
Extended Abstract

Motivation Prior work has focused on the capability of language models (LMs) to solve Count-
down, a puzzle where a target number has to be constructed by performing arithmetic operations on
a set of given input numbers, in various ways and argued that search performance on Countdown can
be generalized to more practical problems. However, to the best of our knowledge, no prior work
has interfaced a classical Countdown solver with an LM where the solver acts as a tool and provides
dense feedback to the LM during the search process.

Technique We take a preexisting solver for Countdown and interface it as a tool to our LM, Qwen-
2.5 0.5B. To maintain the difficulty of the problem while obtaining actionable signal from the solver,
we design the interface so that the solver is only able to respond in three ways: GOOD, BAD, or END,
depending on whether the last operation chosen by the LM can lead to the target, cannot lead to the
target, or has already reached the target, respectively.

We show that, with Chain of Thought (CoT) reasoning enabled, the model cannot be trained to
generate well-formatted tool calls, while larger models were able to do so easily. However, we also
show that by switching to a structured output format, tool calls can be successfully parsed and the
model is able to learn from tool feedback. We describe our designs for both formats in detail.

Implementation We perform supervised finetuning (SFT) using our approach (with tool calling)
and compare it to the same pretrained model with SFT on a different dataset meant for Countdown
(without tool calling). Our evaluation shows that SFT on our training data augmented with tool
calling significantly outperforms the other model.

Results To improve performance evenmore, wemanually identify substitution errors as a common
mistake made by our post-SFT model. In these cases, the model reached the target number but was
unable to replace intermediate numbers in the answer expression by the operation that constructed
them. For a completely correct answer, Countdown rules dictate that intermediate numbers do not
occur in the answer. Partly to mitigate these errors, and partly to maximize LM performance, we
experimented with Direct Preference Optimization (DPO) in several different configurations. All
our experiments with DPO showed weak results. The only technique that resulted in a significant
increase of performance over the SFT model was test-time compute (TTC) with best of N.

Discussion We hypothesize that DPO’s ineffectiveness at mitigating substitution errors was due to
the large amount of similarity in our preference pairs. In our setup, the chosen and rejected variants
had the same trajectory leading up to the final answer. They only differed in the final answer itself:
rejected variants had substitution errors whereas chosen variants did not. Other DPO configurations
did not have this problem, but still yielded inconclusive results.

Conclusion We obtain three main results. One, that small LMs are unable to generate well-
formatted tool calls with CoT enabled. Second, the same models can leverage tool calls if they
are constrained to a structured output format. Lastly, that at least for Countdown, DPO is unable to
meaningfully boost model performance over an SFT initialization.

Learning to Search with an Oracle: Finetuning for
Countdown with a Classical Solver

Rupanshu Soi
Department of Computer Science

Stanford University
rsoi@stanford.edu

Masoud Charkhabi
Department of Computer Science

Stanford University
masoudc@stanford.edu

Abstract

Countdown has emerged as a fruitful problem for studying the capability of lan-
guage models (LMs) to solve a reasoning problem. Countdown requires search,
mainly because Countdown admits various strategies like backtracking and setting
sub-goals, and a solution is easy to verify.
In fact, Countdown can be solved completely classically, by exhaustively search-
ing the entire space. Open-source solvers for Countdown are readily available.
Based on this observation, we study whether a small LM (Qwen-2.5 0.5B) can be
taught to solve Countdown by using such a solver as a tool. We find that with Chain
of Thought (CoT) reasoning enabled, the LM is unable to consistently generate
well-formatted tool calls. However, by representing search in a structured format,
the LM is able to generate tool calls and can be taught to leverage tool feedback. By
performing supervised finetuning using the structured format, the LM successfully
solves 65% of Countdown problems in our experiments.
Furthermore, we study cases in which the LM is unable to find the solution and
identify a kind of mistake it frequently makes. Partly to mitigate the occurrence
of these mistakes, and partly to explore its potential to boost LM performance
overall, we experiment with Direct Preference Optimization (DPO) with 4 differ-
ent preference pair generation strategies. However, we find that DPO is unable
to conclusively boost LM performance over the SFT initialization. We identify
a concrete reason for this behavior for one of our strategies. In fact, we found
test-time compute (TTC) to be the only technique that meaningfully increased LM
performance over our SFT initialization. We conclude by discussing some poten-
tial reasons for DPO’s ineffectiveness in our setting, and give directions for future
work.

