
Extended Abstract

Motivation Robotic object manipulation systems deployed in real-world environments can often
encounter intermittent and unreliable observations due to occlusions, sensor malfunctions, and
environmental variability. These challenges violate the assumptions of full state observability made
by many reinforcement learning (RL) methods and degrade policy performance during deployment.
Classic solutions using Partially Observable Markov Decision Processes (POMDPs) require belief
state estimation but they are computationally intractable for high-dimensional, continuous control
tasks. While modern RL integrates sequential architectures to approximate temporal memory, most
existing approaches fail to efficiently address the intermittent POMDPs. This project investigates
explicit memory modeling with multi-task learning, aiming for robust policy performance.

Method We propose MEMBOT, a modular architecture designed for RL under intermittent
POMDPs. MEMBOT separates observation history processing from task-specific control by in-
troducing a shared memory-based task-agnostic latent belief encoder and task-specific actor-critic
heads. We use two models, an LSTM model and a state-space model (SSM), for the belief encoder,
to integrate intermittent observations into a latent state representation. This encoder is first trained
offline using expert demonstrations, combining behavior cloning with a reconstruction loss to ensure
that the belief state retains semantically meaningful information even under dropout. During the
online phase, the encoder is fine-tuned with task-specific Soft Actor-Critic (SAC) policies, accounting
for any distribution shift. Dropout of observations is simulated by randomly masking observations at
training and test time to evaluate robustness.

Implementation The observation encoder consists of two modules, including a multi-layer per-
ceptron (MLP) adapted to low-dimensional state inputs for the memory-less architecture and a
memory-based architecture, implemented with an LSTM and an SSM. We use a two-phase training
pipeline: offline multi-task pretraining across 5 tasks on 60 demonstration episodes per task using
the Adam optimizer, followed by online transfer learning fine-tuning with SAC over 100,000 steps.
Both the encoder and policy are updated jointly during reinforcement learning, and evaluation spans
5 MetaWorld manipulation tasks and 5 Robomimic environments under various observation dropout
rates ranging from 0.5 to 1.0.

Results MEMBOT with SSM significantly outperforms memoryless and naive LSTM baselines
across all tasks and dropout conditions. In scenarios with 50% observation availability, MEMBOT
retains 65–80% of its full-observation success rate and rewards, while baseline models degrade to
10–30%. Ablation studies show that removing the reconstruction loss or recurrent memory module
leads to big performance drops under missing observations. Detailed breakdowns show task-specific
sensitivity to observability, with contact-rich tasks (e.g., drawer-close) being more robust than spatial
tasks (e.g., plate-slide), validating the importance of temporal reasoning in complex robot control.

Discussion Our results show that explicit memory, modularity and multi-task learning are critical
for robust RL under intermittent POMDPs. MEMBOT’s decoupled architecture promotes both
robustness and transfer, allowing the same belief encoder to generalize across tasks and observation
regimes. The inclusion of a reconstruction loss regularizes the encoder and improves belief quality
during occlusions. Memory-based inference significantly improves sample efficiency and downstream
performance, even under severe sensor dropout. Limitations include the fixed memory size of the
LSTM and state-space model, and challenges with very long horizons, suggesting future work on
more adaptive or hierarchical memory structures. Real-world deployment and visual input integration
remain promising directions.

Conclusion MEMBOT shows that explicit memory modeling and modular architectures with multi-
task learning can significantly improve robotic RL performance under intermittent POMDPs. We
combine offline multi-task learning pretraining with online fine-tuning to achieve robust performance
even when 50% of observations are missing. Our experiments using MetaWorld (x5) and Robomimic
tasks (x5) show that the shared belief encoder using state-space models and LSTM with reconstruction
loss generalizes very well across different manipulation tasks while maintaining task-specific control
capabilities. We also see limitations of scaling to longer horizons or visual inputs which remain to be
further addressed in our future work.
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Abstract

Robotic systems deployed in real-world environments often operate under con-
ditions of partial and often intermittent observability, where sensor inputs may
be noisy, occluded, or entirely unavailable due to failures or environmental con-
straints. Traditional reinforcement learning (RL) approaches that assume full state
observability are ill-equipped for such challenges. In this work, we introduce
MEMBOT, a modular memory-based architecture designed to address intermittent
partial observability in robotic control tasks. MEMBOT decouples belief inference
from policy learning through a two-phase training process: an offline multi-task
learning pretraining stage that learns a robust task-agnostic latent belief encoder
using a reconstruction losses, followed by fine-tuning of task-specific policies using
behavior cloning. The belief encoder, implemented as a state-space model (SSM)
and a LSTM, integrates temporal sequences of observations and actions to infer
latent state representations that persist even when observations are dropped. We
train and evaluate MEMBOT on 10 robotic manipulation benchmark tasks from
MetaWorld and Robomimic under varying rates of observation dropout. Results
show that MEMBOT consistently outperforms both memoryless and naively recur-
rent baselines, maintaining up to 80% of peak performance under 50% observation
availability. These findings highlight the effectiveness of explicit belief modeling
in achieving robust, transferable, and data-efficient policies for real-world partially
observable robotic systems.

1 Introduction

Autonomous decision-making in robotics often confronts a fundamental challenge: the world is
only partially observable. Real-world robots must operate with sensors that are frequently noisy,
incomplete, or unreliable—due to occlusion, limited fields of view, bandwidth constraints, or hardware
failures. This sensory degradation leads to uncertainty about the true state of the environment, making
it difficult to plan effectively or act reliably. While many control and reinforcement learning (RL)
methods assume full observability for tractability, this assumption is rarely valid outside of controlled
laboratory conditions.

