
Extended Abstract

Motivation Recent researches in generative language models (LMs) have led to impressive results
in both natural language understanding and generation. However, fine-tuning small-scale LMs to
perform well across different reasoning tasks, such as instruction following and math reasoning,
remains a challenge. To solve this issue, we investigate the performance of reinforcement learning
(RL) based fine-tuning methods on a compact, open-source LM (Qwen2.5-0.5B Base) to understand
trade-offs over preference-based alignment and domain-specific adaptation.

Method We compared three fine-tuning techniques: supervised fine-tuning (SFT), Direct Preference
Optimization (DPO), and Reinforce Leave-One-Out (RLOO). RLOO is explored by training and
comparing multiple reward models: DeBERTa, DistilBERT, and Siamese DistilBERT. These are
tested on the instruction following task with Smoltalk and Ultrafeedback datasets. Using additonal
synthetic data and best-of-N sampling approach are extended based on the supervised fine-tuned
model on math reasoning task. This is verified on the Countdown dataset.

Implementation All models are fine-tuned using both full-parameter and Low-Rank Adaptation
(LoRA) configurations. We use data augmentation via GPT-4o-generated synthetic samples and
inference-time test via best-of-N sampling using external verifier functions to select responses.

Results Experimental results show that using DPO further improve the results compared with
SFT in both full and LoRA setups. Between the RLOO variants, the model using DeBERTa as a
reward model generates the highest alignment score. For the math reasoning task, using synthetic
data slightly improves performance, while best-of-N sampling with an external verifier generates
significant gains, achieving over 0.81 accuracy, more than double that of using SFT.

Discussion The results indicate that lightweight LMs can achieve reasonable performance after
effective fine-tuning and using assistant tools. The quality of the reward model and the diversity
of sampled responses are important to RLOO. In addition, using external verifiers with best-of-N
sampling introduces a low-cost treatment to improve prediction accuracy during math reasoning.

Conclusion This work demonstrates the feasibility and effectiveness of aligning small language
models across diverse reasoning tasks using a combination of RL fine-tuning strategies, synthetic
data, and best-of-N sampling. It highlights practical considerations for optimizing small-scale LM
performance for downstream tasks under constrained computation resources.
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Abstract

This study investigates the effectiveness of reinforcement learning (RL) fine-tuning
techniques on a compact language model (Qwen2.5-0.5B Base) for two challenging
tasks: instruction following and mathematical reasoning. We compare supervised
fine-tuning (SFT), Direct Preference Optimization (DPO) using preference-labeled
data, and Reinforce Leave-One-Out (RLOO) with reward models. Our experiments
show that RLOO with DeBERTa reward modeling achieves the best alignment,
while DPO provides strong and consistent results. For math reasoing tasks, syn-
thetic data augmentation and best-of-N sampling with an external verifier signif-
icantly improve accuracy, showing the potential of combining fine-tuning with
inference-time tools. This study highlights key trade-offs and practical strategies
for training lightweight, task-aligned small-scale language models.

1 Introduction

Generative language models have demonstrated impressive capabilities in various natural language
processing (NLP) tasks, ranging from open-domain question answering to logical inference and
symbolic mathematics. However, achieving high performance across diverse domains still needs to
be explored. In addition, different fine-tuning techniques including RL should be compared.

In this study, we explore the implementation of RL algorithms for fine-tuning language models
(LMs) to improve their performance on two tasks, instruction following and mathematical reasoning.
Instruction following (Cui et al., 2023) task is designed to test the model ability to generate high
quality responses using natural language prompts, especially if the instruction is unseen in the training
set and of different domain and difficulty levels. For mathematical reasoning, Countdown game
is considered, which is a task to combine input numbers with arithmetic operations to get a target
number (Gandhi et al., 2024). This task will evaluate the model ability to in solving math problems.
We focus on training a relatively small language model, Qwen2.5-0.5B Base (Hui et al., 2024),
to assess the performance on various fine-tuning techniques. Our goal is to better understand the
capabilities and limitations of lightweight LMs in human-aligned learning settings.

We apply three different approaches: supervised fine-tuning (SFT), Direct Preference Optimization
(DPO) (Rafailov et al., 2023), and Reinforce Leave-One-Out (RLOO) (Ahmadian et al., 2024). These
methods are used to fine-tune language model on instruction-following task, where the objective is to
produce responses that align well with human preference. In the case of RLOO, we evaluate different
reward models, including DeBERTa (He et al., 2020), DistilBERT (Sanh et al., 2019), and Siamese
DistilBERT (Reimers and Gurevych, 2019). The DistilBERT and Siamese DistilBERT reward models
are trained to evaluate alignment quality, and their impact on final policy performance is compared.