1 Introduction

Countdown is an old recreational mathematics problem where the goal is to construct, by means of
the standard four arithmetic operations, a target number using a given set of input numbers. Each
input number can be utilized at most once.

Countdown was introduced as a search problem for LMs by Gandhi et al. (2024). Their paper intro-
duced a textual representation of the search process that could aid the LM in strategically reaching
the target number. By a combination of pretraining and RL finetuning, they showed that LMs could
achieve decent performance on Countdown problems with 3 or 4 input numbers.

Building on their work, we are interested in exploring whether an LM’s search capabilities can be
further enhanced by providing it access to expert guidance. In particular, we observe that Countdown
is a problem that admits a simple, classical solution. For problems of small size, a brute force search

Stanford CS224R 2025 Final Report

over every possibility can be done in milliseconds. Therefore, we explore whether a small LM can
be taught to effectively utilize feedback provided by such a solver.

A key design goal of our work is to ensure that our setup echoes more practical scenarios where the
LM is performing a proof or program search equipped with expert guidance or human intuition. This
guidance could, for example, allow the LM to prune parts of the space, or, encourage it to focus more
on parts that are likely to contain the solution.

Therefore, the interface between the LM and the solver must be carefully designed. Since the solver
can always just provide the final answer, we must restrict the feedback that can be obtained from it in
such a way that maintains the difficulty of the original problem while containing useful signal about
how to reach the solution.

In our design, every time the LM chooses the next operation, the solver—which is used via a tool
call—responds in one of three possible ways:

• GOOD, if it is possible to reach the target after performing this operation

• BAD, if it is impossible to reach the target after performing this operation

• END, if this operation constructed the target

Note that the LM is still solely responsible for picking the operation and operands in each step, which
can only use numbers that are available at that step, and constructing the final answer expression,
which cannot use any numbers created in intermediate steps. Figure 1 depicts a full trajectory using
our approach.

Figure 1: Visual depiction of our LM utilizing tool feedback to solve a Countdown problem. The
search process is an abstraction of what the LM does to reach a solution, not a deterministic proce-
dural search.

Our report is divided as follows. Section 2 briefly discusses the most relevant prior work. Section
3 presents our technique in more detail. We also present our designs that did not work, for others
to learn from. Details of our experimental setup are discussed in Section 4. Section 5 presents the
initial results, and discusses a common mistake that we observed in initial experiments. Section
6 discusses our efforts to mitigate those mistakes with DPO, discusses the inconclusive results we
obtained with DPO, and presents results for test-time compute (TTC), the only technique that mean-
ingfully increased performance over our SFT initialization. Section 7 concludes.

2

2 Related Work

Early efforts to teach language models (LMs) to search rather than merely predict optimal solutions
introduced the Stream of Search (SoS) paradigm, in which the entire search trajectory is serialized
as text and used for supervision (Gandhi et al., 2024). Subsequent work augmented SoS with super-
vision Moon et al. (2024).

A contemporaneous line of work is (Pan et al., 2025), called Adaptive Parallel Reasoning (APR),
which lets an LM spawn multiple speculative reasoning branches and later join them, dynamically
allocating inference-time compute to promising partial plans. APR demonstrates that modest models
can benefit from explicit parallel exploration, but—like SoS—it still relies on the LM to evaluate
every intermediate state without calling any external solver or verifier.

Both lines of research treat the LM itself as the sole search engine: the model proposes every inter-
mediate move and judges its own progress from the textual state, without external computation. In
contrast, our approach leverages a classical solver as a tool, providing dense reward at each step of
the search process. To the best of our knowledge, no prior work on SoS or Countdown has interfaced
an LM with a classical Countdown solver interactively.

3 Technique

We begin this section by describing our initial efforts in integrating CoT with tool calling, which
relied on an unstructured textual format. After describing the challenges encountered with this ap-
proach, we move on to the structured format that is used in the final implementation.

3.1 Textual Format (Old)

A key design in our approach is the textual representation of the search used by the model while
solving a problem.

