Extended Abstract

Motivation The strength in Retrieval-Augmented Generation (RAG) pipelines rely on their ability
to pair large language models (LLMs) with retrieved context. Certain applications, such as DSPy,
allow to optimize prompts in RAG pipelines by providing a set of example queries |[Khattab et al.
(2023). Like in applications such as DSPy, building and maintaining the underlying prompt corpus,
drives up token spend and compute time. Automating maximum performance in these RAG pipelines
while keeping answer quality high is therefore a pressing problem.

Method I frame prompt selection as a decision task, utilizing pre-computed sentence-transformer
embeddings [sentence-transformers| (2025). A Soft Actor—Critic (SAC) agent inspects each query in a
dataset, including its embedding, samples a continuous action from a learned Gaussian policy, and
passes it through a sigmoid gate to make a near-binary keep / discard decision. The reward blends
four parts: (i) cosine similarity to the gold answer embedding, (ii) a token-cost penalty proportional to
prompt length, (iii) an embedding-space diversity bonus that prefers examples far from those already
selected, and (iv) a spike in good cosine similarity. Hyper-parameters A, «, 3, A weight these terms,
and the SAC temperature is tuned online to keep exploration healthy, while still making meaningful
decisions.

Implementation I pre-compute 384-dimensional embeddings for every query—answer pair with
all-mpnet-base-v2. Both the SAC actor and its twin critics are two-layer multilayer perceptrons
with 256 hidden units and ReLU activations. Training uses Adam (learning-rate 1 x 10~%), batch
size 128, a replay buffer of 100k transitions, completing in under 15 minutes on readily available
hardware. Target networks update via Polyak, and reward terms are normalized with exponential
moving averages.

Experimental Setup For evaluation I drew a fixed set of 50 validation queries at random and use
that same set for all experiments. From the 85196 Natural Questions training items, the SAC policy
keeps the top-50 highest-scoring prompts. Two baselines are considered: (i) SO prompts chosen
uniformly at random from the training pool, and (ii) no prompt optimization at all.

Results With just these 50 SAC-selected prompts, first I run an analysis of the generated scores,
checking if the policy is differentiating between the high quality and lower-graded prompts. GPT-40-
mini provides the final evaluation scores. After optimization, I see that random-50 and no optimization
performs at 72% while my best performing method performs at 76% while utilizing less tokens
compared to random-50.

Discussion This study demonstrates that SAC can effectively select relevant and diverse prompts,
outperforming random selection, but was only tested on a single dataset. While the approach shows
promise, challenges like hyperparameter tuning and limited generalization remain, especially since
the limited class time to do more testing.

Conclusion Off-policy SAC can curate very large QA corpora into small, high-quality prompt lists
that preserve retrieval accuracy per token. The approach is both scalable and cost-aware, independent
from steadily growing API costs.

Dynamic Dataset Curation

Abstract

I present a reinforcement-learning approach to automatically curate large question-
answering datasets for Retrieval-Augmented Generation (RAG) systems. By utiliz-
ing this approach, this reduces the need of manually curating an effective dataset
for training. By framing data selection as a sequential decision task, my Soft
Actor—Critic (SAC) agent processes precomputed sentence-transformer embed-
dings of query—answer pairs sentence-transformers| (2025) and learns to include
or exclude each item via a sigmoid gate. The SAC reward integrates four ob-
jectives: semantic relevance, an LLM token-cost penalty, an embedding-space
diversity bonus, and a quality booster, all weighted by hyperparameters \, o, 3, .
On the Natural Questions corpus, by selecting the top 50-scored quality prompts
for optimization, I outperform random-50 queries (72% vs 76%) while utilizing
less tokens. I ultimately demonstrate that SAC achieves superior cost—coverage
trade-offs in 15 minutes on a single RTX 4080.

1 Introduction

Retrieval-augmented generation (RAG) has emerged as one of the most effective ways to push
large-language-model (LLM) systems beyond the limits of its knowledge. By inputting just a handful
of highly relevant passages, models as small as GPT-3.5 can match or exceed the performance of
much larger models, without changing its structure or weights. Yet assembling high-quality example
training data can be a labor-intensive affair. The typical pipeline begins with tens of thousands of raw
question—answer pairs scraped. Practitioners must painfully discard low-information or near-trivial
prompts that inflate token bills without improving coverage. In an era when OpenAl, Anthropic, and
Google all price their models by the token, redundancies translate directly into high monthly invoices.