To further improve the mathematical reasoning capabilities of the fine-tuned Qwen model, we
construct a high-quality synthetic dataset consisting of 1600 examples based on the Countdown
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dataset. This dataset considers multi-step numerical reasoning and arithmetic composition. We apply
GPT-4o (Hurst et al., 2024) to assist with both problem generation and solution verification, ensuring
the training data quality. In addition, we experiment with a best-of-N sampling strategy (Chow et al.,
2024), guided by an external verifier, to improve the reliability and correctness of model predictions.
This approach significantly improves model performance on the math reasoning task, suggesting that
combining fine-tuned policies with external tools can generate more accurate results.

Overall, this work contributes practical insights into the trade-offs between different RL-based
fine-tuning algorithms for language models and demonstrates effective strategies for improving per-
formance in challenging downstream tasks such as instruction following and mathematical reasoning.

2 Related Work

Using external tools is an important approach to improve the performance of LLMs. Jin et al. (2025)
proposed Search-R1, an RL framework that combines search engine interaction with proximal policy
optimization (PPO) and group relative policy optimization (GRPO) training, which generates better
results compared with the traditional retrieval-augmented generation methods. Gehring et al. (2024)
introduced an executive feedback workflow, improving code generation capability in external test
cases. Schick et al. (2023) showed that LLMs can learn to use various tools correctly through
fine-tuning, learning when and how to call the appropriate APIs for each task.

The use of best-of-N sampling guided by an external verifier can be used for improving the reliability
and correctness of language model outputs. This strategy involves generating multiple candidate
responses from the model and selecting the best based on external evaluation criteria Chow et al.
(2024). Zhou et al. (2023) proposed the least-to-most prompting and demonstrated that combining
multiple outputs with verification significantly improve reasoning performance. Similarly, Madaan
et al. (2023) introduced self-refine, where a verifier model iteratively improves responses by selecting
the best between generated candidates. Zhang et al. (2023) further explored this direction by training
verifier models to score and rerank candidate outputs in a language model cascades framework,
which generates more factual and consistent generations. These methods allow for more accurate and
robust outputs, which is important in mathematical reasoning and code generation. Our work applies
best-of-N sampling with an external verifier to improve accuracy in arithmetic composition tasks.

3 Method

DPO is a reinforcement learning method for aligning language models with human preferences by
directly optimizing a loss that favors preferred responses over less preferred ones. Given a dataset
of preference pairs (x, y+, y−), where x is the prompt, y+ is the preferred response, and y− is the
less preferred one, DPO minimizes a contrastive loss derived from the reward difference between
responses. Assuming the reward function is the log-ratio between the fine-tuned policy πθ and a
reference policy πref, the objective becomes:

LDPO(θ) = − log

 exp
(
β · log πθ(y

+|x)
πref(y+|x)

)
exp

(
β · log πθ(y+|x)

πref(y+|x)

)
+ exp

(
β · log πθ(y−|x)

πref(y−|x)

)


where β is a temperature parameter that controls the sharpness of preference weighting. This DPO
implementation allows stable and efficient preference optimization without reward modeling.

RLOO is a policy gradient based algorithm to fine-tune language models by reducing the variance of
gradient estimates using a leave-one-out baseline. Given a set of N sampled responses {y1, . . . , yN}
to a prompt x, each response yi is assigned a scalar reward ri, computed using a separate reward
model or preference function, as shown in Fig. 1. The gradient estimate for policy πθ is computed as:

∇θLRLOO(θ) = − 1
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1
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where 1
N−1

∑
j ̸=i rj is the leave-one-out baseline, effectively reducing variance in the gradient

estimate. This enables stable and sample efficient fine-tuning of language models with explicit
preference to the high-reward responses.

Figure 1: Overview of RLOO method with an external reward model trained and uilized for scorer.

