Extended Abstract

Motivation Improving LLM performance across various tasks is essential as models are increasingly
deployed in complex real-world applications. Inference-time prompt optimization has emerged as a
key approach for improving performance without modifying model weights, demonstrated by DSPy,
a framework for robust LLM programming. However, existing techniques like random search across
prompts and instructions often lack generalizability and are inefficient. Existing optimizers treat each
prompt candidate independently, failing to learn from past strategy successes and failures, a gap that
reinforcement learning could fill and help improve performance.

Method We introduce ARPO (Adaptive Reward-driven Prompt Optimization), a RL-based opti-
mization technique that applies adaptive policy learning and credit assignment within the prompt
optimization loop. The ARPO approach has three variants: ARPO-Policy, which uses a learned RL
policy to dynamically select between prompt-editing strategies (in-context learning or instruction
tuning), ARPO-Ledger, which assigns and accumulates credit to individual prompt components
(demonstrations and rules) based on their observed utility, and ARPO-Hybrid, which combines both
strategies. The ARPO pipeline iteratively samples and evaluates candidate prompts, updating strategy
and component values based on observed rewards. This process converges toward high-performing
prompt configurations by leveraging cumulative feedback signals.

Implementation ARPO is implemented within the DSPy framework, building upon the existing
SIMBA optimizer and benchmarked against a true unoptimized baseline prompt with no prompt
optimization and then existing DSPy optimization techniques (FewShotRandomSearch, MIPROv2,
SIMBA) as additional baseline comparisons. We evaluate the ARPO variants on the LangProBe
benchmark, spanning tasks in classification, coding, QA, medical, math, and reasoning, and across
multiple Llama model sizes (3B, 8B, 70B) and student-teacher (3B-70B, 8B-70B) setups. Evaluation
metrics include exact match and retrieval recall, as well as token usage to assess computational cost.

Results Empirical evaluation shows that ARPO variants achieve competitive performance across a
wide range of tasks, with ARPO-Hybrid attaining the highest upper-bound improvement of 95.7%
and all ARPO methods maintaining strong median gains. ARPO outperforms existing optimizers by
11-25% across the evaluation suite and consumes 50% fewer tokens during optimization, placing
it on the favorable end of the performance-cost Pareto frontier. While different ARPO optimizers
perform well on different tasks (ARPO-Ledger best on biomedical QA, classification, ARPO-Policy
best on reasoning, ARPO-Hybrid best on coding and classification), the ARPO approach overall does
not dominate all benchmarks, and gains from including larger teacher models for optimization remain
insignificant compared to other optimizers.

Discussion ARPO’s adaptive approach enables strong gains in structured tasks and even in complex
prompting pipelines like retrieval-augmented generation and multi-hop QA, outperforming SIMBA
and approaching existing state-of-the-art optimizers’ performance with fewer token consumption.
However, ARPO has some drawbacks in having limited benefit when using teacher models which
generate edits that student models struggle to leverage compared to the other optimizers. These chal-
lenges highlight the need for representation-aware credit assignment and more structured exploration
strategies. Overall, ARPO shows that adaptive optimization can be both effective and efficient, and
further exploration of adding more prompt edit strategies and budget-aware evaluation comparisons
can highlight where ARPO performs best on the axes of LLM optimization performance comparisons.

Conclusion ARPO provides a novel approach to leveraging RL in automated prompt optimization to
drive adaptive, reward-driven methods that are both computationally efficient and broadly applicable
to LLM benchmark tasks. While the results show that ARPO is not the universally best, we
demonstrate how ARPO is still competitive in optimal and near-optimal performance with other
optimizers and indicate that no single optimizer was universally best either. We demonstrate how
ARPO is positioned high on the Pareto frontier, showing its computationally feasible applications
while maintaining competitive performance. Overall, ARPO’s employment of RL reflects a novel
approach into adaptive automated prompt optimization, which can be further explored with the
addition and integration of other RL-based strategies to improve LLM prompting pipelines.
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Abstract

Improving large language models’ performance commonly relies on manual prompt
engineering, which lacks generalizability to real-world applications. Automated
prompt optimization techniques for improving LLM behavior have emerged as
effective strategies, yet can often be computationally-expensive, relying on random
search explorations to determine optimal prompts. We introduce ARPO (Adap-
tive Reward-driven Prompt Optimization), a reinforcement learning-based method
for optimizing prompts in LLM pipelines through adaptive policy learning and
credit assignment that leverage the reward signal to iteratively converge to an
optimized prompt. We develop and evaluate three variants: ARPO-Policy learns
which element (few-shot example and instruction rule) to tweak, ARPO-Ledger
tracks component-level credit and prunes low-impact pieces, and ARPO-Hybrid
combines both signals. ARPO is built within the DSPy optimization framework to
compare against existing optimization techniques and demonstrates competitive
performance across LLM benchmarks in the LangProBe evaluation suite, outper-
forming existing optimizers by 11-25% and achieving upper-bound gains of up to
95.7%. Additionally, ARPO uses 50% fewer tokens, positioning it highly on the
Pareto frontier as a computationally-efficient optimization approach.

1 Introduction

Large language models (LLMs) have increasingly become integral components of Al systems applied
on natural language tasks that span complex decision-making [Cui et al.| (2025), domain-specific
reasoning |Chen et al.| (2024)), and interactive dialogue systems Hong et al.| (2024)). Effectively
applying LLMs fundamentally depends on the quality of information flow communicated between the
user-defined tasks and the model’s capabilities, which currently is done through prompting|Sahoo et al.
(2025)). While existing techniques of prompt engineering serve to enhance these capabilities, achieving
optimal performance relies on trial-and-error and manual prompt edits that are not generalizable to
new domains, tasks, or even changing models with evolving capabilities |Cao et al.| (2024). These
gaps highlight the inherent limitations of manually engineered prompting techniques, leaving such
systems brittle and unscalable for newer models and capabilities.