2 Approach

This paper argues that prompt selection, what I call corpus curation, should be learned automatically
rather than hand-designed. I treat each prompt as a decision point in a one-pass reinforcement learning
problem, and use a Soft Actor—Critic (SAC) agent to score each example. Instead of making a simple
yes-or-no choice, the agent assigns a continuous importance score. A sigmoid gate then turns this
score into a near-binary decision: keep or drop.

The agent learns from a reward signal that balances four key factors:

1. Relevance to the target answer,

2. Token cost,

3. Diversity in embedding space (to avoid redundancy), and
4. A high quality similarity score (spike)

Sentence-transformer embeddings |Reimers and Gurevych|(2019) provide useful input features for
measuring similarity and diversity.

Stanford CS224R 2025 Final Report

Using this method, the SAC policy is able to rerank all of the queries in a dataset, and assign
"importance scores" to each of these queries.

This approach is motivated by three practical observations:

1. Similarity does not equal usefulness: Two very similar questions may both be relevant,
but don’t add much value when used together.

2. Prompt corpora need to evolve: As tasks change or models improve, the prompt set needs
to keep up. A learned policy makes this easy to re-run training on a laptop GPU takes just
minutes.

Beyond raw metrics, manual inspection shows that the SAC agent favors content-rich, syntactically
varied prompts (“How did the Marshall Plan reshape post-war European economies?”) over repetitive
formulations (“Who invented the telephone?”’). In this way, reinforcement learning acts as an
automatic editor, only keeping the prompts that provide the LLM with new information.

3 Related Work

Previous work has explored reinforcement learning, specifically regarding prompt selection for large
language models (LLMs). Specifically, in recent work, reinforcement learning has been applied to
select in-context examples for LLMs to improve accuracy in inference |[Zhang et al.|(2022). In context
learning is a powerful technique that can be used to aid LLMs in providing extra information, done
simply by adding retrieved information in a query to the LLM. An example of this would be teaching
how to solve math problems by providing a few examples. The LLM utilizes this additional contextual
information to make a more accurate prediction during inference. LLMs excel at learning without
adjusting their internal weights via contextual understanding. The work describes their contribution
as utilizing a reinforcement learning agent, per a query inference, choosing to either select or discard
any of these contextual examples to maximize the LLM’s capabilities. Specifically, for each test
query, they retrieved the top-k similar examples from the training dataset via cosine similarity. Then,
for each of these retrieved examples, the reinforcement learning program would either keep or remove
the prompt itself. By keeping an example, the program would include the example and insert the
example into the LLM prompt, providing the LLM with more information. The paper utilized a
policy gradient-based reinforcement learning agent. Specifically, they framed their current state as
the current instance query and the selected examples. They framed the action to include or exclude an
example per prompt. They framed the reward to be the LLM’s retrieval accurately, given this newly
constructed prompt. They described using an on-policy approach, constantly calling the LLM API.
While this paper shows powerful techniques to aid the LLM with extra contextual information, it fails
to address the issue of data and API costs that these online LLMs utilize. This related work utilizes
an on-policy framework, which can be expensive with nelr, more capable models and given a larger
scale. In addition, instead of focusing on improving the contextual capacity of such models through
in-context learning, my method utilizes an off-policy reinforcement policy to create an efficient
dataset for prompt optimization rather than optimizing the queries themselves.

Sentence-BERT embeddings |Reimers and Gurevych|(2019) are commonly used in prior work to
rank or prune prompts. Embeddings generated by "mpnet-base-v2" can be used to compute cosine
similarity between candidate prompts and the target query. While this approach is simple and effective
for relevance-based filtering, it does not fully account for dataset-level diversity or token cost, which
can lead to redundant or inefficient prompt selections. While not sufficient for full prompt ranking,
similarity scores from Sentence-BERT do provide a useful signal in the SAC pipeline, playing a
crucial role in the rewards function.

Another line of related work comes from DSPy [Khattab et al.|(2023)), a declarative framework that
compiles and optimizes prompt-based NLP programs using LLMs. DSPy allows users to define
structured programs composed of modules like retrieval, generation, and selection, and then optimizes
these programs over a training set. This is done using the MIPROv2 optimizer. In this paper, I
apply DSPy to optimize the use of a pre-selected prompt set, curated via SAC, showing that prompt
efficiency gains at the dataset level can be effectively integrated into downstream LLM pipelines.

