
Extended Abstract

Motivation When deployed in complex multi-agent domains, PPO’s performance fluctuates dramat-
ically with small adjustments to its learning rate, clipping ratio, and batch size. Its two-phase loop of
trajectory collection followed by sequential stochastic-gradient updates under-utilizes modern GPU
hardware. Because policy entropy is gradually reduced over time, the quality of early exploratory
trajectories disproportionately influences final outcomes. Independent parallel agents also tend to
converge on similar strategies, limiting exploration diversity across the population.

Method We implement a fully GPU-based PBT algorithm that trains a population of N policies
concurrently. Each policy is parameterized by a shared neural architecture but maintains unique
weights θi and hyperparameters λi = {αi, ce,i, γi} (learning rate, entropy coefficient, discount factor).
At initialization, we spawn this population with diversified starting conditions: weights are sampled
as θi ∼ N (0, σ2I) and hyperparameters are drawn from log-uniform priors to encourage broad
exploration across the parameter space. During training, each policy i is assigned a disjoint shard of
M parallel environment instances, enabling concurrent experience accumulation. We evaluate policy
performance at regular intervals to drive the evolutionary aspect of PBT. At every fixed interval of T
training iterations (typically every 500 PPO updates), we compute a fitness score fi for each policy
based on cumulative reward obtained over the last T minibatches. We then perform a survival of the
fittest update: we rank all policies and select the top pe ·N (roughly 20%) as elites to be retained
without modification. For each policy in the rest of the group, we execute an exploit-and-explore
operation: copy the neural network parameters from an elite policy θj ← θelite, then perturb the
hyperparameters with small random mutations λ′

j = λelite × exp(δ), where δ ∼ Uniform(−ϵ,+ϵ)
and ϵ is a small mutation scale (typically ±10%).

Implementation Our framework leverages the Madrona batch simulation engine to simulate
N × M environment instances on GPU all in parallel. We embed both neural weights θi and
hyperparameters λi within Madrona as GPU components. By executing replacement in place,
we maintain continuous simulation across all N × M environments and avoid environment re-
initialization or CPU intervention.

Results We observe that increasing the population size significantly accelerates early learning
and improves final policy performance. The configuration with 64 agents achieved the highest final
reward, but only marginally higher than the 32-agent case. Intermediate mutation rates (60% and
80%) yield the best performance, achieving a balance between exploitation of high-reward policies
and continued exploration of the search space. Populations of 8 or more reliably cross the zero
threshold and successfully complete the collaborative task.

Discussion Most significantly, we showed that larger populations consistently achieve better final
performance, with improvements continuing up to 64 agents. The evolutionary selection mechanism
proved highly effective at maintaining policy diversity while propagating successful strategies.
However, performance gains diminished beyond 32-64 agents, suggesting fundamental scalability
limits due to increased mutation noise and resource contention.

Conclusion Population-based training offers substantial improvements over traditional single-
policy PPO when implemented at sufficient scale (16-32 agents optimal). The integration with
GPU-accelerated simulation opens new possibilities for large-scale multi-agent learning, though
future work should focus on adaptive mutation strategies and broader task generalisability.
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Abstract

Proximal Policy Optimization (PPO) faces significant challenges in multi-agent
environments, including hyperparameter sensitivity, suboptimal GPU utilization,
and premature convergence due to limited exploration diversity. We address these
limitations by implementing a fully GPU-native Population-Based Training (PBT)
algorithm that concurrently trains populations of PPO policies with evolution-
ary selection and mutation. Our approach leverages Madrona’s batch simulation
engine to run thousands of environment instances in parallel, embedding both
neural network weights and hyperparameters directly within GPU memory to
eliminate costly CPU-GPU transfers. Each policy in the population maintains
unique weights and hyperparameters, enabling diverse exploration strategies. We
employ periodic evolutionary updates where elite policies (top 20%) are preserved
while under-performing policies are replaced with mutated copies of successful
agents. Experimental evaluation in a collaborative two-agent escape room environ-
ment demonstrates that larger populations (16-64 agents) consistently outperform
smaller configurations and traditional single-policy PPO, with the most significant
performance gains occurring between 4 and 8 agents. Optimal mutation rates of
60-80% balance exploration and exploitation effectively. Our results show that
population-based training with adequate scale (16-32 agents optimal) offers sub-
stantial improvements over single-policy approaches, opening new possibilities
for scalable multi-agent reinforcement learning through evolutionary optimization
principles.