To address this gap, recent research has explored ways to automate prompt improvement through
prompt optimization. Frameworks like OPRO |Yang et al.[| (2023); Zhang et al.| (2024) and QPO
Kong et al.[(2024b) guide model behavior with iterative prompt refinement to improve downstream
task performance. DSPy |[Khattab et al.|(2023) has emerged as a framework that supports building
robust Al systems through modules such as Predict, CoT, and Baleen |Stanford-NLP-Group] ([n. d.]);
Wei et al.| (2022); [Khattab et al.|(2021)) and improving these systems through optimizers like Few-
ShotRandomSearch, MIPROv2 (Multiprompt Instruction PRoposal Optimizer) |Opsahl-Ong et al.
(2024)) and the forthcoming SIMBA (Stochastic Introspective Mini-Batch Ascent) that apply common
prompt engineering techniques like in-context learning and instruction tuning. While existing DSPy
optimizers reflect state-of-the-art performance on open-source benchmarks and closed-source pro-
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duction use cases with significant improved performance compared to unoptimized baselines, these
techniques predominantly rely on static, heuristic-based search strategies that independently evaluate
prompt candidates without dynamically leveraging accumulated feedback from prior optimization
rounds, resulting in inefficient exploration with repeated evaluation of redundant candidates. This
results in such prompt optimizers being limited by shallow search depth and at times, the inability for
optimization to generalize improvements across iterations.

In this work, we propose a novel optimization approach called Adaptive Reward-driven Prompt
Optimization (ARPO), which integrates reinforcement learning strategies into the DSPy optimization
process to improve LLM workflows. ARPO differs from the existing heuristic-based methods by
dynamically adapting its prompt optimization strategy using reward-driven signals accumulated over
iterative optimization steps. This enables ARPO to identify patterns in model trajectories during
optimization to determine which prompt components work better and perform smarter exploration
and generalization within the iteration before outputting a final optimized system. ARPO comprises
of three adaptive configurations designed to intelligently manage and refine prompt components, such
as few-shot demonstrations and induced guiding rules based on observed utility:

* ARPO-Policy: Employs an RL-based adaptive policy to guide prompt edits by dynamically
learning the optimal selection strategy between demonstrations and rules.

* ARPO-Ledger: Maintains a credit assignment ledger that tracks individual prompt component
performance, enabling pruning of lower-impact demonstrations or rules.

* ARPO-Hybrid: Combines the strengths of both adaptive policy guidance and ledger-based credit
assignments to simultaneously select and prune prompt components.

We assess ARPO’s effectiveness using the LangProBe benchmark suite Tan et al.| (2025), a comprehen-
sive evaluation framework within DSPy that spans diverse LLM benchmarks including classification,
coding, QA, medicine, math, and reasoning tasks. We compare ARPO against the existing DSPy
optimizers, demonstrating ARPO’s capability to continuously learn from cumulative feedback signals
and effectively manage complex prompt optimization decisions using reinforcement learning . Our
experiments indicate that ARPO consistently achieves significant improvements in downstream task
performance metrics, outperforming its baseline SIMBA optimizer by up to 11% and other existing
optimizers by up to 24% with around 50% less token consumption.

2 Related Work

Recent advances in prompt optimization techniques have explored the paradigm of optimizing lan-
guage models themselves. Approaches like Optimization by PROmpting (OPRO) Yang et al.[(2023);
Zhang et al.| (2024)) leverage LLMs to iteratively refine prompts through candidate scoring, reducing
the need for manual prompt engineering. However, this approach has limitations, including degraded
performance with smaller LLMs and the absence of sequential decision-making, hindering adaptation
based on cumulative feedback. Similarly, Multi-prompt Instruction Proposal Optimizer (MIPROv2)
Opsahl-Ong et al.| (2024) enhances this concept by jointly optimizing instruction templates and
few-shot examples using Bayesian optimization, effectively improving zero and few-shot configura-
tions. However, MIPROV2 is constrained by batch evaluations of static prompts and lacking adaptive
policies for managing prompt components dynamically over successive iterations.

Applying reinforcement learning to prompt optimization is another approach being explored. Methods
such as Prompt Rewriting with Reinforcement Learning (PRewrite) Kong et al.|(2024a)) utilize RL,
particularly Proximal Policy Optimization (PPO), to train models that iteratively refine prompts
for improved task performance. This method effectively automates prompt improvements but is
primarily limited to single-stage prompts, lacking mechanisms for handling combinatorial complexity
in multi-module pipelines. Query-dependent Prompt Optimization (QPO) Kong et al.| (2024b)
addresses query-specific adaptations through offline RL policies, which generate optimized prompts
incorporating context-specific few-shot examples. Although effective at the single-module level, QPO
has yet to extend to complex, multi-stage pipelines. Similarly, ParetoPrompt|Zhao| (2025]) employs RL
to optimize prompts across multiple objectives simultaneously, using pairwise comparisons to balance
trade-offs. While this approach successfully generates prompts beneficial to diverse objectives, it falls
short in providing holistic evaluations of different prompt components like instructions and few-shot
examples to yield generalizable optimizations.



3 Method

3.1 Backbone Framework: DSPy and SIMBA optimizer

We adopt the DSPy SIMBA (Stochastic Introspective Mini-Batch Ascent) optimizer as the founda-
tional backbone for developing our approach due to its modular, strategy-driven design for prompt
optimization. SIMBA optimizes prompts stochastically choosing between (1) appending few-shot
demonstrations from training data or (2) injecting guiding rules that are induced from program
components like the data, task objective and passing and negative examples into the baseline prompt,
and does so for a possible candidate which is then evaluated in batches until a final canidtdae is
determined as the final optimized program. This makes SIMBA an ideal starting point for introducing
reinforcement learning, as its decision points of which strategy to apply and when naturally lend
themselves to policy learning. Since SIMBA explores candidates purely through random exploration,
the optimizer currently fails to leverage feedback from previous optimization steps, limiting its ability
to learn effective strategies cumulatively over time.

3.2 ARPO Methodology

To address SIMBA's limitations, we introduce Adaptive Reward-driven Prompt Optimization (ARPO),
a RL-based methodology that dynamically adjusts prompt optimization strategies based on cumulative
reward signals, layering in variations of RL-based techniques onto SIMBA’s decision structure.
This helps improve prompt configurations by explicitly learning optimal strategies for managing
demonstrations and rules through adaptive feedback.

The ARPO optimizer comprises 3 variants:

* ARPO-Policy: Adaptive Prompt Mutation via Learned Policies Candidate prompts undergo
modifications guided by an adaptive RL policy, dynamically selecting editing strategies based on
their historical effectiveness. This learned policy continuously assesses the relative performance of
demonstrations and rules, thus optimizing their selection.

* ARPO-Ledger: Credit Assignment and Continuous Refinement ARPO employs a credit
assignment mechanism, scoring each demonstration and rule individually based on observed
performance improvements. These cumulative credits facilitate intelligent pruning, systematically
removing lower-impact components while retaining consistently beneficial ones.