In RLOO, a critical component is the reward model, which assigns scores to generated responses.
The reward model can be based on human feedback, heuristic algorithms, or learned models. In
this work, we use pretrained transformer-based models, specifically variants of BERT (Bidirectional
Encoder Representations from Transformers) (Devlin et al., 2019), which is effective in a wide range
of NLP tasks. To explore the trade-offs between performance and efficiency, we applied two another
BERT variants, (1) DeBERTa (Decoding-enhanced BERT with disentangled attention) (He et al.,
2020), which has strong representation capabilities and improved generalization due to the enhanced
attention mechanism and disentangled positional encoding; (2) DistilBERT (Sanh et al., 2019), due to
its computational efficiency. These models are adapted by adding a regression head to output scalar
reward scores and fine-tuned on the offline UltraFeedback dataset Cui et al. (2023). In addition to the
standard single-input reward model, we also tested a Siamese BERT structure (Reimers and Gurevych,
2019) for direct preference modeling. Both the preferred and dispreferred responses (conditioned on
the same prompt) are passed independently through a shared BERT encoder to produce two scalar
scores and then the model is trained using the Bradley-Terry objective, which is expressed as

LBT(ϕ) = max
ϕ

E(x,y+,y−)∼Dpref

[
log σ

(
rϕ(x, y

+)− rϕ(x, y
−)

)]
On the math reasoning task, due to the relative small size of the dataset, we explored using synthetic
data to augment the fine-tuning procedure. The synthetic data is generated through input prompts
into GPT-4o (Hurst et al., 2024) as shown the process in Fig. 2.

Figure 2: Generation of synthetic data using ChatGPT and utilization in model training.

To improve the capabilities, we implemented a best-of-N sampling strategy (Chow et al., 2024) and
incorporated an external tool as critics to select the most appropriate response, as illustrated in Fig. 3.
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Figure 3: Use best-of-N sampling strategy and external tool as critics.

Figure 4: The evaluation process of two tasks

4 Experimental Setup

We have performed two supervised fine-tuning runs for the Qwen 2.5-0.5B baseline model on a single
NVIDIA A100 GPU: a LoRA run for instruction following task on the SmolTalk corpus (learning-rate
5e-6, 3 epochs, ≈11 h) and a full-parameter run for math reasoning on the Countdown Warmstart
data (same learning rate, 5 epochs, ≈10 min). Evaluation procedure used vLLM for generation
and was performed on 200 randomly selected SmolTalk test samples, and 1000 randomly sampled
Countdown-Tasks-3to4 problems. These two cases are then scored with the Llama 3.1 Nemotron-70B
reward model and an exact-match countdown.py script, respectively.

5 Results

5.1 Quantitative Evaluation

Table.1 compares the performance of different training methods including SFT, DPO, and RLOO
using both full and LoRA fine-tuning setups, as well as different reward functions for RLOO. The
first row shows the winning-rate evaluation metric, where DPO achieves higher winning-rate than
SFT in both Full (0.605 vs. 0.495) and LoRA (0.665 vs. 0.575) settings. Between RLOO variants, the
model trained with reward model of DeBERTa achieves the highest score (0.695), which is better than
both SFT and DPO. The second row shows an additional evaluation based on leader-board, where
SFT and DPO perform comparably well, with DPO Full reaching 0.87. RLOO with DistilBERT and
Siamese DistilBERT also perform competitively (both scoring 0.8025), but achieves slightly lower
winning-rate compared to DPO. Overall, the results show that RLOO with a well-designed reward
function generate better results than the SFT on certain metrics, while DPO consistently generate
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better results across both evaluation criteria. We also find that by using the LoRA adapters with the
rank of 8,we achieved comparable performance than full parameter fine-tuning while reducing GPU
memory and training time more than 50%.

Table 1: Comparison of models using different training methods and reward functions.

SFT
(Full/LoRa)

DPO
(Full/LoRa)

RLOO
(reward1)

RLOO
(reward2)

RLOO
(reward3)

Score† 0.495 / 0.575 0.605 / 0.665 0.695 0.530 0.535
Score‡ 0.79 / 0.885 0.87 / 0.8525 0.765 0.8025 0.8025

Table 2: Comparison of SFT (full parameters fine-tuning) with synthetic data and using external tool.

SFT (full) Synthetic Data (SFT full) External Tool (SFT full)

Score∗ 0.37 0.3835 0.811

Table.2 presents a comparison of performance scores on the math reasoning task. The baseline
model, trained with SFT data, achieves a score of 0.37. When synthetic data is incorporated into the
same SFT framework, performance improves slightly to 0.3835, indicating a modest benefit from
augmenting the training set. However, the most significant improvement comes from integrating an
external tool at inference time, which boosts the score substantially to 0.811. This highlights the
effectiveness of using an external verifier or reasoning tool to select or validate generated answers,
showing that test time inference can achieve significantly improve performance and accuracy.