Initially, we tried an unstructured format that allowed the model to output its chains of thought
(CoTs) interspersed with tool calling. However, our model was unable to consistently generate well-
formatted tool calls using this approach. This inconsistency could not be fixed even by using a
custom, simpler tool calling format, and aggressive finetuning.

Figure 2 shows an example of CoT with an ill-formed tool call. The model hallucinated that the tool
call format required XML tags, when in reality the standard format for Qwen requires JSON.

User: Input: [35, 77, 61]. Target: 19.

Assistant: Let's start by guessing an initial operation.
Given the numbers 35, 77, and 61, let's try adding two of them together.

<tools>
<function>
<name>ask_oracle</name>
<parameters>
<property name="operation">35 + 77</property>

</parameters>
</function>

</tools>

Figure 2: A tool call generated along with CoT. The call is completely misformatted.

We found this behavior to be quite variable as well. On subsequent runs, the model would remember
to use JSON but would not be able to output well-formed JSON. At one point during development,
we wrote custom parsing logic to attempt to handle every kind of mistake the model was making.
The various cases we tried to handle can be seen in the regular expressions that were used at one

3

point, shown in Figure 3. Still, the LM would manage to generate a tool call that would defeat our
parsing logic.

patterns = [
r"<tool_call>(.*?)</tool_call>",
r"<tool_call>([^\n]*)",
r"\n<tool_call>(.*?)</tool_call>",
r"\n<tool_call>([^\n]*)",
r"\n(.*?)<tool_call>",
r"\n(.*?)\n",

]

Figure 3: Python code showing a list of regular expressions that were successively used to try to
parse various kinds of misformatted tool calls. This approach is not used in the final design.

We tried the same approach with the 32B variant of Qwen-2.5 and found that it was easily able
to generate tool calls with CoT, even without finetuning. We concluded that our 0.5B model was
simply too small to consistently generate tool calls with CoT. We switched to a structured output
format, similar to the Stream of Search paper, which we describe next.

3.2 Textual Format (New)

Before describing the format, let us discuss the high-level structure of each search trajectory.

Each trajectory is structured as a chat. The first message is a system prompt explaining the game
of Countdown. The second message is from the user containing details about the problem. Starting
from the third message, messages alternate between the assistant (containing the LM’s choice of
operation), and the solver (containing its feedback on the assistant’s last message). Trajectories end
if the LM outputs an answer in <answer>...</answer> tags or if the number of messages exceed
a max limit.

Each LM response has three components:

1. Available: List of numbers available at the current step. In the beginning this is identical to
the input numbers. The LM keeps updating this list as numbers are consumed and new ones
are created. If this list is omitted (as it was in the initial design), the number of mistakes
where the LM used an unavailable number was observed to sharply increase.

2. Right steps: List of operations (and the number created by them) that received GOOD from
the solver. This list is meant to be used to construct the final answer by substituting in place
of intermediate numbers the operation that created them.

3. Try: The next operation that the LM wishes to try.

As described in the introduction, each tool response can be either GOOD, BAD, or END. These responses
are constructed by parsing the solver’s actual output (see Section 3.4).

Figure 4 gives an abridged trajectory showing the system prompt, user input, model output, and tool
feedback that successfully solves a given problem.

3.3 Synthetic Trajectory Generation

We wrote a Python script to generate training trajectories containing solver feedback using Count-
down problems taken from the TinyZero dataset.

At each step, we randomly pick an operation from +,−,×, / and two numbers from the set of num-
bers available at that step. We output this operation as the model’s output, and use it to call into the
solver. The solver’s response is parsed, and added to the conversation. This process is iterated until
either the model outputs an answer or the max message limit is reached.

To improve LM performance, the trajectory generation code avoids picking operations that will never
lead to the target number. In particular, no generated trajectory:

4

System: You will play the game of Countdown. The goal is to use the available
numbers to reach the target. At each step, look at the available numbers and
choose an arithmetic operation to do on two of them. The tool will give you
feedback on your choice.

User: Available: [17, 2, 49]. Target: 83.

Assistant: Available: [17, 2, 49]. Right steps: []. Try: 49 + 2
Tool: BAD. 49 + 2 does not lead to a solution.