1 Introduction

Proximal Policy Optimization (PPO) has emerged as one of the most widely used on-policy reinforce-
ment learning algorithms thanks to its clipped-surrogate objective, strong empirical performance, and
ease of implementation [Schulman et al. (2017)]. When deployed in complex multi-agent domains,
PPO’s performance fluctuates dramatically with small adjustments to its learning rate, clipping ratio,
and batch size[Adkins et al. (2025)]. Its two-phase loop of trajectory collection followed by sequen-
tial stochastic-gradient updates under-utilizes modern GPU hardware[McInroe and Garcin (2025)].
Because policy entropy is gradually reduced over time, the quality of early exploratory trajectories
disproportionately influences final outcomes[Shahid et al. (2024)]. Independent parallel agents also
tend to converge on similar strategies, limiting exploration diversity across the population[Doulazmi
et al. (2025)].

Population-Based Training (PBT) offers a promising solution to these limitations through evolutionary
optimization principles [Jaderberg et al. (2017)]. Under-performing members are periodically replaced
by mutated copies of top performers, propagating both network weights and hyperparameters and
automating what would otherwise be a manual tuning process [Doulazmi et al. (2025)]. This approach
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preserves policy diversity through sub-population schedules and migration, balancing exploration
and exploitation and avoiding local-optima traps common in vanilla PPO.

Recent advances in GPU-accelerated simulation provide the computational foundation necessary
for large-scale population-based training. Madrona’s Entity Component System (ECS) architecture
enables batch simulation of thousands of environments simultaneously[Shacklett et al. (2023a)]. By
making parallel batch execution a fundamental building block, Madrona runs the entire workload
on the GPU, yielding an order-of-magnitude performance gain over CPU-only execution. It also
spreads the overhead of scene asset storage, rendering, and synchronization across many concurrent
simulation requests.”

The convergence of population-based optimization with high-throughput GPU simulation presents an
opportunity to address PPO’s core limitations in multi-agent settings. However, no prior work has
integrated evolutionary training methods with GPU-native batch simulation at the scale of thousands
of concurrent environments.

We propose applying Population-Based Training to address PPO’s core limitations through a dynamic
evolutionary approach, using Madrona’s high-throughput batch simulation. Through empirical
evaluation in a collaborative two-agent environment, we demonstrate that this population-based
approach effectively mitigates the failures that plague single-policy PPO implementations, whilst
scaling across available hardware to reduce wall-clock training time without sacrificing exploration
diversity. This evolutionary cycle of selection and mutation naturally balances exploration against
exploitation, potentially proving that parallel PBT is as viable as, if not more effective than, the
current status quo, which is PPO, for complex multi-agent environments. We present our code on
GitHub at https://github.com/SuperAce100/madrona_escape_room_pbt

2 Related Work

Population-Based Training (PBT) has emerged as a powerful paradigm for addressing hyperpa-
rameter sensitivity in deep reinforcement learning. The original PBT framework introduced on-
line optimization that dynamically evolves both network weights and hyperparameters throughout
training[Jaderberg et al. (2017)]. Recent advances have significantly expanded this foundation:
Multiple-Frequencies PBT addresses premature convergence issues through variable evolution fre-
quencies[Doulazmi et al. (2025)], while GPU-accelerated population-based RL has demonstrated
successful sim-to-real transfer on robotic manipulation tasks[Shahid et al. (2024)]. The broader
evolutionary RL field has seen substantial developments, with comprehensive surveys providing
systematic frameworks for understanding how evolutionary algorithms enhance RL through hyperpa-
rameter optimization and policy diversity maintenance[Li et al. (2024b,a)]. Specialized frameworks
like EvoRL now provide GPU-accelerated tools specifically designed for evolutionary reinforcement
learning[Liang et al. (2025)].