Fig.5 illustrates the impact of temperature and the number of samples used in best-of-N sampling on
the performance in the math reasoning task, as evaluated by an external verifier. In this experiment,
we evaluate three sample sizes: 3, 5, and 10. The results show that increasing the number of samples
consistently improves performance over all temperature settings, with the best scores achieved when
using 10 samples. As temperature increases, the scores initially improve due to greater sample
diversity, but tend to decline at higher temperatures, particularly when using fewer samples. The
highest score is obtained with 10 samples at a temperature of about 0.7. This suggests that using
moderate temperature with a larger sample allows the external verifier to more effectively select
accurate solutions during the test-time.

Figure 5: Scores achieved for the math reasoning task by using the external verifier for different
numbers of best-of-N sampling and temperature.

5.2 Qualitative Analysis

To better understand model behavior across tasks, we conducted qualitative analysis of representative
model output from each fine-tuning model.
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For the instruction-following task, output from SFT model tend to be generic or overly verbose,
occasionally missing the intent of the prompt. While the model fine-tuned by DPO often generates
more precise and human-aligned answers, due to its preference-based optimization. For example,
when asked to summarize a technical concept, DPO responses were more concise and accurate than
SFT. The RLOO model, using DeBERTa reward model, generates outputs with more consistent tone
and relevance, although it occasionally produces repetitive phrasing due to reward overfitting.

In the math reasoning task, the base SFT model frequently fails to complete all computation steps
or makes arithmetic mistakes. The inclusion of GPT-4o-generated synthetic examples improves
multi-step reasoning slightly. However, the most significant improvement arises from applying
best-of-N sampling with an external verifier. For example, when asked to reach a target number using
a set of integers, the verifier consistently selected correct outputs from between diverse candidates.

These results indicate that while fine-tuning improves alignment and task specificity, inference-time
strategies, such as verifier-guided sampling provide a powerful, complementary mechanism for
ensuring high-quality output, especially for precision-sensitive domains like mathematical reasoning.

6 Discussion

For the RLOO algorithm, two factors are essential for its performance: the number of responses
generated per query and the quality of the reward function. The number of sampled responses
evaluated during training directly influences the model capacity for exploration. Generating more
responses per prompt allows the learning algorithm to better explore the policy space, but this comes
at the cost of increased computational resources. Second, the reward function is important for guiding
the model learning for RLOO. Reward models trained on high-quality, and task specific preference
data can better capture differences in reasoning quality, leading to more consistent and reliable
improvements for RLOO during the test-time.

The use of an external verifier for best-of-N sampling can significantly improve model performance
in mathematical reasoning. A larger number of samples and a relatively higher temperature (e.g., 0.7)
tend to generate more accurate responses.

7 Conclusion

This study explores the application of reinforcement learning fine-tuning techniques to a small-scale
language model (Qwen2.5-0.5B Base) on two distinct tasks: instruction following and math reasoning.
Through comparative analysis of SFT, DPO, and RLOO, we show that preference-based optimization
methods, particularly DPO and RLOO with appropriate reward models, can significantly improve
alignment with human feedback, even for lightweight language models.

Our experiments highlight that DeBERTa-based reward models are especially effective in the RLOO
framework, while DPO achieves consistently strong performance with a simpler optimization setup.
For the math reasoning task, we show that synthetic data generation using GPT-4o marginally
improve performance, but the most substantial improvement comes from best-of-N sampling guided
by external verifiers. This approach enables higher accuracy without additional training cost.

Overall, our findings suggest that small LMs can achieve competitive results when combined with
effective fine-tuning algorithms, high-quality reward modeling, and inference-time verification. This
provides a practical path for deploying efficient and aligned language models in low computation
resource settings. Future work may explore extending this framework to additional domains such as
code generation, symbolic logic, and multimodal tasks.

8 Team Contributions
• Yifu Han: Project conceptualization; implementation of SFT, DPO, RLOO, model evalu-

ation pipeline, and best-of-N sampling; hyperparameter fine-tuning and analysis; draft of
report; revision of report and completeness; project coordination.

• Geo Zhang: Project conceptualization; dataloader preparation and model prototyping;
implementation of SFT, DPO, RLOO, and model evaluation pipeline; hyperparameter
fine-tuning and analysis; revision of report and completeness; project coordination.
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Changes from Proposal Due to time constraints, we were unable to explore the optimized fine-
tuning of both tasks on a single model. However, we observed that sequentially fine-tuning a model,
first on one task and then on the other, can lead to better performance compared to fine-tuning on a
single task alone. The multi-objective RL optimization is also not considered.
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