[...][elided]

Assistant: Available: [17, 2, 49]. Right steps: []. Try: 17 * 2
Tool: GOOD. 17 * 2 leads to target. New available: [49, 34]

Assistant: Available: [49, 34]. Right steps: [17 * 2 => 34]. Try: 49 + 34
Tool: END. 49 + 34 reached the target!

Assistant: <answer>49 + 17 * 2</answer>

Figure 4: A trajectory with the structured output format that outputs the correct answer. Some inter-
mediate steps are elided for brevity.

• Repeats an unsuccessful operation in the same state, or
• Subtracts a larger number from a smaller, as negative numbers need never be constructed
in Countdown

These safeguards shrink the size of the search space and streamline the learning process for the
LM. Indeed, in initial experiments LM performance was seen to improve after implementing these
safeguards.

However, in line with Gandhi et al. (2024) who include unsuccessful trajectories in their training
data, we still wanted to include some invalid operations in ours. Therefore, at each step, with a small
probability, we pick a number that is not currently available. In this case the tool pipeline does not
call the solver but instead preemptively returns an error indicating that an invalid number was used.
This invalid operation was included because we observed that this mistake was quite common. We
also generate synthetic data in the loop for our DPO variants that we describe in 6.

3.4 Solver

We use an open-source Countdown solver written in C panzi ([n. d.]). It supports Countdown prob-
lems of arbitrary size. For problems of size 3 or 4, it can instantly search all possibilities and provide
all solutions.

Figure 5 shows the solver’s output for a problem of size 3 that has a single solution, and figure 6
shows its output for a problem instance with no solutions. Note that the LM does not see this output.

5

$./build/numbers - 47 20 3 13
tasks = 12
target = 47
numbers = [3, 13, 20]

solutions:
1: 3 * 20 - 13

Figure 5: Solver output for a Countdown problem of size 3. Note our LM does not see this full
output, it only gets class level feedback.

$./build/numbers - 42 43 68 18
tasks = 12
target = 42
numbers = [18, 43, 68]

solutions:
no solutions found

Figure 6: Solver output for a Countdown problem with no solutions.

4 Experimental Setup

All experiments were performed on a g6e.xlarge instance on AWS, which comes equipped with an
NVIDIA L40S GPU with 48 GB of GPU memory. In total we spent over $500 in AWS credits.

We generated 5,000 training trajectories using Countdown problems from the TinyZero dataset. We
used these trajectories to perform supervised finetuning (SFT) of Qwen-2.5 0.5B. SFT was done for
10 epochs with a batch size of 4. To simulate a larger batch size, we used gradient accumulation.
Gradients were accumulated for 16 batches before every optimizer update, resulting in an effective
batch size of 64. AdamW was used as the optimizer with a learning rate of 5e-6. The max message
limit was set to 20.

To evaluate the effectiveness of our methodology, we trained via SFT a copy of the same pretrained
model on the Warmstart dataset Gandhi et al. (2025). This dataset was created by sampling a much
larger model, Qwen-2.5 3B, and contains various examples of “cognitive strategies” employed by
the LM to solve Countdown problems, including backtracking, setting sub-goals, etc. Training was
performed on the entire dataset (1,000 rows) with a batch size of 4 for 4 epochs. As before, effective
batch size was 64 due to gradient accumulation being done every 16 batches. The same optimizer
and learning rate were used.

HuggingFace transformers library was used to load and train models. PyTorch was used to take
gradients and perform backpropagation. W&B was used to track experiment runs, and models and
datasets were shared among the team via HuggingFace Hub.

5 Results

We plot the exponential moving average (EMA) of training loss versus time with smoothing factor
0.5 for training on our generated dataset. As we can see, SFT finished in approximately two hours
and hyperparameter tuning was impactful in increasing slope and reducing variance 7.

Performance for both LMswas evaluated using the compute_score function taken from the original
paper. Table 3 gives the average score for each LM, evaluated on 100 randomly selected Countdown
problems from the test split of the TinyZero dataset. Each problem had 3 or 4 input numbers, and
the target was a 2-digit number. We see that our model significantly outperforms the model trained
with SFT on the Warmstart dataset.