The development of GPU-accelerated simulation environments has been crucial for making PBT
practical at scale. Beyond Madrona’s ECT architecture[Shacklett et al. (2023b)], several specialized
simulators have achieved dramatic speedups: Pgx for board games achieves 10-100x acceleration
over Python implementations[Koyamada et al. (2023)], transportation simulators achieve 88.92x
speedup[Zhang et al. (2024)], and JAX-LOB enables large-scale financial applications[Frey et al.
(2023)]. The broader landscape of parallel RL training encompasses classical distributed architectures
with parallel actors and learners[Nair et al. (2015)] and modern GPU-native implementations such as
Parallel Q-Learning that achieve superior wall-clock performance[Li et al. (2023)]. Comprehensive
surveys categorize these acceleration methodologies into simulation parallelism, computing paral-
lelism, and distributed synchronization mechanisms[Liu et al. (2024a)]. These advances demonstrate
the computational foundation necessary for large-scale population-based approaches.

Multi-agent RL presents unique challenges that population-based approaches are well-suited to
address, with recent comprehensive surveys providing theoretical foundations for cooperative and
competitive scenarios[Huh and Mohapatra (2023); Zhang et al. (2019)]. MAZero combines cen-
tralized modeling with Monte Carlo Tree Search for multi-agent coordination[Liu et al. (2024b)],
while applications like distributed satellite routing demonstrate scalability benefits in large-scale net-
work optimization[Lozano-Cuadra and Soret (2024)]. Hyperparameter sensitivity remains a critical
challenge, with extensive studies demonstrating that choices dramatically affect performance and
advocating for principled optimization approaches over manual tuning[Parker-Holder et al. (2022)].
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Recent work has explored evolutionary algorithms for hyperparameter optimization[Tani et al. (2020)]
and curriculum learning integration[Zhengfeng et al. (2024)], showing how evolutionary principles
can be applied beyond traditional parameter tuning to improve entire training processes.

3 Method

We implement a fully GPU-based PBT algorithm that trains a population of N policies concur-
rently. Each policy is parameterized by a shared neural architecture but maintains unique weights
θi and hyperparameters λi = {αi, ce,i, γi} (learning rate, entropy coefficient, discount factor). At
initialization, we spawn this population with diversified starting conditions: weights are sampled
as θi ∼ N (0, σ2I) and hyperparameters are drawn from log-uniform priors to encourage broad
exploration across the parameter space. All policies implement the same PPO actor-critic model,
but because their hyperparameter values and initializations differ, ensuring no two agents begin
identically. This diversification allows the population to explore a broad range of behaviors from the
start, mitigating premature convergence to a single strategy.

3.1 Parallel Training and Experience Collection

During training, each policy i is assigned a disjoint shard of M parallel environment instances,
enabling concurrent experience accumulation. We employ an asynchronous training loop in which all
policies collect experience in parallel and periodically synchronize for evaluation and evolution. Each
agent interacts with its own batch of environments, collecting experience trajectories independently
of the others.

In each iteration of the loop, every policy runs a PPO update on the latest batch of trajectory
data from its assigned environments, collected in parallel on GPU. This design allows all agents
to train concurrently, fully utilizing the parallelism available. Each policy improves on its own
experience shard, while the diversity of initial conditions and interactions across the population
prevents convergence to suboptimal local strategies.

3.2 Batch Simulation with Madrona

Our framework leverages the Madrona batch simulation engine to simulate N ×M environment
instances on GPU all in parallel. At each simulation tick, observations are exported as GPU-resident
tensors Oi ∈ RM×do for each policy i, which feed directly into the policy’s neural network to
compute action tensors Ai ∈ RM×da . These actions are then fed back into the simulator for the next
step, creating a tight integration that obviates costly CPU-GPU transfers.

A forward pass is executed for each policy’s neural network on this collected batch of observations,
and the resulting actions are inserted back into Madrona’s action tensor buffers. Because the data
never leaves GPU memory, the overhead between simulation and model inference is minimal.