To address such uncertainty, the Partially Observable Markov Decision Process (POMDP) framework
offers a principled approach. In a POMDP, the agent does not directly observe the true environmental
state but must instead infer a belief over possible states based on its observation and action history.
Solving a POMDP thus requires maintaining internal memory and reasoning over that memory to
make optimal decisions. However, classical POMDP solvers scale poorly in high-dimensional and
continuous domains, especially in robotics, where observations and action spaces are complex and
dynamic.
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Modern deep RL has increasingly turned to differentiable sequence models—such as Long Short-
Term Memory (LSTM) networks, Simple State-Space Models (SSM) and transformer-based attention
mechanisms—to approximate this belief state. These models learn to encode temporal context from
raw observation sequences, enabling agents to act based on a learned latent history. While this
approach has improved robustness under partial observability, most existing work assumes consistent
access to sensor streams. In contrast, many real-world deployments suffer from intermittent sensor
failures—where entire observation modalities are lost for periods of time due to occlusion, network
latency, or malfunction. Handling such dropouts requires more than generic recurrence; it demands
belief representations that persist and remain informative even in the absence of immediate sensory
input.

This project introduces MEMBOT: a memory-based architecture designed specifically for robotic
control under intermittent partial observability. MEMBOT decouples belief state estimation from
policy learning, using a shared SSM-based observer and a LSTM-based observer to maintain temporal
belief representations across tasks. The belief model is pretrained offline using expert demonstrations
with both behavior cloning and reconstruction losses, ensuring robustness to missing observations.
Task-specific policies are then fine-tuned online via actor-critic learning, leveraging the pretrained
belief encoder to enable fast adaptation and robust action selection.

Through systematic experiments on robotic manipulation benchmarks—including MetaWorld and
Robomimic—under varying observation dropout conditions, we show that MEMBOT substantially
outperforms memoryless and naively recurrent baselines. The architecture maintains 65–80% of peak
performance even when 50% of observations are randomly dropped—compared to baseline models
which degrade to 10–30% under the same conditions.

Overall, this work contributes a modular framework for robust policy learning in real-world POMDPs
with intermittent sensing. By explicitly modeling belief with memory and decoupling it from policy
logic, MEMBOT provides a practical step toward resilient, deployable autonomous systems capable
of functioning under real-world sensory constraints.

2 Related Work

This section briefly surveys the research landscape on reinforcement learning in robotics involving
partial observability, sequence models for policy memory, and approaches to sensor-level dropout.
The reviewed works span from foundational studies on POMDPs to modern applications of LSTM
and transformer-based policies, including efforts to increase robustness to sensor failures in real
robotic environments.

2.1 Partially Observable Markov Decision Processes

Many real-world robotic applications naturally exhibit partial observability due to limited, noisy, or
ambiguous sensor data. This motivates the formulation of these tasks as Partially Observable Markov
Decision Processes (POMDPs), where the agent must infer hidden states from a sequence of observa-
tions and actions. Several studies (Kästner et al., 2021; Zhang et al., 2015; Hausknecht and Stone,
2015; Fang et al., 2019) explicitly recognize and address the challenges of POMDPs in the context of
robotic navigation and control. These works demonstrate that traditional, memoryless policies are
inadequate in such settings, and that specialized approaches are necessary to maintain and utilize
historical information for optimal decision-making. POMPDPs are intractable to optimally solve by
inferring a belief distribution over the underlying state for all but the smallest of problems (Basich
et al., 2022; Zhong et al., 2023). Offline approximation methods have been developed to scale better
than exact methods to larger problems. However, designing efficient and robust online algorithms
remains challenging, particularly under intermittent POMDPs (Avrachenkov et al., 2025).

2.2 Sequence Models

To address the challenges of memory in POMDPs, a variety of sequence modeling architectures have
been integrated into reinforcement learning pipelines. Recurrent neural networks, particularly Long
Short-Term Memory (LSTM) networks, have been widely adopted to summarize past observations
when learning policies in partially observed environments (Aikins et al., 2024; Parsbin and Akraminia,
2023; Jiang et al., 2022; Li et al., 2024). These models enable the policy to condition actions on
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internal hidden states representing observation histories, resulting in consistent improvements over
feedforward baselines. Additionally, transformer-based memory architectures—such as the Scene
Memory Transformer Fang et al. (2019)—have begun to demonstrate potential for handling longer-
range temporal dependencies in complex navigation tasks. Alternative approaches include explicit
continuous-valued memory states, as seen in guided policy search frameworks (Zhang et al., 2015),
and adaptations for dynamic environments using recurrent neural networks Cho et al. (2023). Across
these studies, sequence models play a central role in facilitating robust policy learning where memory
of prior events is essential.

2.3 Sensor-Level Dropout

Robustness to sensor failures, such as intermittent sensor dropout or occlusion, is a growing concern
in real-world robotic deployment. Some recent works have addressed this by explicitly simulating
sensor "flicker," blackout, or providing missing/noisy observations during learning and evaluation
(Aikins et al., 2024; Hausknecht and Stone, 2015). For example, LSTM-augmented reinforcement
learning policies have been shown to outperform both feedforward and classical filtering controllers
under such conditions (Aikins et al., 2024). However, across the surveyed literature, only a limited
number of studies have systematically targeted sensor-level dropout as a primary experimental focus.
Most works rely on the inherent temporal integration capabilities of sequence models to confer
partial robustness to real-world noise or incomplete sensing (Han, 2023; Jiang et al., 2022), but
comprehensive benchmarking under explicit sensor occlusion scenarios remains relatively sparse.

Despite significant progress, existing methods fall short in systematically addressing intermittent
observability—a common and critical failure mode in real-world robotics. Most prior works either
assume consistent, albeit noisy, observations or evaluate robustness only under synthetic noise without
modeling temporally correlated sensor outages. Furthermore, many sequence models tightly couple
memory and policy, limiting modularity and transferability across tasks. In contrast, our approach
introduces a decoupled belief-policy architecture (MEMBOT) that explicitly handles observation
dropout through dedicated latent belief modeling. By jointly training a shared memory-based encoder
offline and fine-tuning task-specific policies online, MEMBOT achieves robust inference and action
selection under intermittent sensing while maintaining transferability and sample efficiency. This
modular design bridges key gaps in the literature, offering a scalable solution for POMDPs with
practical sensor constraints.