4 Method

This project filters a large question—answer dataset down to a small set of good prompts for
Retrieval-Augmented Generation (RAG) within the DSPy framework. Manually scrolling through
thousands of prompts is slow, and sending every prompt to an LLM costs money. I turn the selection
task into a reinforcement-learning problem and train a Soft Actor—Critic(SAC) agent that gives each
example a score between 0 and 1. The highest-scoring prompts are ultimately kept.

State. For each Natural Questions item I make two sentence-transformer embeddings with
all-mpnet-base-v2: one for the question and one for the gold answer. Putting these
384-dimensional vectors together gives a 768-dimensional state

Lt
S; = [ei7 ei]a
which the agent sees once.

Token size Token costs are computed by concatenating query-answer pairs, tokenizing with GPT-2,
and applying logarithmic scaling (log(1 + token count)). This is done to prevent extreme costs
penalizes for longer query-answer pairs.

Actor and critics. The actor and both critics use the same two-layer network: 768 inputs, two hidden
layers with 256 ReLU units, and a final layer. The actor’s last layer outputs a mean and log-variance
for a one-number Gaussian; each critic ends in a single value node.

Action and gate. The actor samples an action a; € [—1, 1], squashes it with tanh, and runs it through
the sigmoid function

w; = J(ai).

This allows the models, compared to w; = o(—8 * a;). as an example, to encourage exploration and
to have more stable training. Most signals land near O or 1. If w; > 0.5 the prompt stays into this
curated dataset. If not, it goes.

Reward. The agent’s reward has four parts:
r; = A cos(e;, ef) — actokens(q;) + Bdiv(e;, S) + 7 I[rare(e;)].

The first term rewards relevance, the second punishes long prompts, the third adds a spread bonus, and
the final term gives a quality boost to examples in the top 50 percent of scores. Constants A, «, 3,y
decide how much weight each part gets; I pick them once with a small grid and keep them fixed.

A short grid search is enough because the four terms pull in clear, separate directions. If « is too
small, token cost shoots up; if 3 is zero, the list collapses onto one theme. The chosen balance keeps
cost down without losing topic range.

Training. All 85196 training prompts stream once per epoch. Each step is saved to a replay buffer
of 100k items. For every prompt, the code runs two gradient passes—one pair for the critics, one for
the actor—using Adam with clipping. Reward parts are scaled on the fly so none dominates. The
agent settles after about 8,000k gradient steps, which takes a few minutes on one RTX 4080 and
needs under 4GB of memory, so the job fits on most modern GPUs or even a late-model laptop with
an external card.

An adaptive temperature term keeps the policy from collapsing into “keep everything” or “keep
nothing.” If the policy entropy drops too low, the temperature rises and pushes the actor to explore;
if entropy grows too high, the temperature falls, tightening the policy. This simple feedback loop
removes the need for hand-tuning an exploration schedule.

Continuous signals offer another practical advantage: downstream tools can treat the scores as soft
priorities. For example, a production system might always keep prompts with w; > 0.8 but sample
those in the 0.5-0.8 band as traffic allows. Hard binary labels would not support that kind of flexible
budgeting.

Choosing the final list. After training, the actor scores every validation prompt. I sort the scores and
run a simple elbow finder to choose the break-point in the curve. Depending on the steepness of that
drop-off, the policy might keep just the top five or ten examples, or, if the curve is more gradual, a
few dozen. In practice, this cutoff tends to land well under 1 percent of the original corpus.

To confirm that the policy is actually finding the difference between examples, I log importance score
stats and percentiles after every run. A low standard deviation or only a few unique values would
suggest that the gating is too flat, but recent results show real spread. For instance, the best sweep
run selected 50 prompts with a mean score of 0.87, standard deviation of 0.05, and clean separation
between the top and bottom deciles. These are exactly the signs we want: a confident policy that
distinguishes strong queries from noise. I proceed to run this analysis before testing with DSPy,
which does utilize API costs.

Using the list. This short list feeds straight into DSPy’s prompt compiler (MIPROvV2) |Opsahl-Ong
et al.[(2024). Because the set is already filtered, balanced, and small, DSPy compiles faster, with
fewer API calls and tighter latency bounds.