3.3 GPU-Native Updates

We embed both neural weights θi and hyperparameters λi within Madrona as GPU components. Each
policy in the population is associated with its subset of environment instances through components
that represent policy-specific data. In practice, we bind each policy’s neural network weights and
training hyperparameters into the simulation as GPU-resident tensors attached to the entities and
world contexts they control.

This design allows PBT operations like replacing a policy’s weights or altering its hyperparameters to
be carried out on the GPU. During evolution, policies are replaced as follows:

θj ← θk, λj ← λk + δ (1)
where k is the index of an elite policy. By executing replacement in place, we maintain continuous
simulation across all N×M environments and avoid environment reinitialization or CPU intervention.

3.4 Evolutionary Selection and Mutation Strategy

We evaluate policy performance at regular intervals to drive the evolutionary aspect of PBT. At every
fixed interval of T training iterations (typically every 500 PPO updates), we compute a fitness score
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Figure 1: Madrona Escape Room Environment

fi for each policy based on cumulative reward obtained over the last T minibatches. This periodic
evaluation yields a scalar performance score used to rank the population.

We then perform a survival of the fittest update: we rank all policies and select the top pe ·N (roughly
20%) as elites to be retained without modification.

For each policy in the rest of the group, we execute an exploit-and-explore operation:

1. Exploitation: Copy the neural network parameters from an elite policy: θj ← θelite

2. Exploration: Perturb the hyperparameters with small random mutations:
λ′
j = λelite × exp(δ), δ ∼ Uniform(−ϵ,+ϵ) (2)

where ϵ is a small mutation scale (typically ±10%). This ensures the new policy starts from strong
network weights but explores a slightly different learning regime than its parent. Algorithm 1 shows
the full training loop.

Algorithm 1 Population Based Training Algorithm
1: Initialize population {θi, λi}Ni=1
2: Distribute M simulation instances per policy in Madrona ECS
3: for iteration = 1 to max_iter do
4: for i = 1 to N (in parallel) do
5: Collect M trajectories via synchronous PPO on θi
6: end for
7: if mod(iteration, T ) == 0 then
8: Compute fitness fi for each policy
9: Select elites and poor performers via ranking

10: for each poor policy j do
11: θj ← θk from sampled elite k
12: λj ← λk × exp(δ), δ ∼ U(−ϵ, ϵ)
13: end for
14: end if
15: end for=0

4 Experimental Setup

4.1 Environment

We evaluate the PBT algorithm in the challenging Madrona Escape Room environment, which
requires collaborative strategies from multiple agents to press pressure plates and open gates to
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Figure 2: Left: Smoothed mean rewards over PPO update steps for different population sizes. Right: Final
mean reward vs. population size (log scale).

Population Size Final Mean Reward
1 −0.00197
2 −0.00150
4 −0.00145
8 0.00012
16 0.00077
32 0.00142
64 0.00169

Table 1: Final mean reward achieved after 2500 PPO update steps.

escape Shacklett et al. (2023b). The environment is a 3D world with two agents navigating through
a sequence of three rooms arranged along the Y-axis, as can be seen in Figure 1. Agents must
coordinate to step on buttons or push blocks onto them to open doors and progress.

At each timestep, agents receive structured observations that include their position, the location of
interactive objects (buttons and blocks), local geometry via lidar-like sensing, and binary indicators
of environment state (e.g., door open, object held). Actions consist of continuous movement and
rotation commands, as well as a discrete grab/release control for interacting with objects. At time (in
steps) t, if the maximum distance an agent has traveled is ymax, the reward is given by:

rt = 0.05ymax − 0.005t (3)

This encourages agents to continually explore deeper into the environment by penalizing them for
time taken before completing the level.

5 Results

We investigate the effect of two critical hyperparameters in the PBT algorithm: population size and
mutation rate. We report results as the mean episodic reward across PPO update steps, as well as the
time to convergence with comparisons.

5.1 Population Size

To assess how the population size influences learning dynamics, we conducted a series of experiments
with sizes ranging from 1 to 64. All runs used identical settings for learning rate, entropy coefficient,
value loss weight, and number of update steps (2500), which can be seen in Appendix A.Table 1
shows the results of these experiments.