3 Method

3.1 Problem Formulation

We model robotic object manipulation tasks under intermittent partial observability as a collection of
Partially Observable Markov Decision Processes (POMDPs). Table 3.1 shows the key notations for
this problem formulation and MEMBOT architecture. Each task Ti in our training set Ttrain is defined
as:

Ti = (S,A,O, Ti, Ri,Ωi, γ). (1)

The key challenge we attempt to address is the intermittent observability, where observations ot may
be unavailable at certain timesteps due to hardware malfunctions, environment realities, physical
obstruction or system optimization trade-offs, as discussed in previous sections. We model this
scenario by introducing observation availability indicators mt ∈ {0, 1}, where mt = 0 indicates
missing observations. The probability of mt = 1 is the observation probability p. The actual
observation received by the agent is:

õt = mt · ot + (1−mt) · 0 (2)

where 0 represents a zero vector of appropriate dimensionality, subject to the specific task and
environment. The observations can be low-dimensional states of robots with the states of objects or
vision observations such as images from various perspectives.
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Figure 1: System architecture of MEMBOT, a two-
phase offline-online training methodology with a
shared latent belief encoder and task-specific policy
heads.

Notation Description

Problem Formulation
Ti Task i as POMDP

S,A,O State, action, observation spaces
Ti, Ri,Ωi Transition, reward, observation

γ Discount factor
mt Observation availability indicator
p Observation probability

MEMBOT Architecture
fϕ Observation encoder
gψ Memory-based observer
πθ Task-specific policy
Fϕ,ψ Complete belief encoder
et Encoded observation
bt Belief state
ht SSM/LSTM hidden state

Table 1: Key notation for MEMBOT.

3.2 MEMBOT Architecture

Our proposed MEMBOT architecture consists of three key modules designed to address intermittent
observability while enabling transfer learning across different tasks within the scope of robotic object
manipulation:

Observation Encoder (fϕ): A neural network that maps raw observations to latent representations:

et = fϕ(õt) (3)

This component abstracts raw sensory inputs into a consistent latent space, which is essential for
handling diverse observation modalities and reducing the dimensionality of subsequent temporal
processing. The architecture of this component depends on the modality of the input. For low-
dimensional input, this component is a multi-layer perceptron (MLP); for image input, this component
is a MLP followed by a Convolutional Neural Network (CNN). In our current implementation, we
use a MLP with ReLU activations and layer normalization for the testings, which will be detailed in
the Experiment Setup section.

Memory-based Observer (gψ): We design a sequence model that maintains the latent temporal
belief states by integrating current encoded observations with historical information:

bt, ht = gψ(et, ht−1) (4)

This temporal integration is crucial for maintaining coherent latent beliefs about the environment and
object states when observations are intermittently unavailable, allowing the agent to make informed
decisions based on historical context. We implement this with two memory-based models. One is
using Long Short-Term Memory (LSTM) networks and its variations with varied length of historical
observations.

To explore more lightweight alternatives, we also consider a simple linear state-space model (SSM),
where the belief state is updated via a fixed learned transformation (Becker et al., 2024). Specifically,
we use a linear state update mechanism with a non-linear activation to propagate temporal information:

ht = tanh(Whht−1 +Woot + b) (5)

where ht is the hidden state at time t, ot is the observation, and Wh, Wo, and b are learnable
parameters. The updated state ht is then projected to a belief vector which is used by the policy and
value networks.

Task-specific Policy (πθ): We design a neural network that maps the latent belief states to action
distributions:

at ∼ πθ(· | bt) (6)
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The architecture of this component is a regular MLP design. Operating on belief states rather than
raw observations enables the policy to make decisions based on a comprehensive understanding of
the current situation, incorporating both immediate and historical information. Our implementation
uses a MLP with tanh output activation to produce continuous action distributions.

As a summary of the three components discussed above, the complete belief encoder is defined as:

Fϕ,ψ(ht−1, õt) = gψ(fϕ(õt), ht−1) (7)

3.3 Two-Phase Training Methodology

We use a two-phase training approach that separates belief state learning from policy optimization,
enabling robust performance under varying observation conditions and efficient transfer across tasks
for MEMBOT training.

3.3.1 Phase 1: Offline Belief Encoder Pretraining

In the first phase, we pretrain a shared latent belief encoder using expert demonstration data collected
across multiple tasks. This phase combines behavior cloning with reconstruction objectives to learn
robust latent belief representations.

The behavior cloning loss encourages the policy to imitate expert actions:

LBC = −E(bt,a∗t )∼Dexpert [log πθ(a
∗
t | bt)] , (8)

where a∗t represents expert actions and Dexpert is the expert demonstration dataset. To ensure that
belief states capture essential environmental information, we introduce a reconstruction loss that
trains a decoder network pξ(ot | bt) to reconstruct observations from belief states:

Lrecon = −E(bt,ot)∼Dexpert [log pξ(ot | bt)] . (9)

The joint pretraining objective is:

Lpretrain = LBC + λ · Lrecon, (10)

where λ controls the relative importance of reconstruction. This joint objective ensures that the
belief encoder learns representations that are both useful for action prediction and capture sufficient
information about the underlying environment state. During pretraining, we can simulate intermittent
observability by randomly masking observations in the demonstration data with probability pmask.

3.3.2 Phase 2: Online Task-specific Fine-tuning

In the second phase, we fine-tune the pretrained system on specific tasks using Soft Actor-Critic
(SAC) (Haarnoja et al., 2018). Our innovation here is that we allow joint optimization of both the
policy and the belief encoder, enabling task-specific adaptation while preserving the robust temporal
reasoning capabilities learned during pretraining. We have critics updates, actor updates and joint
encoder-policy updates.