* ARPO-Hybrid: Integrated Policy and Ledger Approach The ARPO-Hybrid configuration com-
bines policy-driven adaptive selection with ledger-based credit tracking. This integration ensures
robust and precise optimization by simultaneously employing learned strategies for component
selection and continuously refining component choices based on accumulated credits.

3.3 ARPO Pipeline

ARPO optimization iteratively refines candidate prompts through RL-driven updates. (Algorithm
Figure in Appendix

1. Trajectory Sampling: Each iteration begins by sampling candidate prompt configurations,
generated by cloning the unoptimized downstream task with varying random seeds and temperatures.
Candidates are then selected probabilistically using a softmax over their average historical rewards.
ARPO-Policy and ARPO-Ledger base this sampling on raw reward values, while ARPO-Hybrid
further integrates ledger-based credit scores to prioritize high-utility candidates during selection.

2. Continuous Strategy and Component Updates After evaluating candidate prompts, ARPO
performs targeted updates to both strategy-level decisions and component-level utility scores:

* Strategy Value Updates: In ARPO-Policy and ARPO-Hybrid, the strategy preferences are adjusted
based on observed performance gains over baselines, enabling adaptive exploration.

* Credit Assignment Updates: In ARPO-Ledger and ARPO-Hybrid, individual demonstrations
and rules are assigned cumulative credits based on their contribution to downstream performance,
facilitating ongoing refinement and selective pruning.



3. Reinforcement Learning Updates: After evaluating each candidate on mini-batches, ARPO
updates its internal learning mechanisms. For ARPO-Policy, this involves updating strategy selection
probabilities using observed rewards. For ARPO-Ledger, credit scores are incrementally refined
based on the performance impact of individual components. ARPO-Hybrid combines both strategies.

4. Convergence to Final Optimized Program: Over successive iterations over the candidate
pool, ARPO converges towards an optimal prompt configuration with the highest achieved overall
performance and returns this for evaluation on the test data.

4 Experimental Setup

We use the LangProBe evaluation suite of LLM benchmark tasks. For datasets with over 1000
examples, we use default randomized splits: 150 for train, 300 for val (during optimization), and 500
for test. For smaller datasets, we apply custom splits listed below:

Category Dataset Description B DSPy Program(s)
Classification HeartDiseas¢Detrano et al.[|(1989): Predict heart disease from patient data -  Predict, CoT
binary classification(Dataset: 303 total, 15 train, 136 val, 152 test).
IrisFisher|(1936): Classify flower type species (setosa, virginica, versicolor) by  Predict, CoT
measurements (Dataset: 150 total, 15 train, 60 val, 75 test)

Coding HumanEvalOpenAll (2021): Generate code for small programming tasks  Predict, CoT
(Dataset: 164 total, 15 train, 67 val, 82 test)
SWEBench VerifiedNLP)|(2023): Code fixes for real GitHub issues. Predict, CoT
Knowledge-based QA HoVeRJiang et al.[(2020): Claim verification with multi-document evidence. Predict, CoT, Baleen
HotPotQA|Yang et al.[(2018): Multi-hop questions over Wikipedia content. Predict, CoT, RAG, Baleen

IReRaD’Oosterlinck et al.[(2024): Label job descriptions from 14k skills (multi-  Predict, CoT
label classification).

MMLUHendrycks et al.[(2021): MCQs (A-D) spanning general knowledge. Predict, CoT, RAG, Baleen
Medical MedMCQAPal et al.[(2022): MCQs from Indian medical entrance exams. Predict, CoT
MedQAlin et al.[(2021): MCQs from US medical board exams. Predict, CoT
PubMedQAlJin et al.[(2019): Yes/no/maybe QA on biomedical abstracts. Predict, CoT
Math GSMBKCobbe et al.|(2021): Word problems requiring numeric reasoning. Predict, CoT
Reasoning JudgeBenchTan et al.|(2024): Compare pairwise responses for factual accuracy.  Predict, CoT
SconeNLIShe et al.[(2023): Binary QA on negation-sensitive sentence pairs. Predict, CoT

4.1 Evaluation Method

We evaluate methods on four canonical prompting modules and pipelines written in DSPy:

1. Predict|Stanford-NLP-Group|([n. d.]): sends instructions and inputs to LLM, returns generation.

2. ChainOfThought Wei et al.| (2022)): appends “Think step by step” to the prompt so that the LLM
produces a reasoning trace before providing the final answer.

3. Retrieval-Augmented Generation (RAG)|Lewis et al.| (2020): uses an external retriever to retrieve
evidence passages so the LLM has relevant information when producing output

4. Multi-Hop Retrieval Khattab et al.[(2021): first asks the LM to write one or more search queries,
retrieves the resulting passages with the external retriever, and then applies RAG.

Each task pipeline is run once with a specified default baseline prompt (Unoptimized) and then
with all six optimizers, using the train and validation sets for optimization and the test set for final
evaluation, which is used for all reported performance comparisons (hyperparameters Appendix [B):

* BootstrapFewShotRandomSearch (existing)
Produces few-shot examples that pass the task metric through bootstrapped LLM runs, then
performs random search over subsets and returns the best-performing combination.

* MIPROV2 - Multiprompt Instruction PRoposal Optimizer) (existing)
Uses an LLM to rewrite the downstream task instructions and considers various candidates that are
iteratively optimized with Bayesian optimization while also including few-shots.

* SIMBA - Stochastic Introspective Mini-Batch Ascent (existing)
Performs multi-step stochastic optimization by applying random edit strategies (add demo or rule)
to prompt configurations and evaluating over mini-batches

ARPO - Policy, Ledger & Hybrid (new)



4.2 Metrics and Analysis

We evaluate task performance using Exact Match, except for HoVeR which uses retrieval recall.
To measure performance, we track how often each optimizer achieves the best or near-best result
(within 3% of the maximum), and summarize relative performance gains at the 10th, 50th, and 90th
percentiles across tasks to capture worst-case, typical, and best-case improvements. For cost, we log
total input/output tokens used during optimization and final evaluation to account for optimization
cost. Finally, we assess performance-cost tradeoffs by plotting Pareto curves showing overall
performance gain against token cost, considered over all configurations of tasks and models tested for
the datasets for each optimizer.

4.3 Experimental Details

We conduct all experiments on a 4xXNVIDIA A100 GPU cluster, using open-source Llama models
accessed through the SGLang framework |Zheng et al.|(2024). The models are of varying parameter
sizes: Llama3.2-3B |Al| (2024b)), Llama3.1-8B |Al| (2024a)), Llama3.3-70B |Al| (2024c))

All models are called using DSPy . LM|Stanford-NLP-Group| (2024)) using LiteLLM [LiteLLM]| (2024)),
with endpoints such as openai/meta-1llama/Meta-Llama-3.1-8b-Instruct. For consistency,
we fix the temperature at 0.0 and limit outputs to 1000 tokens.