6

Figure 7: EMA of training loss during SFT over our generated dataset (left) and three training loss
curves with hyperparameter tuning to accelerate and stabilize training runs. Notice improved slope
and less jagged trajectories (right).

Training Method Average Score
SFT (generated dataset) + Tool Use 0.65
SFT (Warmstart dataset) 0.30

Table 1: Comparison of average score for the two LMs. Both models are separate finetunes of
pretrained Qwen-2.5 0.5B.

5.1 Substitution Errors

To understand why our model could not solve 30% of problems, we conduct error analysis on trajec-
tories. We identified a frequent “substitution error”. In trajectories containing this error, the model
correctly reached the target, received END from the solver, but failed to construct the final answer
expression: it did not replace an intermediate number by the operation that constructed it.

As an example, Figure 8 shows a trajectory that was performed by our finetuned model. Notice how
the final answer, 52 + 32 - 63 is numerically equal to the target, 21, but uses an intermediate number,
32, which is not allowed. To form the correct answer it should replace 32 by its production, 90 - 58,
resulting in 52 + 90 - 58 + 63, the correct answer.

System: You will play the game of Countdown. The goal is to use the available
numbers to reach the target. At each step, look at the available numbers and
choose an arithmetic operation to do on two of them. The tool will give you
feedback on your choice.

User: Available: [90, 63, 58, 52]. Target: 21.

Assistant: Available: [90, 63, 58, 52]. Right steps: []. Try: 90 * 58
Tool: BAD. 90 * 58 does not lead to a solution.

[...][elided]

Assistant: Available: [63, 84]. Right steps: [90 - 58 => 32, 52 + 32 => 84].
Try: 84 - 63
Tool: END. 84 - 63 reached the target!

Assistant: <answer>52 + 32 - 63</answer>

Figure 8: A trajectory containing a substitution error. The model has found the correct sequence of
operations but fails to substitute 90 - 58 in place of the intermediate number 32 in the final answer.
Some intermediate steps are elided for brevity.

Substitution errors are especially interesting for two reasons.

7

Training Method Average Score
SFT + Tool Use (sft-syn-tool) 0.65
SFT + DPO v0 (subst. errors) + Tool Use 0.50

Table 2: Comparison of average score obtained via SFT and SFT + DPO.

• The LM remembers each successful operation and the intermediate number it generated in
the “Right steps” list. So, all information required to construct the right answer are available.
This design was intentional, of course. So it’s surprising to see that the LM did not learn
this pattern after extensive finetuning.

• The scoring function applies a 90% penalty for answers that use an invalid number, re-
gardless of whether the answer numerically computes the target or not. The score for a
completely correct answer is 1.0, and for a properly formatted answer is 0.1, with nothing
in between. We believe answers with substitution errors ought to be judged as “less wrong”
than answers that don’t result in the target. However, we chose to not modify the scoring
function for compatibility.

6 Direct Preference Optimization (DPO)

Tomitigate the occurrence of substitution errors, we attempted DPO. Note that the original generated
trajectories did not contain any substitution errors, therefore it’s possible that the LM did not receive
negative feedback on committing a substitution error.

6.1 Synthetic Preference Pair Generation (DPO)

For DPO, we constructed a preference dataset on top of our training trajectories. Each example
in the preference dataset had a chosen and rejected variant. The only difference in both variants
was in the answer expression in the final message. In the chosen variants, the final answer was
completely correct. In the rejected variants, the final answer had a substitution error. In particular,
the final answer was equal to the last successful operation. This choice results in a variable number
of substitution errors depending on the depth of the successful answer. In all other respects, both
variants were identical.

6.2 DPO with distance-based reward variants

Next, we implemented DPO with reward-based preference generation to improve the distance be-
tween the preference pairs. Motivated by Gandhi et al. (2024) we used two reward functions: 1.
sum-of-distance measuring distance from target and 2. reward-factor-distance measuring distance
to the closest factor combined to automatically label response quality.

For each countdown problem, we generated 4 model responses at temperature 0.8, scored them using
our reward functions, and created preference pairs where Chosen responses had rewards > 5 points
higher than Rejected responses. The alternatives are sorted by reward, then pairs with max distance
are created. We hypothesized that reward-based preference learning would guide the model toward
mathematically valid solutions by preferentially training on responses that were closer to correct
answers. We experimented with different reward and pair formulation set ups.