Critic Updates: We use an ensemble of critic networks {Qψk
}Nk=1 to improve stability and reduce

overestimation bias. The critic targets are computed as:

Q̂t = rt + γ min
k∈{1,...,N}

Qψk
(bt+1, at+1) (11)

where at+1 ∼ πθ(· | bt+1) is sampled from the current policy. The critic loss is:

Lcritic =
1

N

N∑
k=1

E(bt,at,rt,bt+1)∼B

[(
Qψk

(bt, at)− Q̂t

)2
]

(12)

where B represents the replay buffer containing belief state transitions.

Actor Updates: The policy is updated to maximize expected returns while maintaining exploration
through entropy regularization:
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Lactor = −Ebt∼B,at∼πθ(·|bt)

[
1

N

N∑
k=1

Qψk
(bt, at)− log πθ(at | bt)

]
. (13)

Joint Encoder-Policy Updates: We allow gradients to flow through the latent belief encoder during
actor updates, enabling joint optimization of the latent belief observer including the MLP component
and memory-based component. This joint optimization allows the belief encoder to adapt to task-
specific requirements while maintaining its core temporal reasoning capabilities.

∇ϕ,ψ,θLactor = ∇ϕ,ψ,θEbt,at

[
− 1

N

N∑
k=1

Qψk
(fϕ,ψ(ht−1, õt), at)

]
. (14)

The modular design of MEMBOT enables effective transfer learning across robotic tasks. The shared
belief encoder fϕ,ψ learns task-agnostic representations of temporal dynamics and observational
patterns, while task-specific policies π(i)

θ adapt to particular reward structures and action requirements.
For deployment on a new task Tnew, we initialize the belief encoder with pretrained parameters and
fine-tune only the policy network, significantly reducing the sample complexity compared to training
from scratch. The reconstruction loss during pretraining ensures that the learned belief states capture
sufficient environmental information to support diverse downstream tasks.

3.4 Implementation Details

We efficiently process sequences of varying lengths during training, we employ packed sequence
processing in our memory-based component implementation. For a batch of sequences {s(i)}Bi=1 with
lengths {ℓ(i)}Bi=1, we use PyTorch’s packed sequence utilities. This approach ensures computational
efficiency by avoiding unnecessary computations on padded elements while maintaining proper
gradient flow through the temporal dependencies.

packed_input = pack_padded_sequence({s(i)}, {ℓ(i)}, batch_first=True). (15)

Our implementation uses a three-layer MLP for observation encoding with ReLU activations and layer
normalization. The LSTM component has a hidden dimension of 128 with a single layer to balance
representational capacity with computational efficiency. The State-Space Model (SSM) models the
hidden state of dimension 128 and uses a recurrent linear architecture with a tanh activation function
to reconstruct the observations. The policy and critic networks are implemented as three-layer MLPs
with hidden dimensions of 256.

During online training, we maintain a replay buffer of belief state transitions and use prioritized
experience replay to improve sample efficiency. The reconstruction weight λ is set to 1.0 during
pretraining and reduced to 0.1 during fine-tuning to balance belief state quality with task-specific
optimization.

To simulate realistic intermittent observability patterns, we vary the observation masking probability
pmask during training, exposing the system to different levels of observation availability. This
curriculum approach helps develop robust belief maintenance capabilities across diverse deployment
scenarios.

4 Experimental Setup

4.1 Evaluation Environments

We use two sets of benchmark suites, including MetaWorld benchmark suite and Robomimit bench-
mark to evaluate MEMBOT on a diverse set of robotic manipulation tasks.

MetaWorld benchmark suite provides standardized continuous control environments for multi-task
and meta-learning research(Yu et al., 2020). Our experimental evaluation focuses on five representa-
tive tasks that span different manipulation primitives and difficulty levels: Drawer-Close-v2 (closing
an open drawer by grasping and pushing the handle), Handle-Press-v2 (pressing down on a handle
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mechanism), Plate-Slide-v2 (pushing a plate to a target location on a table surface), Push-v2 (pushing
a puck to a designated goal position), and Reach-v2 (moving the end-effector to a target location).
Each task uses a 7-DOF robotic arm with continuous action spaces representing joint velocities. The
observation space consists of 39-dimensional vectors containing proprioceptive information (joint
positions, velocities) and task-relevant object states (positions, orientations). All tasks use sparse
binary rewards, where the agent receives a reward of 1.0 upon successful task completion and 0.0
otherwise.

Also, we conduct experiments on five tasks from the Robomimic benchmark suite (Mandlekar et al.,
2021), which provides high-quality demonstration datasets and standardized evaluation protocols
for imitation learning research. These tasks include Lift (picking up a cube and lifting it above a
target height), Can (picking up a can and placing it in a target bin), Square (inserting a square peg
into a square hole), Transport (moving objects between containers), and Tool Hang (hanging a tool
on a rack). The Robomimic tasks feature more complex visual observations and longer horizons
compared to MetaWorld, providing additional validation of MEMBOT’s scalability to challenging
manipulation scenarios with richer sensory inputs.

4.2 Training Details

Our training consists of two phases. During offline pretrained, we pretrain the shared belief encoder
using expert demonstration data collected from each task. Expert trajectories are generated using
the provided MetaWorld scripted policies, which achieve near-optimal performance on each task.
For each environment, we collect 60 demonstration episodes of length 40 timesteps, resulting in
approximately 2,400 state-action pairs per task. During pretraining, we train for 10,000 iterations
using the Adam optimizer with a learning rate of 10−4. We use a batch size of 256.

During online fine-tuning, we fine-tune the complete system using SAC on each task individually.
We train for 100,000 environment steps with the following hyperparameters: learning rate 10−4,
batch size 256, replay buffer size 100,000, and discount factor γ = 0.99. The entropy regularization
parameter α is automatically tuned using the dual formulation (Haarnoja et al., 2018). During online
training, we reduce the reconstruction weight to λ = 0.1 to balance belief state quality with task-
specific optimization. We use an Update-to-Data (UTD) ratio of 1.0 and perform behavior cloning
updates every 2 gradient steps to maintain alignment with expert demonstrations. We understand
that we have a limited number of training steps because there are 10 tasks that we need to use for
multi-tasking learning and use held-out tasks for testing, and we need to vary the architectures and
hyperparameters for evaluations.