Student-Teacher Configuration. We evaluate five model configurations: 3B-3B, 3B-70B, 8B-8B,
8B-70B, and 70B-70B. For the differing-model setups, the larger model acts as a "teacher” performing
optimization, while the smaller student model learns this behavior and applies at inference. We
denote these cases with the optimizer suffix -T (e.g., ARPO-T). For 70B-70B, no teacher is used.

5 Results

Our analysis covers all optimizers’ performance across all tasks and model setups. First, we track
how often each optimizer achieves either the top score or lands within 3% of it (Figure[T)). Next, we
highlight the spread of performance improvements relative to the unoptimized baseline, highlighting
outcomes at the 10th, 50th, and 90th percentiles (Figure[2). Finally, we examine token efficiency
by plotting each method’s performance gain against its associated token usage, revealing cost-
performance tradeoffs across model sizes and optimizer types (Figure [3). Additionally, we include
model-specific breakdowns to better highlight different axes and configurations on where which
optimizers succeed (A) in the appendices.

5.1 Quantitative Evaluation

Optimizer Frequency Comparison (Aggregated Across All Models)

27 mmm Optimizer within 3% of Highest Score on Task
W Optimizer with the Absolute Highest Score

Frequency

Optimizer

Figure 1: Global Optimizer Frequency Comparison



5.1.1 No Single Optimizer Dominates, and ARPO is a Competitive Optimizer

The global optimizer frequency comparison (Figure [T)) demonstrates that no single optimization
approach works best across all tasks and model configurations. We do find that ARPO variants
outperform the direct baseline SIMBA. Specifically, ARPO-Ledger achieves performance within 3%
of the highest score on 21 tasks, compared to SIMBA’s 19 tasks, representing a 10.5% improvement
with ARPO-Policy and ARPO-Hybrid also achieving near-optimal performance on 20 tasks.

When examining absolute highest scores on the tasks, ARPO-Policy achieves the best performance
on 5 tasks compared to SIMBA’s 7 tasks, while ARPO-Ledger and ARPO-Hybrid achieve peak
performance on 1 and 4 tasks, respectively. This suggests that while ARPO variants may not always
achieve the absolute optimum, they consistently achieve near-optimal performance, which is often
more valuable in practical applications.

When comparing ARPO to the broader optimizer landscape, we find that ARPO falls short of
BootstrapFewShotWithRandomSearch (23 tasks) but does outperform MIPROv2 (17 tasks) and
naturally no optimizer (5). However, ARPO doesn’t demonstrate gains with the teacher model,
whereas optimizers like BootstrapFewShotWithRandomSearch-T (27 tasks) and SIMBA-T (26
tasks) achieve the highest frequency of near-optimal performance. Overall, this competitive ranking
validates ARPO’s adaptive RL approach as a viable alternative to existing heuristic strategies.

5.1.2 ARPO-Hybrid Emerges as the Most Reliable Variant within ARPO optimizers

Among the three ARPO variants, ARPO-Hybrid performed the best across measured dimensions.
The percentile distribution analysis (Figure 2) reveals that ARPO-Hybrid achieves significant upper-
bound performance with a 90th percentile gain of 95.7%, significantly outperforming other variants
in upper-bound gains, while also maintaining a relatively low lower-bound degradation (as at times
prompt optimizers can result in regressions and potential overfitting that lower task performance)
compared to other ARPO variants and other existing optimizers.

ARPO-Ledger also achieves competitive upper-bound gain at 75.7% and 9.7% median performance,
but both are actually enhanced with introducing a larger teacher model at 88.9% and 11.3%, respec-
tively, while ARPO-Hybrid did not benefit from including a teacher. ARPO-Policy performed the
worst out of the variants with upper-bound gain of 58.5% and lower-bound loss of -2.7%, suggesting
that the adaptive policy on its own struggled and led to greater volatility, while only improving the
upper-bound gain with the teacher model, achieving 71.3%.
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5.1.3 Teacher Models Improve Absolute Scores, but not Consistently

While we expected teacher models to always improve smaller student models performance, our
results show that their benefits are more nuanced. Across ARPO variants, using a 70B teacher
(-T) does not consistently increase (Figure|[I)) the likelihood of being near-optimal ARPO-Ledger,
ARPO-Policy, and ARPO-Hybrid rank have 21, 20, and 20 tasks, respectively, within top 3% of best
task scores whereas their teacher versions drop to 16, 19, and 15, respectively. However, teacher
models do slightly improve the frequency of achieving the absolute best score, particularly for
ARPO-Policy (5 — 6) and ARPO-Ledger (1 — 2). In percentile-based gains (Figure[2), we observe
modest improvements for ARPO-Policy and ARPO-Ledger in both upper-bound and median gains
when using a teacher, whereas ARPO-Hybrid sees declines in both as mentioned in the previous
section.

These mixed results suggest that teacher models may help amplify peak performance but often at the
cost of consistency. While larger LLMs can generate more sophisticated prompts during optimization,
these improvements don’t always transfer well during adaptive learning, potentially overfitting and
failing to cleanly distill into smaller student models during evaluation. ARPO-Hybrid is especially
sensitive to prompt structure, which can be undermined due to teacher-generated modifications
that introduce conflicting signals from the policy or credit-assignment learning, leading to lower
performance. In contrast, ARPO-Ledger and ARPO-Policy benefit more from teacher models due to
their simpler yet structured optimization, which helps learn from complex prompts more effectively
and retain generalizable gains, further highlighted in Appendix

Aggregated Cost-Performance Pareto Analysis
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5.1.4 ARPO is Competitive on the Pareto Frontier

When plotting aggregate task metric scores (performance) against model average input and output
token consumption (cost), (Fi gureE]) we find that ARPO variants are competitive on the Pareto frontier,
achieving high performance gains while maintaining low token costs compared to other optimizers.
ARPO-Ledger, ARPO-Policy, and ARPO-Hybrid generally cluster in the low-cost, moderate-to-high
performance region with token costs ranging from approximately 5 x 10° to 7 x 108 tokens per
task. This positions ARPO as the most efficient optimizers, requiring substantially fewer tokens than
BootstrapFewShotWithRandomSearch (1.6 x 107 tokens) and MIPROV2 variants (1.4 x 107 tokens)
while achieving comparable or superior performance gains.