Outcome. With one learning pass and a few minutes of training, the SAC agent replaces manual
filters and brute-force search. It cuts prompt-side token cost while keeping the semantic coverage and
diversity needed for strong downstream RAG performance. The retained items tend to be longer-form,
more explanatory questions, and the score curve often highlights a sharp elbow, making the final
selection both principled and efficient.

5 Experimental Setup

5.1 Dataset

I use the Natural Questions corpus [sentence-transformers| (2025). All text is lower-cased and
whitespace-normalized. Randomly sampled 50 questions from the validation split is held out for
evaluation within the DSPy optimizer.

5.2 Embeddings and State

Each (g;, ¢;) pair is embedded using “all-mpnet-base-v2,” yielding a 384-d query vector and a 384-d
answer vector. Concatenating them gives the 768-d state s;.

5.3 Agent Architecture and Training

Both the actor and twin critics share a two-layer feed-forward network (768—256—256, ReLU). The
actor’s final layer outputs a mean and log-variance for a one-dimensional Gaussian; each critic ends
in a single Q-value head.

I run 8 000 environment steps, collecting 2,000 random warm-up steps and then updating every
2 steps. Each update samples a batch of 128 from a replay buffer capped at 100,000 transitions.
Learning rates are 1 x 10~* for the actor, and 1 * 10~ for both critics. I also apply an initial content
filter (cosine threshold = 0.55) before passing embeddings to the agent.

5.4 Methods Compared

Several different hyperparameters are tested to see the efficiency and maximum performance of the
system after weighting in different factors in the reward function.

* Uncurated baseline: no optimization.

* Random 50: 50 randomly selected prompts.

SAC (A = 2.0, « = 0.8, 8 = 1.5): default setting.

SAC (A = 2.5, = 0.8, 8 = 1.5): higher similarity weight.
SAC (A = 2.0, & = 1.0, 5 = 1.5): higher cost penalty.
SAC (A =2.0,a=0.8, 5 =2.0):

higher diversity bonus.

5.5 LLM Evaluation

As shown in Figure|l} I use two DSPy modules: one to answer the question, another to check that
answer against the gold label (used for evaluation). The answering module is optimized using the
curated query list from the SAC pipeline, while the other module is non-optimized for both methods.

Listing 2: Check module

Listing 1: Answer module class ConfirmAnswer (dspy.Signature):
"Return 1 if answer matches gold"
class PredictAnswer (dspy.Signature): answer: str
"Answer the question" gold_label: str
query: str correct: int

answer: str
class Check(dspy.Module):

class Answer (dspy.Module): def __init__(self):
def __init__(self): super () . __init__(Q)
super () . __init__ () self .predict = dspy.Predict(
self.predict = dspy.Predict(ConfirmAnswer)

PredictAnswer)
def forward(self, answer: str,

def forward(self, query: str): gold_label: str):
return self.predict(query=query). return self.predict(
answer answer=answer,
gold_label=gold_label
get_answer = Answer ()) .correct
confirm_answer = Check ()

Figure 1: DSPy modules used for evaluation.

6 Results

Configuration DSPy Performance (%) Tokens Used
A=20,a=08,8=15 76.0 222.3
A=25,aa=08,8=1.5 76.0 224.8
A=20,a=1.0,=1.5 74.0 228.2
A=20,a=038,5=2.0 72.0 222.8
Random Sampling 72.0 224.6
Baseline (Unoptimized) 72.0 -

Table 1: DSPy performance across hyperparameter configurations.

Importance Scores (First 1000 Queries)

0.95 - ---- ChosenK =16

0.94 4

0.93 1

0.92

Importance Score

0.91 4

h
f
i
i
i
i
i
i
i
i
i
1
i
i
1
i
1
i
|
i
i
i
i

0.90 1 i
T T T T T
0 200 400 600 800 1000

Query Index (sorted)

Figure 2: Importance scores for the first 1000 queries, with the chosen k = 6 indicated.