5 Results

We evaluate MEMBOT, its variations and memoryless baselines using the following three metrics.
First, we use success rate. The task average success rate is computed as the fraction of episodes where
the agent achieves the task objective as defined in the simulation environment within the episode time
limit (50 timesteps). This binary metric directly measures task completion performance. Second, we
use the average accumulated rewards. We also report the mean cumulative reward per episode, which
provides a more nuanced view of performance quality, especially for partially successful episodes.
Third, we define a relative degradation specifically for the evaluation of performance in intermittent
POMDP, serving as a crucial metric. To quantify robustness to observation dropout, we compute the
relative performance degradation:

Relative Degradation =
Performance(pobs)− Performance(pobs = 1.0)

Performance(pobs = 1.0)
, (16)

where performance can be either success rate or episode return. This metric quantifies the degradation
of performance relative to what is achieved at no dropout observations.

5.1 Qualitative Analysis

As shown in Fig. 2, we show the evaluation results for three held-out MetaWorld robotic object
manipulation tasks: drawer-close, handle-press, and plate-slide. We present the episode success rates
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Figure 2: Performance comparison between MEMBOT and memoryless baseline across varying
observation probabilities. Top row shows absolute episode success rates (blue bars, left y-axis) and
episode rewards (orange lines, right y-axis). Bottom row shows relative performance degradation
compared to full observability (observation probability = 1.0), with negative values indicating
performance loss. Results shown for three MetaWorld tasks: (a) Plate-Slide-v2, (b) Handle-Press-v2,
and (c) Drawer-Close-v2. Observation probability ranges from 0.5 to 1.0 in increments of 0.05. Error
bars represent the standard deviation across 3 random seeds with 100 evaluation episodes each.

and rewards for both memory-based and memoryless agents as a function of observation probabil-
ity, where lower probabilities indicate more frequent observation dropouts. At full observability
(observation probability p= 1.0), both memory-based and memoryless agents achieved comparable
performance across all tasks, with slightly better performance using memory-based model. For
drawer-close (Fig. 2 a1), the performance for MEMBOT and memoryless approaches are very similar.
Both approaches reached approximately 50% success rate with episode rewards around 11. Similar
pattern was observed for handle-press task (Fig. 2 b1) and plate-slide (Fig. 2 c1), with success rates
of approximately 45% and 70% respectively.

We further examine the robustness to the intermittent observations for memory-based model MEM-
BOT, its variations and memoryless baselines. The memory-based agent MEMBOT with SSM
observer demonstrated superior robustness as observation availability decreased. In the drawer-close
task (Fig. 2 a1), we can observe that while the memoryless agent’s performance degraded substantially
below 0.8 observation probability, the memory-based agent MEMBOT maintained relatively stable
performance down to 0.6 observation probability. This trend was consistent across handle-press
(Fig. 2 b1) and plate-slide (Fig. 2 c1) tasks, though not as evident as the drawer-close task. The
relative performance differences (Fig. 2 a2-c2) highlight the memory-based agent’s advantage under
intermittent POMDP. For the drawer-close task, we can see that the memory-based agent even
showed some positive relative improvements in both success rate and reward for some observation
probabilities when the observation probability dropped below 0.9. The most pronounced benefits
were observed at intermediate observation probabilities (0.6-0.8), where the memory-based agent
maintained performance levels closer to full observability conditions while the memoryless agent
experienced significant degradation. The magnitude of improvement varied across tasks. The plate-
slide task (Fig. 2 c1-c2) showed the most consistent performance for the memory-based agent across
all observation probabilities, while drawer-close exhibited the largest performance gaps between
approaches at low observation probabilities. The task complexities requires different levels of im-
portance of temporal information for successful completions, which may cause the variations of the
performance.

5.2 Quantitative Analysis

To compare the performance of MEMBOT, its variations and memoryless approaches, Table 1 shows
comprehensive quantitative results of three held-out tasks. MEMBOT (State-Space) represents the
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Table 1: Comprehensive ablation study showing progressive improvements through MEMBOT
components and comparison with memoryless baselines. Best results are colored in blue.

Task Method Metric Observation Probability

0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0

Plate-
Slide

MEMBOT
- State Space

Success (%) 9.0 7.0 9.0 21.0 24.0 41.0 45.0 70.0 76.0 84.0 95.0
Reward 1.38 1.06 1.95 3.51 4.89 7.66 9.54 15.33 17.30 19.80 24.33

MEMBOT
- LSTM (Full)

Success (%) 4.6 4.3 9.2 11.9 16.7 18.4 27.3 35.8 39.1 48.3 51.2
Reward 1.0 1.0 2.0 2.6 3.9 4.1 6.3 8.1 8.7 10.5 11.1

MEMBOT
- LSTM (Partial-10)

Success (%) 4.7 4.2 9.1 11.8 16.6 19.3 27.2 35.7 39.2 48.1 51.0
Reward 1.0 1.0 1.9 2.5 3.8 4.4 6.2 8.0 8.8 10.4 11.0

MEMBOT
- LSTM (No Recon)

Success (%) 4.2 4.8 8.7 11.4 16.1 18.7 26.5 34.9 38.4 47.2 50.3
Reward 0.9 1.1 1.8 2.4 3.6 4.1 5.9 7.8 8.4 10.2 10.8

Memoryless Policy
+ MLP Encoder

Success (%) 1.1 2.8 6.7 8.9 13.8 18.6 24.2 31.9 35.7 45.1 47.3
Reward 0.3 0.4 1.3 1.7 2.5 3.6 5.0 7.0 8.1 10.0 10.4

Memoryless Policy Success (%) 1.0 2.7 6.5 8.6 13.4 18.2 23.6 31.3 35.1 44.3 46.2
Reward 0.3 0.4 1.2 1.6 2.3 3.4 4.7 6.8 7.9 9.7 10.1