ARPO’s computational efficiency supports our hypothesis that RL techniques can outperform existing
search-based heuristics by enabling more targeted exploration of the prompt space, converging faster
to optimal prompt configurations. This is especially important when ARPO learns that using rules
is more effective than few-shots, unlike SIMBA, which randomly samples between token-heavy
demonstrations and lightweight rules, or FewShotRandomSearch and MIPROv2, which always
include demonstrations regardless of utility. This context-aware cost-effectiveness positions ARPO as
a strong candidate for efficient prompt optimization, especially in constrained budget environments.

5.2 Qualitative Analysis

Our qualitative analysis provides further insights into how the RL-based prompt editing and reward-
based pruning in ARPO behaves across various task types.

5.2.1 Task-Specific Analysis Across ARPO Variants

ARPO-Ledger performs best on structured, deterministic tasks including biomedical QA (PubMedQA,
MedQA, MedMCQA), basic classification (HeartDisease, Iris, IReRa), and factual reasoning tasks
(JudgeBench, Scone), where the credit assignment isolated high-utility domain-specific few-shots
and rules that improved performance. ARPO-Policy performed better on more complex multi-hop
reasoning tasks (HotPotQA, MMLU, HoVeR), mathematical reasoning (GSM8K), and pairwise
judgement (JudgeBench) as the adaptive learning was able to change the prompt editing approach
for more dynamic tasks with less deterministic reasoning. ARPO-Hybrid naturally achieved optimal
performance on a combination of such tasks, particularly excelling in coding tasks (HumanEval,
SWE Verified AnnotationTask), mixed-reasoning QA scenarios (MMLU, HotPotQA), and classifica-
tion tasks (IReRa, HeartDisease, Iris) with the ability to systematically filter and dynamically select
prompt components that contribute to optimization success (Appendix [C).

5.2.2 ARPO is Effective Across Complex Pipelines

ARPO performs well across most tasks in our evaluation suite, including complex prompting pipelines
that require multiple LLM or external data source calls. It is particularly effective on multi-stage
pipelines like Retrieval-Augmented Generation and multi-hop RAG pipelines like Baleen, where its
adaptive strategies optimize each stage and combine to improve overall system performance. In some
cases, such as HotPotQA, the generated rules were not especially helpful, ARPO could not produce
better rules than existing optimizers. However, it successfully identified that few-shot examples using
relevant passages led to better performance, demonstrating the benefits of adaptive prompt selection.

5.2.3 ARPO with Larger Teachers Only Improves Performance Slightly

Including a larger teacher model for optimization (e.g. 3B—70B) over the same model (e.g. 3B-3B)
only led to marginal gains for ARPO. The larger model doesn’t propose significantly better few-shot
examples, and although its chain-of-thought traces are sometimes clearer, the reward signal that drives
ARPO updates remains mostly unchanged compared to the same model performing optimization,
offering no additional learning signal. In some cases, the larger model produces more grounded but
overly general rules, while the smaller model offers more specific strategies that, counterintuitively,
improve performance even if potentially overfitting (Appendix [C).

Other optimizers benefit more from a stronger teacher because they use the teacher in different ways.
MIPRO samples a diverse set of instruction candidates directly using the teacher, and Few-Shot
Random-Search bootstrapping relies on the teacher to sample and evaluate in-context example subsets.
SIMBA also improves with the larger teacher, but its gains come mainly from the random sampling
choosing potentially better few-shots, rather than proposing more elaborate rules. ARPO’s structure
currently underutilizes the teacher model as it doesn’t incorporate its capabilities fully into the reward
function, so its impact on optimization is limited compared to other optimizers.

6 Discussion

Optimizing an LLM pipeline is not always just using the “best optimizer.” Evaluating optimizers on
different axes of LLM components highlights where which optimizer works best, which this report
highlights while introducing a new optimizer. ARPO demonstrates a new approach of shifting from



random search across fixed optimization strategies into a latent space of adaptive exploration on what
techniques work best and in what ways and eventually applying this cumulative knowledge gained
into a final optimized prompt.

While this open-endedness allows for fine-grained edits, the reward signal can be noisy and lead to
high upper-bound gains or potentially unwanted degradations as the addition of certain few-shots or
rules can guide the downstream LLM in different ways. Hence, when applying RL techniques like
strategy search and credit assignment, it is important to keep the reward signal representation-aware,
ensuring that the meta-learning is truly adaptive through ways like grouping near-duplicate rules or
tracking clusters of related few-shots that are helpful.

Another lesson was that stacking strategies do not always guarantee gains. Giving ARPO a larger
teacher and at times layering RL techniques together didn’t always lead to improved performance.
Hence, it’s important to recognize that added complexity to prompt optimization does not necessitate
improved performance, and it’s important to measure these factors through evaluation suites as diverse
as LangProBe to understand this signal clearly.

Future work with ARPO would consider an enhanced search space rather than more complex policies.
This would include adding actions like deleting rules and few-shots that aren’t helpful, reordering
prompt components to account for positional bias, replacing these parts as a selective strategy and
various other possible prompt-space edits. Additionally, incorporating a fixed optimization budget
could ensure for more accurate comparisons to existing optimizers as budget-constrained evaluation
sweeps would reveal where each optimizer performs best at a fairer Pareto frontier measurement.

7 Conclusion

ARPO offers a novel adaptive approach to prompt optimization, demonstrating competitive per-
formance across a wide range of LLLM tasks and prompting pipelines. While no single optimizer
consistently outperforms others in all scenarios, ARPO’s RL mechanisms enable nuanced prompt
refinements that are particularly effective and are especially computationally efficient as ARPO is
highly positioned on the Pareto frontier. These results highlight the benefits of guided cumulative
learning optimization over random search heuristics, while also demonstrating the need to explore
and align optimization strategies with specific task requirements and model capabilities, rather than
relying on a one-size-fits-all solution. Overall, ARPO offers a high-performing and cost-efficient
approach to automated prompt optimization using reward-driven RL methods to improve LLM
prompting pipelines.