Reward-based DPO with standard distance to target showed modest improvement on the held-out
test set (72% vs 70% baseline accuracy). Analysis revealed the primary limitation was incomplete
text generation and mathematical hallucination in the base SFT model, rather than preference
learning failure. The reward-based approach shows some promise in identifying better responses,
but the underlying model’s generation quality remained the bottleneck.

8

6.3 Experimental Setup

We generated 2,000 preference pairs using this process. DPO was done for 2 epochs with a batch
size of 1. Gradient accumulation was done every 32 epochs. β was set to 0.25. RMSprop was used
as the optimizer with learning rate 1e-6. These hyperparameters were picked to resemble the choices
made in the original DPO paper Rafailov et al. (2024).

Figure 9: Plot of EMA of training loss during DPO v0 over generated preference pairs.

Figure 10: Average scores for SFT+ToolCall, DPO variants and SFT+ToolCall+Test-Time-Compute-
Best-of-N over generated preference pairs.

Model Test Set (Heldout) Score
SFT (generated dataset) + Tool Use (sft-syn-tool) 0.65
DPO v1 (dpo-standard, distance to target) 0.72
DPO v2 (dpo-reward, distance to factors) 0.71
SFT (generated dataset) + Tool Use + TTC N=5 (sft-syn-tool-best-of-5) 0.79

Table 3: Comparison of scores across the Test Set (A 1k sample offered by staff referred to as the
“Heldout” data) for DPO variants.

6.4 Results

We saw initial DPO training loss sharply drops within a few batches (9). In fact, for most of the
training run the loss was less than 1e-6. On evaluation of this LM, we saw that not only was it unable
to reduce the frequency of occurrence of substitution errors, but it had worse overall performance
than the SFT-only LM. Table 2 compares the performance of the initial DPO and SFT. Evaluation
was done as described in Section 4. In Steam of Search (Gandhi et al., 2024) they suggest DPO pairs
need to have reasonable distance between them. We then experimented with variants of rewards to
guide pair formation and found creating four alternatives, scoring, sorting and selecting max distance
pairs improved results. We gradually extended the number of runs to see if the gains hold: 10, 100,
250. The improvements are not trivial but not conclusive at a p-value <= 0.95. Finally, we were able
to boost the SFT + tool call winning approach with best of 5 test time compute to 0.79.

9

6.5 Discussion

The loss of performance post DPO v0 was surprising. We validated our DPO implementation and
have not found any issues. Moreover, we have separately performed DPO for a different problem (in-
struction following) using the same code and observed significant gains in performance. Therefore,
we do not believe there is an issue with our DPO implementation.

Instead, we suspect the issue lied with the preference pairs. Perhaps the issue is that the difference
between chosen and rejected variants is too small. As discussed previously, the only difference is
in the final answer expression—one contains a substitution error, the other does not. The remaining
trajectory, every choice of operation and tool feedback, is identical within each each preference pair.
This hypothesis is corroborated by the minuscule values of the training loss. We then reformulated
DPO to create variants, sort them by reward, and select pairs with maximum distance to target and
factors. DPO performance improved from 0.50 in the first DPO pass to 0.72, but not conclusively
over 0.70 with SFT and tool calling.

Therefore, we conclude that a different trainingmethodology is needed tomitigate substitution errors,
one that can extract non-trivial signal from preference pairs. We would like to explore this in future
work.

7 Conclusion

We have presented a complete methodology for solving Countdown problems using Qwen-2.5 0.5B.
We described a structured output format that is amenable to tool calling, and described how to inter-
face a preexisting Countdown solver as a tool to guide the LM in search. We performed SFT and
showed that our model outperformed the same pretrained model finetuned on a separate dataset for
Countdown. We identified a common mistake committed by our finetuned LM, and implemented
DPO in order to mitigate it. We ended with a discussion about potential reasons for DPO’s ineffec-
tiveness at mitigating these mistakes, and gave some directions for future work.

8 Team Contributions
• Rupanshu Soi:

– Pre-extension: Data loading and construction, SFT on smoltalk, DPO on Ultrafeed-
back, evaluation for both.