Query (shortened) Token Cost Importance Score Selected By

Where is Easter Island located on the 4.73 0.95 SAC
world map

How many episodes of Dawson’s 4.62 0.95 SAC
Creek are there

Who owns the Reserve Bank of New 4.59 0.94 SAC
Zealand

Who played the mom on The Suite 4.99 - Random
Life of Zack and Cody

What year was the car in Gran Torino 4.58 - Random
What is the story behind The Silence 5.12 - Random
of the Lambs

Table 2: Examples from SAC-selected vs. random-selected selected queries. Importance score is
empty for random-selected queries, because random-selected does not take importance score into
account.

6.1 Quantitative Evaluation

I evaluated several SAC configurations on a fixed 50-question test set. According to Table [T} the
best-performing setting (A = 2.0, = 0.8, = 1.5) achieved 76.0 percent accuracy, compared
to 72.0 percent for both the unoptimized baseline and the random sampling setting. Other SAC
variants scored between 74.0 percent and 76.0 percent, consistently outperforming the baselines. This
4-point improvement represents a 5.6 percent relative gain over baseline performance. On average,
SAC also reduced the number of tokens used per query by about 22 (from 224.6 to 222.3 tokens),
confirming that it improves both answer quality and computational efficiency while achieving superior
performance with 1 percent fewer tokens than random selection. The consistency across SAC variants
(74-76 percent) suggests the method is robust to hyperparameter variations, with the diversity term (3
showing the strongest impact on performance when increased to 2.0 (dropping to 72 percent). This
indicates that excessive diversity can hurt performance by selecting less relevant prompts, revealing
that interaction between the four reward terms is very important, creating competing pressures that
prevent bad solutions where the agent would select either all similar prompts (without diversity
penalty) or completely random prompts (with excessive diversity). The 22-token reduction per query,
while modest, represents meaningful cost savings at scale: for 10,000 queries, this saves 220,000
tokens, equivalent to roughly 44 dollars in API costs using GPT-4 pricing.

The SAC configuration (A = 2.0, = 0.8, 5 = 1.5) ultimately offers the best tradeoff between
accuracy and efficiency. It reliably selects a compact set of prompts that not only preserves but slightly
improves accuracy while reducing prompt length. As shown in Figure 2] most of the information
gain is concentrated in the top-ranked queries, justifying a cutoff of k=6. The importance scores
exhibit an exponential decline as the query index increases, indicating that while the first few prompts
provide the most value, later queries still contribute meaningful information, albeit with diminishing
marginal utility. This allows SAC to focus its token budget on the most informative examples without
compromising coverage or performance.

6.2 Qualitative Evaluation

As illustrated in Table 2] the SAC agent tends to favor prompts that are informative, topic-diverse,
and semantically rich. For example, selected queries like "Who owns the Reserve Bank of New
Zealand?" or "What are the ABC islands of the Caribbean?" are specific, well-grounded, and tied
to broader knowledge areas. These contrast with lower-importance or randomly selected prompts
such as "Who played the mom on The Suite Life of Zack and Cody?" or "What is the ending to A
Mountain Between Us?", which are more entertainment-focused and less generalizable for retrieval.
SAC also tends to group prompts that maximize answer coverage across different domains, like
finance, geography, governance, media, and science. This happens because the diversity bonus
(8 = 1.5) explicitly rewards prompts that are far from already-selected examples in embedding space,
when the agent has already chosen a geography question, it gets penalized for choosing another
similar geography question, naturally pushing it toward different domains. This demonstrates how the

768-dimensional embedding space effectively captures both semantic content and answer relevance,
with high-performing prompts clustering in regions where question and answer embeddings show
strong alignment but maintain distance from other selected examples. Tuning the SAC weights
changes these preferences. Raising the relevance term A leads to tighter topical focus, e.g., more
variations on historically grounded questions. Increasing the diversity term 5 encourages broader
spread, leading to more prompts like "How many seasons are there in Nurse Jackie?" or "Where is
Kruger National Park in South Africa?", which extend into less saturated knowledge zones. Adjusting
the cost penalty « discourages repetitive formulations. In all cases, the retained prompts form a
subset with lower token cost, better topic spread, and richer context, without sacrificing LLM answer
quality. The continuous action space allows the agent to express confidence levels, with prompts
scoring 0.8-0.95 representing the highest-quality examples while those below 0.5 are consistently
low-value, creating a natural ranking system that outperforms binary selection methods.