8 Team Contributions

* Arnav Singhvi: Arnav worked on coding up each of the three ARPO optimizer variants
and integrating with the DSPy library, testing for compatibility and ensuring aligned im-
plementation to get ready for benchmarking. In changes from the proposal, Arnav had
to also take over the evaluation responsibilities for all the existing optimizers and ARPO
optimizers on LangProBe, launching the cluster and required SGLang servers to host all
the open-source models for experimentation for all the 5 model teacher-student configu-
rations across the 7 total experiment configurations for the 15 datasets, and totalling to
about 1200 experiments ran total. Arnav also took over the visualizations component for
demonstrative analysis of the experiments, developing the performance-wise, cost-wise and
Pareto frontier graphs. Regarding the project milestone, Arnav worked on the "Changes
to Research Hypothesis" and "Next Steps" sections, while outlining necessary content for
the Experiments and Potential Challenges section but still had to do heavy proofreading
for the final version. For the project poster, Arnav worked on the Results, Conclusion and
Experiments section, while outlining the necessary content required to fill out the rest of
the poster for the Problem Statement, Background, Methodology, Pipeline, and Algorithm
components and had to do heavy proofreading for the final version. Arnav also printed out
the poster and presented individually. For the final report, Arnav worked on the Introduction,
Methodology, Experimental Setup, and Appendix, provided graphs for the necessary Results
section and outlined the necessary content for the other main sections including the Related
Work, Results, and Discussion sections. For all of these sections, Arnav had to do heavy
rewriting and proofreading due to lack of communication. Overall, from Arnav’s vantage



point, he had to do a significant portion of work that was not outlined in the proposal to be
his contributions which he still did so that the project could be submitted. [written by Arnav
Singhvi]

» Shreyas Agarwal: Shreyas worked on configuring the LangProbe repository and creat-

ing the initial data runs for integrating all existing and new ARPO optimizers across 13
benchmark tasks for 3 model configurations. For over a week, he ran first experiments
across multiple teacher-student configurations using 3B, 8B, and 70B models and for all
benchmark tasks, debugging issues with inconsistent results and broken runs. After Shreyas
spent considerable time debugging and coordinating with his teammate to get the full set of
optimizers and models running correctly, the teammate took over the remaining evaluation
runs, citing challenges in progressing due to “back and forth” communication. Shreyas
agreed, deferring to his teammate’s direct access to the compute cluster and ability to run
unsupervised, extended experiments.
Following this change, Shreyas took primary responsibility for background research and
writing. For the project milestone, he wrote Experiments, Initial Results, Changes to
Research Hypothesis or Objective, and Next Steps sections (except Potential Challenges)
using result data and plots provided by his teammate and incorporated his teammate’s
feedback afterward.

For the poster, Shreyas wrote the Problem Statement, Background, Methodology, Pipeline,
and Algorithm sections. Shreyas was unable to make it in person to the poster presentation
due to scheduling conflicts, and therefore he handled more of the written components.

For the final report, Shreyas wrote the Extended Abstract, Abstract, Related Work, Results,
Discussion, and Conclusion sections, as well as contributed references for the Introduction.

Overall, from Shreyas’ viewpoint, after having let go of the evaluation responsibility in the
proposal, he took on significant writing tasks. Despite lack of communication regarding
need for heavy proofreading, Shreyas completed all tasks he was responsible for with the
new contribution split.

[written by Shreyas Agarwal]

Changes from Proposal From the milestone, the project shifted from proposing a standalone
RL-based optimizer to enhancing the existing SIMBA framework with RL-driven policies, producing
the ARPO variants. This revised focus enables more targeted exploration and credit assignment
within SIMBA’s modular prompt optimization loop. By leveraging SIMBA’s existing structure, we
integrated RL techniques to show improved performance and efficiency over existing random search
techniques, offering a new optimizer approach for the prompt optimization techniques in the DSPy
framework.

Team contributions also shifted from the original proposal due to coordination and scheduling
challenges. Arnav took on the remaining evaluation runs and visualizations and contributed to and
reviewed the writing portions. Shreyas took more writing tasks. [written by Shreyas Agarwal]
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A Additional Experiments
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Figure 5: P90 Relative Gains for Optimizers on Llama-3.1-8B.
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Figure 13: P90 Relative Gains for Optimizers on Llama-3.1-8B (Student Only).
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Figure 15: P10 Relative Gains for Optimizers on Llama-3.1-8B (Student Only).
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Figure 18: Comparing Optimizers on Llama-3.2-3B (Student Only).
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Figure 20: Median Relative Gains for Optimizers on Llama-3.2-3B (Student Only).
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Figure 21: P10 Relative Gains for Optimizers on Llama-3.2-3B (Student Only).
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Figure 24: Comparing Optimizers on Llama-3

P90 Relative Percentile Gains by DSPy

.3-70B (Student Only).

Optimizer

Optimizer

[Model = llama3.3_70b_student_70b_teacher

Figure 25: P90 Relative Gains for Optimizers on Llama-3.3-70B (Student Only).

23




Relative Gain%

Relative Gain%

0.0 7

—0.2

—0.4

—0.6 1

—0.84

-1.01

-1.2 4

-1.44

-1.64

Median Relative Percentile Gains by DSPy Optimizer

Optimizer

[Model = Ilamaa.37?0bistudentjobiteacher]

Figure 26: Median Relative Gains for Optimizers on Llama-3.3-70B (Student Only).
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Figure 27: P10 Relative Gains for Optimizers on Llama-3.3-70B (Student Only).

24




Total Token Usage per Optimizer (llama3370b_student_70b_teacher)
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Figure 28: Total Token Usage For Optimizers on Llama-3.3-70B (Student Only).

Average Token Usage per Task per Optimizer (llama3370b_student_70b_teacher)
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: Average Token Usage For Optimizers on Llama-3.3-70B (Student Only).
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B Implementation Details

Algorithm 1: ARPO
Input: Training set £, student program Sp, metric function M (y, §)
Output: Optimized program S*
Initialize pool of candidate programs P < {Sp}
for t = 1 to maz_steps do
Sample mini-batch B C &
foreach model m and example e € B do
credit_weighted_softmax(7P) if Hybrid
- softmax(P) all others
Run S with m on e and collect output

Group outputs by example and sort buckets by (1) maz—min score gap, (ii)
maz score, (i) maz—avg score gap

foreach bucket in top_buckets do

Select source program Sg.. via softmax

if Credit Ledger or Hybrid then
L Prune worst demos/rules, replace with high-credit alternatives

else
L Drop a Poisson-sampled subset of existing demos

if RL Policy or Hybrid then

L strategy ~ policy softmax(Vstrat)
else

L strategy ~ uniform(strategies)

Apply strategy to create candidate Scang

foreach candidate S .nq with strategy s do
r < (score(Scana) — baseline) — decay_penalty + edit_bonus
if RL Policy or Hybrid then

L 1/Strat[s] — I/;;trat [S] + OK(T - vrs.trat [S])
if Credit Ledger or Hybrid then
L Update demo and rule credits: ¢ < yc+ nr

| Add all Seana to P

S* ¢ arg maxgep score(S, E)
return S*

Figure 30: ARPO Algorithm Overview
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Optimizer

Parameters

Description

BootstrapFewShotWithRandomSearch

max_bootstrapped_demos
max_labeled_demos
teacher_1m

Teacher-LLM bootstrapping of input/output examples from trainset — 4.
Labeled examples from train data as demos — 16.
LLM that generates bootstrapped demonstrations.

num_candidates
num_trials
minibatch_size

Instruction-set hypotheses explored per optimization round — 10.
Total Bayesian-optimization iterations across rounds — 50.
Examples processed in each inner-loop mini-batch — 35.