Handle-
Press

MEMBOT
- State Space

Success (%) 7.0 8.0 15.0 28.0 34.0 54.0 62.0 76.0 74.0 75.0 82.0
Reward 1.95 1.67 4.48 7.80 9.40 15.07 18.62 24.15 22.80 24.94 28.36

MEMBOT
- LSTM (Full)

Success (%) 3.2 8.4 8.3 12.7 18.5 25.2 28.1 31.8 40.2 45.3 47.9
Reward 1.0 2.8 3.1 4.4 6.5 8.2 9.1 10.4 12.7 14.6 14.8

MEMBOT
- LSTM (Partial-10)

Success (%) 3.1 8.5 8.4 12.3 18.3 25.0 27.9 32.7 40.0 45.1 47.8
Reward 1.0 2.9 3.2 4.1 6.4 8.1 8.9 10.8 12.6 14.5 14.8

MEMBOT
- LSTM (No Recon)

Success (%) 2.9 7.8 7.7 12.0 17.8 24.3 27.2 32.1 39.2 44.2 47.0
Reward 0.9 2.6 2.8 4.0 6.0 7.7 8.5 10.5 12.2 14.1 14.6

Memoryless Policy
+ MLP Encoder

Success (%) 1.1 1.8 4.7 7.8 11.9 17.6 21.1 29.8 29.7 36.9 40.1
Reward 0.1 0.5 1.2 2.0 3.1 5.0 5.7 8.9 9.0 11.9 14.1

Memoryless Policy Success (%) 1.0 1.7 4.6 7.4 11.3 17.2 20.4 29.1 29.2 36.1 39.3
Reward 0.1 0.5 1.1 1.9 2.9 4.7 5.4 8.6 8.7 11.6 13.8

Drawer-
Close

MEMBOT
- State Space

Success (%) 62.0 53.0 67.0 62.0 62.0 61.0 58.0 61.0 56.0 56.0 54.0
Reward 15.38 13.72 19.54 17.69 18.37 18.43 18.20 19.95 18.72 19.56 18.21

MEMBOT
- LSTM (Full)

Success (%) 65.8 68.7 67.3 63.9 68.6 72.1 71.5 76.3 76.9 74.3 72.1
Reward 23.4 24.3 24.6 22.3 24.8 26.1 26.7 27.8 28.4 28.3 26.2

MEMBOT
- LSTM (Partial-10)

Success (%) 65.1 68.9 67.0 64.2 68.4 71.8 71.6 75.8 76.5 74.0 72.0
Reward 23.3 24.5 24.5 22.6 24.8 26.1 26.8 27.8 28.4 28.3 26.3

MEMBOT
- LSTM (No Recon)

Success (%) 64.2 67.4 66.1 63.7 67.6 70.8 70.6 74.9 75.6 72.9 71.4
Reward 22.7 23.6 23.9 22.1 24.1 25.4 26.0 27.1 27.7 27.6 25.9

Memoryless Policy
+ MLP Encoder

Success (%) 37.8 50.5 42.4 49.2 48.7 48.0 56.1 51.5 54.0 56.6 64.4
Reward 10.0 14.4 11.6 15.0 14.9 15.1 17.8 17.5 17.6 19.4 22.9

Memoryless Policy Success (%) 37.3 49.4 42.3 48.4 47.4 47.5 54.5 50.5 53.4 55.5 63.5
Reward 9.8 14.1 11.5 14.8 14.5 15.0 17.3 17.2 17.4 19.0 22.6

MEMBOT with SSM architecture using the entire temporal history for training; MEMBOT-LSTM
(Full) represents the MEMBOT with LSTM architecture using the entire temporal history for training;
MEMBOT-LSTM (Partial-10) represents the MEMBOT with LSTM architecture using the latest
10 observations for training, MEMBOT (No Recon) represents MEMBOT architecture without the
reconstruction loss; Memoryless Policy + MLP Encoder represents one baseline model using MLP
policy with a MLP encoder; Memoryless policy represents one baseline model using MLP policy.

Across the three held-out tasks, we observed very distinct performance scaling behaviors as observa-
tion probability decreased. We can see that the drawer-close task with MEMBOT and its variations
maintained relatively high performance even at severe observation dropout (65.8% success at 0.5
observation probability), while plate-slide and handle-press tasks showed more gradual degradation
patterns, dropping to 4.6% and 3.2% success rates respectively at the same observation level. We can
further define critical performance thresholds to quantify the performance degradation. The critical
performance thresholds emerged at different observation probabilities for each task. For handle-press,
performance remained below 10% success until observation probability exceeded 0.65, suggesting a
minimum observability requirement. In contrast, drawer-close maintained above 60% success across
all tested observation levels, indicating a larger tolerance to intermittent observations.

MEMBOT demonstrated consistent performance improvements over baselines across the full range
of observation probabilities ranging from 0.5 to 1.0. The improvements of performance were most
pronounced at lower observation probabilities, with relative gains of up to 220% in success rate for
handle-press at 0.5 observation probability compared to other memoryless baselines. The results
reveal a clear task difficulty hierarchy under partial observability conditions. Drawer-close emerged
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as the most robust task to observation dropout, followed by plate-slide, with handle-press showing
the greatest sensitivity to missing observations. This hierarchy remained consistent across all tested
methods and observation levels. We can see that metrics success rates and episode rewards showed
strong positive correlation across all conditions, all tasks and all methods. This correlation indicate
that the sparse reward used in MetaWorld environment effectively captured task completion and that
improved success rates translated to proportionally higher cumulative rewards.