– Extension: generation of synthetic trajectories for SFT, design of tool calling format
and pipeline, evaluation of SFT with tool calling, generation of preference pairs for
DPO, evaluation of SFT +DPOwith tool calling, writing of proposal, milestone, poster
and final report.

• Masoud Charkhabi:
– Generation of synthetic trajectories and preference pairs, evaluation, and reproducibil-
ity infrastructure.

– DPO with reward learning on countdown. Reward formulations. Test-Time-Compute.
Evaluations across SFT, DPO, Reward-Learning, Test-Time-Compute. Proposal,
poster, and final report writing.

Changes fromProposal Wewere able to execute themain idea in our proposal, namely to leverage
a classical solver for Countdown to improve performance of a small LM on this task. However, we
did not implement test-time scaling as we achieved decent performance with tool calling alone.

References
Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. 2025.
Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective
STaRs. arXiv:2503.01307 [cs.CL] https://arxiv.org/abs/2503.01307

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma,
and Noah D. Goodman. 2024. Stream of Search (SoS): Learning to Search in Language.
arXiv:2404.03683 [cs.LG] https://arxiv.org/abs/2404.03683

10

https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2404.03683

Seungyong Moon, Bumsoo Park, and Hyun Oh Song. 2024. Guided Stream of Search: Learn-
ing to Better Search with Language Models via Optimal Path Guidance. arXiv preprint
arXiv:2410.02992 (2024).

Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt
Keutzer, and Alane Suhr. 2025. Learning Adaptive Parallel Reasoning with Language Models.
arXiv:2504.15466 [cs.AI] https://arxiv.org/abs/2504.15466

panzi. [n. d.]. GitHub - panzi/numbers-c: Countdown numbers game solver written in C. —
github.com. https://github.com/panzi/numbers-c. [Accessed 26-04-2025].

Rafael Rafailov, Archit Sharma, EricMitchell, Stefano Ermon, Christopher D.Manning, and Chelsea
Finn. 2024. Direct Preference Optimization: Your Language Model is Secretly a Reward Model.
arXiv:2305.18290 [cs.LG] https://arxiv.org/abs/2305.18290

11

https://arxiv.org/abs/2504.15466
https://github.com/panzi/numbers-c
https://arxiv.org/abs/2305.18290

A Implementation Details

def run_dpo(pi, ref, tokenizer, dataloader, optimizer,
epochs, grad_accum, save_path, save_every_epoch=True):
pi.train()
ref.eval()

for epoch in tqdm(range(epochs), desc="Epochs"):
optimizer.zero_grad()
for idx, batch in enumerate(dataloader):

chosen = batch["chosen"]
rejected = batch["rejected"]

pi_chosen_output = pi(**chosen)
pi_chosen_logps = get_batch_logps(

pi_chosen_output.logits, chosen["labels"]
)

pi_rejected_output = pi(**rejected)
pi_rejected_logps = get_batch_logps(

pi_rejected_output.logits, rejected["labels"]
)

with torch.no_grad():
ref_chosen_output = ref(**chosen)
ref_chosen_logps = get_batch_logps(

ref_chosen_output.logits, chosen["labels"]
)

ref_rejected_output = ref(**rejected)
ref_rejected_logps = get_batch_logps(

ref_rejected_output.logits, rejected["labels"]
)

dpo_loss = -torch.nn.functional.logsigmoid(
BETA
* (

pi_chosen_logps
- ref_chosen_logps
- pi_rejected_logps
+ ref_rejected_logps

)
).mean()
dpo_loss /= grad_accum

if idx % grad_accum == grad_accum - 1:
optimizer.step()
optimizer.zero_grad()

if save_every_epoch or (epoch == epochs - 1):
pi.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)

Figure 11: The main DPO loop with gradient accumulation. Code for logging and checking loss has
been removed.

12

	Introduction
	Related Work
	Technique
	Textual Format (Old)
	Textual Format (New)
	Synthetic Trajectory Generation
	Solver

	Experimental Setup
	Results
	Substitution Errors

	Direct Preference Optimization (DPO)
	Synthetic Preference Pair Generation (DPO)
	DPO with distance-based reward variants
	Experimental Setup
	Results
	Discussion

	Conclusion
	Team Contributions
	Implementation Details