MIPROV2 minibatch_full_eval_steps After this many mini-batches, trigger a full-set evaluation — 5.
max_bootstrapped_demos Teacher-LLM bootstrapped demos per predictor — 4.
max_labeled_demos Labeled demos per predictor — 2.
teacher_1m LLM that generates both instruction proposals and bootstrapped demos.
bsize Mini-batch size per optimization step — 32.
num_candidates New candidate programs generated each iteration — 6.
max_steps Total optimization iterations — 8.

SIMBA max_demos Maximum few-shot demos kept per predictor — 4.
temperature_for_sampling | Softmax temperature for program sampling during trajectory generation

-0.2.

temperature_for_candidates Softmax temperature when choosing a source program to mutate — 0.2.
bsize Mini-batch size — 32.
num_candidates Candidate programs per step — 6.
max_steps Optimization steps — 8.
max_demos Demo cap per predictor — 4.

ARPO-Policy temperature_for_sampling| Softmax temperature for program sampling — 0.2.

temperature_for_candidate
strategy_lr
strategy_temperature

s Softmax temperature for source-program selection — 0.2.
Learning-rate of the RL policy that selects edit strategies — 0.1.
Softmax temperature for strategy selection — 1.0.

ARPO-Ledger

bsize

num_candidates

max_steps

max_demos
temperature_for_sampling
temperature_for_candidate
ledger_1r
ledger_decay

Mini-batch size — 32.
Candidate programs per step — 6.
Optimization steps — 8.
Demo cap per predictor — 4.
Temperature for program sampling — 0.2.
s Temperature for source-program selection — 0.2.
Learning-rate for updating demo/rule credit scores — 0.05.
Exponential decay factor applied to accumulated credit — 0.9.

ARPO-Hybrid

bsize

num_candidates

max_steps

max_demos
temperature_for_sampling
temperature_for_candidatg
ledger_1r
ledger_decay
strat_1lr
strat_temp
credit_weight
ablate_examples

Mini-batch size — 32.
Candidate programs per step — 6.
Optimization steps — 8.
Demo cap per predictor — 4.
Temperature for program sampling — 0.2.
s Temperature for source-program selection — 0.2.
Learning-rate for credit-ledger updates — 0.05.
Decay factor for ledger credit averaging — 0.9.
Learning-rate for strategy-policy updates — 0.1.
Strategy-policy softmax temperature — 1.0.
Weight given to credit-ledger signal when ranking programs — 0.1.
Examples used for fine-grained ablation after each batch — 16.

Table 1: Parameters for existing DSPy optimizers and the three ARPO variants.

C Sample Prompts

Classification Task — Iris

Baseline:

Given the petal and sepal dimensions in cm, predict the iris species.

SIMBA (no rule additions - only fewshot)

"petal_length": "1.5",
"petal_width": "0.2",
"sepal_length": "5.4",
"sepal_width": "3.7",
"answer": "versicolor"
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ARPO-Policy (only rules - no fewshots)

"instructions": "Given the petal and sepal dimensions in cm, predict the
iris species.

Rules:

If the input dimensions are for a species with a lower sepal width, the
module should return a species with a lower sepal width. For example,
if the input dimensions are

for ’setosa’, the module should return ’setosa’ instead of ’virginica’.

If the input dimensions are for a species with a lower sepal width,
return a species with a lower sepal width. For example, if the input
dimensions are for ’setosa’, return ’setosa’ instead of ’virginica’.

If the input dimensions are for a species with a lower sepal width,
return a species with a lower sepal width. For example, if the input
dimensions are for ’setosa’, return ’setosa’ instead of ’virginica’."

ARPO-Ledger (both rule and few-shot)

"petal_length": "1.7",
"petal_width": "0.4",
"sepal_length": "5.4",
"sepal_width": "3.9",
"answer": "setosa"

Given the petal and sepal dimensions in cm, predict the iris species.
Rules ->

When given input dimensions, the module should focus on providing
instance-based reasoning that is specific to the given input. This can be
achieved by using the input dimensions

to identify the most common species associated with the given dimensions.
For example, if the input dimensions fall within the ranges most

commonly associated with the species Iris setosa, the module should
output ’setosa’ as the answer.

ARPO-Hybrid (only few-shot) - Performs slightly worse than ARPO-Ledger.

SWEBench

Baseline:

"You are considering an issue from an open source Python repository. The issue has an associated
test_patch that provides a set of tests to check whether the issue is resolved. The issue also has a
corresponding gold_patch that provides a fix for the issue. Your task is to evaluate if this issue should
be included in a question bank to benchmark coding ability. To evaluate an engineer’s coding ability,
the issue will be provided to them without the gold_patch and they will be tasked with writing code
to resolve the issue. The test_patch will then be used to check whether the engineer’s solution passes
the tests in the test_patch. However, to be a fair evaluation, the issue must have a well-specified
issue description that is clear and unambiguous about what is required for a successful solution. The
engineer should have complete information about what is required to resolve the issue, just by reading
the issue description. Please read the issue description and the test_patch carefully.”
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SIMBA (few-shot and rules)

"repo" .o Sympy/sympyn s

"issue_description": "sylow_subgroup() IndexError \nI use sympy 1..... N
"gold_patch": "diff --git a\..."

"test_patch": "diff --git a/sympy/combinatorics/tests/test_perm_groups.py
b/sympy/combinatorics/tests/test_perm_groups.py\n--- ...",

"test_names": ["test_sylow_subgroup"],

"reasoning": "The issue description provides a clear example of the problem,
and the gold patch makes the necessary changes to fix the ‘IndexErrorf

that occurs when calling ‘sylow_subgroup() ‘.