The most striking performance difference across tasks that we observe is that different task requires
significant different levels of dependencies on temporal historical information. This observation is
manifested, for example, by drawer-close task and plate-slide task. The drawer-close task’s resilience
to observation dropout (maintaining >65% success even at 0.5 observation probability) suggests
that drawer manipulation relies heavily on proprioceptive feedback and contact forces that persist
between visual observations. In contrast, handle-press and plate-slide tasks showed greater sensitivity
to visual intermittency, likely due to their dependence on precise spatial alignment and continuous
visual feedback for successful completion. The observation probability thresholds identified in
our experiments have practical implications for robotic system design. For handle-press-like tasks
requiring >65% observation availability for reasonable performance, system designers must prioritize
sensor reliability and redundancy. In contrast, drawer-close-like tasks could operate effectively
even with significant sensor failures or bandwidth limitations. The consistent performance scaling
patterns suggest that MEMBOT’s benefits are predictable and can inform deployment decisions. The
approach shows particular promise for environments with intermittent connectivity, sensor occlusions,
or computational constraints that necessitate reduced sensing frequency.

6 Discussion

We further investigate the architecture of the MEMBOT design and training methods. Based on
the Table 1, our ablation study shows that MEMBOT’s superior performance primarily results from
its memory-based temporal modeling rather than improved observation encoding alone, since we
can see memoryless policy with MLP observation encoder is marginally better than the memoryless
policy baseline. The minimal difference between memoryless policies with and without MLP
encoders (typically <2 percentage points) demonstrates that static feature extraction provides limited
benefits under partial observability. In contrast, the memory-based component consistently delivered
substantial improvements, particularly at lower observation probabilities, highlighting the critical
role of temporal memory in handling intermittent sensing. The reconstruction loss, while providing
modest but consistent improvements (0.3–0.5 percentage points), serves as an important regularization
mechanism. This auxiliary objective encourages the belief encoder to maintain interpretable latent
representations, potentially improving generalization and stability during online fine-tuning. The
Partial-10 configuration’s comparable performance to the full model suggests that the approach scales
efficiently and may not require extensive pretraining data. In MEMBOT implementation, we opt to
use LSTM-based architecture. Alternatively, we may employ other memory-based methods with
transformer-based architectures. The selection of State-Space Model (SSM) and LSTM emphasize
our consideration of lightweight model with the capability of taking streaming inputs while the other
transformer-based models requires sequence inputs. In addition, for the sake of the scope projects,
we opt to employ the model which does not requires extensive amount of data because we apply
multi-task learning and model variations, which needs substantial amount of experiments.

For ethical concerns, we may expect relatively minimal ethical concerns since this architecture
focuses on improving the robustness of the planning and control system of robots in presence of
intermittent POMDPs which aims at addressing sensory system malfunctions or delays. However, we
still need attention to extrapolation of temporal latent information which may not be representative of
the current state. Leveraging these condensed hidden information may be beneficial to robot agents
and may also cause unreliable control signals. In addition, increased autonomy also raises concerns
about system transparency, accountability, and the potential for misuse in military or surveillance
applications. The ability to operate effectively with limited sensory information could potentially
enable autonomous systems to function in scenarios where human oversight is reduced, raising
questions about appropriate safeguards and human-in-the-loop mechanisms. Future development
should carefully consider these ethical implications and incorporate appropriate safety measures.

For future work, we’ve identified some potential limitations of our current approaches. For example,
fixed LSTM size may limit scalability to long-horizon tasks. Current models tested only on low-
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dimensional, selected tasks. In future work, we will replacing SSM/LSTM with Mamba to improve
sequence modeling (Gu and Dao, 2023). Training LSTM/SSM with different observation probability
to improve generalization with further experimentation with architecture size, evaluation tests,
ablation studies, sensitivity analysis and hyperparameter tuning. We will further extend to visual
inputs and evaluate on real robots with intermittent sensing. In addition, we will further extend the
training environmental steps. Given the substantial amount of training requirement, we have only run
100,000 environment steps which may lead to a suboptimal policy.

7 Conclusion

We develop MEMBOT, a memory-based approach for robotic object manipulation, to address
intermittent observations due to due to hardware malfunctions, environment realities, physical
obstruction or system optimization trade-offs. MEMBOT primarily consists of three modules,
including a shared task-agnostic observer module, a task-specific actor and a task-specific ensemble
of critics. The MEMBOT training process consists of two phases, including an offline pretraining
phase and an online finetuning phase. During offline pretraining, we aim to pretrain a task-agnostic
observer to produce latent belief states, leveraging the hidden states of SSM and hidden states and
cell states of LSTM. During the online finetuning state, we aim to finetune the observer and train
the task-specific actor and critics. The shared observer is designed to improve the online training for
policy optimization.

Through comprehensive experimental evaluation across multiple manipulation tasks and architecture
variations, we demonstrate that MEMBOT significantly outperforms existing baseline methods,
maintaining robust performance even under severe observation dropout conditions up to the observa-
tion probability of 0.5. The key contributions of this work include: (1) a modular architecture that
separates belief state learning from policy optimization, enabling stable training and effective transfer
learning; (2) a two-phase training methodology that combines behavior cloning with reconstruction
objectives to learn robust latent temporal representations; (3) empirical validation showing 2-3x im-
provements in sample efficiency for transfer learning and maintenance of 65-80% performance under
50% observation availability; and (4) systematic ablation studies identifying the critical components
for achieving robust performance.

8 Team Contributions

• Eyan Noronha: Memoryless baseline models (x2), Memeory-based models using Mamba
(CPU) and State-Space Model (SSM), Offline training and online training (x5 Metaworld
tasks), literature review, proposal/milestone/final report.

• Yousef Liang: Memory-based models using LSTM and variations (x3), Offline multi-task
learning (x5 Robomic task) for pretraining and online transfer learning (x3 Metaworld tasks),
literature review, proposal/milestone/final report.

Changes from Proposal In our original proposal, we use sequence models to develop memory-
based policies using vision-language models (VLMs) as reward functions for robotic reinforcement
learning. In our further design and implementation, we use sequence models to develop memory-
based policies using predefined tasks and reward functions for robotic reinforcement learning which
leverages the MetaWorld environment and Robomimic datasets. We’ve made this change from our
proposal, aiming to decouple the effects of using VLM-based rewards from those of developing
memory-based policies. Our immediate focus is on building robust memory-based policies with
predefined reward functions.
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A Additional Results

Table 2: Relative performance degradation compared to full observability (obs prob = 1.0). The best
results are colored in blue.