Takeaway SAC offers a simple but effective way to compress prompt sets without sacrificing
performance, but instead gaining performance compared to randomly-selecting prompts. With just
one training run, it selects a smaller, more relevant, and more diverse subset that exceeds the random-
50 in accuracy. This avoids the need for hand-tuning or brute-force search, making SAC a practical
tool for improving both the quality and efficiency of prompting in resource-constrained settings.

7 Discussion

One limitation of this study is that the method was only tested on a single dataset. While the results
are promising, it’s unclear how well the approach would work on other tasks or domains. Different
datasets might have different types of prompts or difficulty levels, which could affect how SAC
performs. If I had more time, I would have tested the algorithm on a wider range of datasets to better
understand its strengths and weaknesses.

Another challenge was tuning the hyperparameters. SAC depends on several settings, like learning
rate and reward scaling, that can have a big impact on performance. It was hard to find the best values,
especially with limited time. This means the results might not fully show what the method is capable
of.

Looking at the broader picture, using reinforcement learning to select prompts is a useful idea. It can
save time and reduce the need for manual prompt engineering. However, it also introduces some risks.
If the data used to train the system is biased, the selected prompts might reflect those biases. Also,
when prompt selection is automated, it can be harder for users to understand why certain prompts
were chosen, which may reduce transparency.

During the project, I also faced technical challenges. It took time to get SAC training to work well,
choose a reward signal that made sense, and connect everything together smoothly. These steps
required a lot of trial and error. Even with these issues, the method still performed better than random
selection, showing that this approach has real potential.

8 Conclusion

This project shows that large QA corpora don’t need to be hand-curated or exhaustively searched to get
good RAG performance. A simple SAC agent, trained once over sentence-transformer embeddings,
can pick out a compact, high-value set of prompts that hits the same answer quality as the full dataset,
at a fraction of the token cost. The agent’s reward balances relevance, cost, and coverage, and the
steep gate makes its retention scores almost binary, so downstream systems can use them directly.
Compared to the baseline of using random sampling, SAC delivers cleaner prompts and broader
topic spread. Training takes minutes on a single GPU, and the learned scores are really effective in
improving LLM tasks. Overall, this method drops the need for unstable heuristics and gives a fast,
scalable way to build better RAG datasets, one that’s lightweight enough to run on everyday hardware.
The key insight is that reinforcement learning can automate what has traditionally been a manual,
time-intensive process while actually improving results. With API costs rising, methods that optimize
the quality-cost tradeoff become increasingly valuable for production systems. Future work should
test this approach across different datasets and domains to validate its broader applicability, but the
results demonstrate clear potential for making RAG pipelines both more effective and more efficient.

9 Team Contributions

* Alberto: I was responsible for the whole project.

Changes from Proposal Most of the changes came from changing the SAC model itself, which has
had many different renditions over the course of the project, and experimenting with hyperparameters.
In addition, the data in which was used for evaluation is different, shifting from 20-sampled queries
to 50-sampled queries to showcase a more accurate and stable representation of performance. There
has been many changes since the proposal and even some changes from the poster session. I know
see a bigger gain in performance.

References

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei
Zaharia, and Christopher Potts. 2023. DSPy: Compiling Declarative Language Model Calls into
Self-Improving Pipelines. arXiv:2310.03714 [cs.CL] https://arxiv.org/abs/2310.03714

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
and Omar Khattab. 2024. Optimizing Instructions and Demonstrations for Multi-Stage Language
Model Programs. arXiv:2406.11695 [cs.CL] https://arxiv.org/abs/2406.11695

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics. https://arxiv.org/abs/1908.10084

sentence-transformers. 2025. Natural Questions Dataset (sentence-transformers/natural-questions).
https://huggingface.co/datasets/sentence-transformers/natural-questions,
Accessed: 2025-05-24.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022. Active Example Selection for In-Context Learning.
arXiv:2211.04486 [cs.CL] https://arxiv.org/abs/2211.04486

https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2406.11695
https://arxiv.org/abs/1908.10084
https://huggingface.co/datasets/sentence-transformers/natural-questions
https://arxiv.org/abs/2211.04486

	Introduction
	Approach
	Related Work
	Method
	Experimental Setup
	Dataset
	Embeddings and State
	Agent Architecture and Training
	Methods Compared
	LLM Evaluation

	Results
	Quantitative Evaluation
	Qualitative Evaluation

	Discussion
	Conclusion
	Team Contributions