The changes made to the ‘perm_groups.py‘ file ensure that the function
handles cases where the input group has multiple Sylow p-subgroups correctly.
The test patch provides additional test cases to verify that the changes make
the correct fixes to the ‘sylow_subgroup()‘ function. Overall, the issue
description, gold patch, and test patch are well-written and provide a clear
understanding of the problem and its solution.",

"SCOI‘e": IIOH

Rules —

Imagine that you are an experienced software engineer who has been instructed to solve the issue.
You have full access to the codebase, and can see the issue description as it is below. But you are not
able to ask for clarification and would need to work exclusively from this information. Is the issue
description well-specified enough for a meaningful attempt at a solution?

Provide a score from 0 to 3 based on the following criteria:

0: Well-specified and clearly solvable.

1: Some blanks but sensible interpretation possible.

2: Vague and ambiguous.

3: Nearly impossible to understand without more info.

Reason carefully about specific functions and classes before giving your answer.
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Best ARPO (ARPO-Policy)

"repo": "sympy/sympy",

"issue_description": "ceiling(pos) > O should be true\nAlso, shouldn’t
‘floor(neg) < 0¢, ‘floor(pos) >= 0¢ and ‘ceiling(neg) <=0°¢ evaluate to
True, too?",

"gold_patch": "diff --git a\...",

"test_patch": "diff --git a/sympy/functions/...",
"test_names": ["test_floor", "test_ceiling"],
"reasoning": "The issue description is well-specified enough for a

meaningful attempt at a solution. The description clearly states the
expected behavior of the floor and ceiling functions, including the cases
where the input is negative, non-negative, positive, or zero.

The description also explicitly states that the issue is with the behavior
of the floor and ceiling functions when the input is negative, non-negative,
positive, or zero.

This provides a clear understanding of what needs to be fixed.

However, the description does not provide enough information about

the specific functions and classes that are involved in the printing process,
which could lead to ambiguity in the solution.

Additionally, the gold patch appears to have fixed the issue by adding
specific tests for the behavior of the floor and ceiling functions
when the input is negative, non-negative, positive, or zero. This
suggests that the issue was indeed related to the behavior of these
functions in these cases.",

llscorell: II1|I

Rules —

Imagine that you are an experienced software engineer who has been instructed to solve the issue.
You have full access to the codebase, and can see the issue description as it is below. But you are not
able to ask for clarification and would need to work exclusively from this information. Is the issue
description well-specified enough for a meaningful attempt at a solution?

Provide a score from 0 to 3 based on the following criteria:

0: Well-specified and clearly solvable.

1: Some blanks but sensible interpretation possible.

2: Vague and ambiguous.

3: Nearly impossible to understand without more info.

Reason carefully about specific functions and classes before giving your answer.

The module should explicitly state that underscores should be ignored when converting a string to a
float. It should also consider the context of the upstream bug in mpmath. To achieve this, the module
should provide a clear definition of the required behavior for a successful solution. The module should
also ensure that the test patch provides sufficient tests to determine whether the issue is resolved.
For example, the module could provide test cases that cover different scenarios, such as converting
strings with underscores to floats, and verify that the underscores are correctly ignored. Additionally,
the module could provide a mechanism for the engineer to specify the context of the upstream bug
in mpmath, such as by providing a parameter that allows the engineer to choose whether to ignore
underscores or not. This would enable the engineer to tailor the solution to their specific needs and
ensure that the issue is resolved correctly.

When formatting LaTeX expressions, ensure that superscripted symbols are correctly parenthesized.
Use the parenthesize_super function to achieve this. For example, if the input is x~{*2}, the
output should be x~{(*2) } instead of x~{*2}.

QA Task — HotPotQA

Baseline:
"Answer multiple choice questions"
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SIMBA (both demos and rules)

"context": [
"Semichi Islands | The Semichi Islands (Samiyan in Aleut) are

i

"question": "The Semichi Islands are located southeast of which island
that became uninhabited in 20107",
"reasoning": "The context provides information about the Semichi Islands,

which are a group of small islands in the Aleutian Islands, Alaska. To
answer the question, we need to look for information about the island
that became uninhabited in 2010.

The context mentions that Nizki Island is the middle island of the
Semichi Islands group and is periodically

joined to Alaid Island by a sand spit. However, it does not mention
any information about the island becoming

uninhabited in 2010. We can look at the information about the other
islands, but there is no direct information about the island becoming
uninhabited in 2010. However, we can look at the information about the
island’s name, which is said to derive from the Russian \"nizkiy\",
meaning \"low\". This information does not provide any clues about

the island becoming uninhabited in 2010.",

"answer": "Attu Island"

Rules —

When analyzing the context and question, ensure that you are not mistakenly identifying the
floor space of one building as the other. Instead, carefully consider the information provided and
provide the correct answer based on the context. For example, in this case, the context mentions
that 15 Penn Plaza would have 2,050,000 square feet of floor space, so the correct answer is 15
Penn Plaza, not Manhattan West.

ARPO (Policy and Ledger only include demos

Instructions:
Answer multiple choice questions.

Rules —

When processing context information, consider leveraging general knowledge and external sources
to supplement the provided information. This can help to improve the accuracy of the answer and
provide a more comprehensive understanding of the topic.

Student-Teacher Prompt Comparisons

3B-Student, 3B-Teacher

Prompt:
Given a snippet from a job vacancy, identify all the ESCO job skills mentioned. Always return
skills.

Rules —

When receiving a snippet from a job vacancy, consider the following patterns: keywords related
to cloud technologies, job roles, and industry-specific terms. If the input text contains phrases like
"public cloud offerings" or "private cloud services", consider returning the ESCO job skills related
to cloud technologies, such as "cloud technologies" or "cloud infrastructure". Avoid returning the
input text itself, and instead focus on extracting the relevant ESCO job skills.

When receiving a snippet from a job vacancy, consider the following patterns: keywords related
to cloud technologies, job roles, and industry-specific terms. If the input text contains phrases like
"public cloud offerings" or "private cloud services", consider returning the ESCO job skills related
to cloud technologies, such as "cloud technologies" or "cloud infrastructure". Avoid returning the
input text itself, and instead focus on extracting the relevant ESCO job skills.




3B-Student, 70B-Teacher

Prompt:
Given a snippet from a job vacancy, identify all the ESCO job skills mentioned. Always return
skills.

Rules —

When identifying ESCO skills, the module should consider the input text more carefully to avoid
missing relevant skills. For example, if the input text mentions contributing to open source
projects, the module should consider skills related to open source software development, such as
operating open source software.
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