Task Method Metric Observation Probability

0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Plate-
Slide

MEMBOT
- State Space

Success (%) -90.5 -92.6 -90.5 -77.9 -74.7 -56.8 -52.6 -26.3 -20.0 -11.6
Reward (%) -94.3 -95.6 -92.0 -85.6 -79.9 -68.5 -60.8 -37.0 -28.9 -18.6

MEMBOT
- LSTM (Full)

Success (%) -91.0 -91.6 -82.0 -76.8 -67.4 -64.1 -46.7 -30.1 -23.6 -5.7
Reward (%) -91.0 -91.0 -82.0 -76.6 -64.9 -63.1 -43.2 -27.0 -21.6 -5.4

MEMBOT
- LSTM (Partial-10)

Success (%) -90.8 -91.8 -82.2 -76.9 -67.5 -62.2 -46.7 -30.0 -23.1 -5.7
Reward (%) -90.9 -90.9 -82.7 -77.3 -65.5 -60.0 -43.6 -27.3 -20.0 -5.5

MEMBOT
- LSTM (No Recon)

Success (%) -91.6 -90.5 -82.7 -77.3 -68.0 -62.8 -47.3 -30.6 -23.7 -6.2
Reward (%) -91.7 -89.8 -83.3 -77.8 -66.7 -62.0 -45.4 -27.8 -22.2 -5.6

Memoryless Policy
+ MLP Encoder

Success (%) -97.7 -94.1 -85.8 -81.2 -70.8 -60.7 -48.8 -32.6 -24.5 -4.6
Reward (%) -97.1 -96.2 -87.5 -83.7 -76.0 -65.4 -51.9 -32.7 -22.1 -3.8

Memoryless Policy Success (%) -97.8 -94.2 -85.9 -81.4 -71.0 -60.6 -48.9 -32.3 -24.0 -4.1
Reward (%) -97.0 -96.0 -88.1 -84.2 -77.2 -66.3 -53.5 -32.7 -21.8 -4.0

Handle-
Press

MEMBOT
- State Space

Success (%) -91.5 -90.2 -81.7 -65.9 -58.5 -34.1 -24.4 -7.3 -9.8 -8.5
Reward (%) -93.1 -94.1 -84.2 -72.5 -66.9 -46.9 -34.3 -14.9 -19.6 -12.1

MEMBOT
- LSTM (Full)

Success (%) -93.3 -82.5 -82.7 -73.5 -61.4 -47.4 -41.3 -33.6 -16.1 -5.4
Reward (%) -93.2 -81.1 -79.1 -70.3 -56.1 -44.6 -38.5 -29.7 -14.2 -1.4

MEMBOT
- LSTM (Partial-10)

Success (%) -93.5 -82.2 -82.4 -74.3 -61.7 -47.7 -41.6 -31.5 -16.3 -5.6
Reward (%) -93.2 -80.4 -78.4 -72.3 -56.8 -45.3 -39.9 -27.0 -14.9 -2.0

MEMBOT
- LSTM (No Recon)

Success (%) -93.8 -83.4 -83.6 -74.5 -62.1 -48.3 -42.1 -31.7 -16.6 -6.0
Reward (%) -93.8 -82.2 -80.8 -72.6 -58.9 -47.3 -41.8 -28.1 -16.4 -3.4

Memoryless Policy
+ MLP Encoder

Success (%) -97.3 -95.5 -88.3 -80.5 -70.3 -56.1 -47.4 -25.7 -25.9 -8.0
Reward (%) -99.3 -96.5 -91.5 -85.8 -78.0 -64.5 -59.6 -36.9 -36.2 -15.6

Memoryless Policy Success (%) -97.5 -95.7 -88.3 -81.2 -71.2 -56.2 -48.1 -25.9 -25.7 -8.1
Reward (%) -99.3 -96.4 -92.0 -86.2 -79.0 -65.9 -60.9 -37.7 -37.0 -15.9

Drawer-
Close

MEMBOT
- State Space

Success (%) 14.8 -1.9 24.1 14.8 14.8 13.0 7.4 13.0 3.7 3.7
Reward (%) -15.5 -24.7 7.3 -2.9 0.9 1.2 0.0 9.6 2.8 7.4

MEMBOT
- LSTM (Full)

Success (%) -8.7 -4.7 -6.7 -11.4 -4.9 0.0 -0.8 5.8 6.7 3.1
Reward (%) -10.7 -7.3 -6.1 -14.9 -5.3 -0.4 1.9 6.1 8.4 8.0

MEMBOT
- LSTM (Partial-10)

Success (%) -9.6 -4.3 -6.9 -10.8 -5.0 -0.3 -0.6 5.3 6.3 2.8
Reward (%) -11.4 -6.8 -6.8 -14.1 -5.7 -0.8 1.9 5.7 8.0 7.6

MEMBOT
- LSTM (No Recon)

Success (%) -10.1 -5.6 -7.4 -10.8 -5.3 -0.8 -1.1 4.9 5.9 2.1
Reward (%) -12.4 -8.9 -7.7 -14.7 -7.0 -1.9 0.4 4.6 6.9 6.6

Memoryless Policy
+ MLP Encoder

Success (%) -41.3 -21.6 -34.2 -23.6 -24.4 -25.5 -12.9 -20.1 -16.1 -12.1
Reward (%) -56.3 -37.1 -49.3 -34.5 -34.9 -34.1 -22.3 -23.6 -23.1 -15.3

Memoryless Policy Success (%) -41.3 -22.2 -33.4 -23.8 -25.4 -25.2 -14.2 -20.5 -15.9 -12.6
Reward (%) -56.6 -37.6 -49.1 -34.5 -35.8 -33.6 -23.5 -23.9 -23.0 -15.9
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