Secretly a Reward Model.
arXiv:2305.18290 [cs.LG] https://arxiv.org/abs/2305.18290

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal
Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG] https://arxiv.org/abs/1707.
06347

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. 2020. Fine-Tuning Language Models from Human Preferences.
arXiv:1909.08593 [cs.CL] https://arxiv.org/abs/1909.08593

10

https://arxiv.org/abs/1506.08941
https://arxiv.org/abs/1506.08941
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1909.08593

	Introduction
	Related Work
	Reinforcement Learning in Text-Based Environments
	Benchmarks and the Role of TextWorld
	Preference-Based Learning and Offline Fine-Tuning
	Online RL in Sparse-Reward Environments

	Method
	Environment: TextWorld Cooking Games
	Game Generation and Data Collection
	Data Collection for Offline Algorithms
	Prompting and Model Interface
	Evaluation Protocol

	Experimental Setup
	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	SFT Discussion
	DPO
	SFT + DPO
	PPO
	SFT + DPO + PPO
	Difficulties

	Conclusion
	Team Contributions