5.1.1 Quantitative Results

Table 1 and Figure 2 (right) quantify how final mean reward scales with population size. As shown,
increasing the population from 1 to 64 consistently improves the final reward, from −0.00197 (1
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Figure 3: Mean reward over PPO update steps for different mutation rates.

policy) to 0.00169 (64 policies). The most significant jump occurs between population sizes 4 and 8,
where performance shifts from negative to positive mean reward. Beyond 16 policies, improvements
become more incremental: the 32-policy and 64-policy configurations differ by just 0.00027.

Moreover, plotting these values on a log scaled x-axis reveals an approximately logarithmic trend in
reward improvement. This suggests diminishing marginal returns as more agents are added. This has
practical implications for resource allocation, as increasing population size incurs computational cost
but may offer limited benefit beyond a certain scale.

5.1.2 Qualitative Analysis

The learning curves in Figure 2 (left) further illustrate the dynamics introduced by population scaling.
Larger populations not only achieve higher final rewards, but also tend to escape the early plateau
phase more quickly. Populations of size 16 and above exhibit smoother, more consistent ascent in
reward, likely due to greater policy diversity and exploratory breadth.

Interestingly, while all runs start from similar performance baselines, smaller populations often
plateau or oscillate around suboptimal rewards. This may be attributed to insufficient genetic
diversity and premature convergence, where poor policies dominate the population before useful traits
can propagate. In contrast, larger populations appear more robust to noise and mutation variance,
stabilizing around higher-reward regions of the policy space.

However, the marginal improvements from Pop 32 to Pop 64, coupled with increased variance in early
training, hint at a tradeoff: overly large populations may introduce noise that slows down convergence
or saturates the benefit of diversity. This observation points to the need for smarter selection and
adaptation strategies in high-population settings, rather than blind scaling.

5.2 Mutation Rate

We next examine how the mutation rate affects policy evolution and performance, fixing the population
size at 4 to isolate the impact of this parameter. We vary the mutation rate across {10%, 60%, 80%,
100%} while keeping other settings constant. As illustrated in Figure 3, performance is highly
sensitive to mutation rate.

The lowest mutation rate (10%) results in slower adaptation and lower final reward, likely due to
limited exploration and overfitting to suboptimal policies. Conversely, a 100% mutation rate causes
instability and erratic learning, as policies are frequently perturbed, limiting convergence. Intermedi-
ate rates (60% and 80%) yield the best performance, achieving a balance between exploitation of
high-reward policies and continued exploration of the search space.

These findings highlight the need for careful tuning of mutation hyperparameters in PBT. Furthermore,
they suggest that adaptive mutation schedules or meta-optimization of mutation intensity may be
promising directions for future work.
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Mutation Rate (%) Final Mean Reward
10 −0.00145
60 0.00047
80 0.00069
100 0.00024

Table 2: Final mean reward for different mutation rates at fixed population size (4 policies).

5.3 Convergence Time

To understand how population size influences convergence efficiency, we define convergence as the
last PPO update step where the smoothed average reward crosses from negative to non-negative. This
definition captures the first point at which we can expect the majority of the rollouts to complete
successfully. We observe that larger populations not only achieve higher final rewards but also
converge more consistently and earlier in training.

As shown in Table 3, population sizes of 1, 2, and 4 fail to ever sustain positive rewards, whereas
populations of 8 or more reliably cross the zero threshold. Notably, populations of 32 and 64
converge earlier than those with fewer agents, indicating that larger populations help overcome initial
optimization instability and exploration challenges.

The accompanying plot (Figure 4) visualizes the convergence step for each population size. However,
as we see in Table 3, this does not actually correspond to the wall clock time, where all 4 policies are
quite similar in their final values.

Population Size Convergence Step Wall Time (min) Final Mean Reward
1 N/A N/A −0.00197
2 N/A N/A −0.00150
4 N/A N/A −0.00145
8 2420 16.63 0.00012
16 2140 23.26 0.00077
32 2090 18.11 0.00146
64 1810 23.02 0.00166

Table 3: Convergence Step vs Population Size

Figure 4: Convergence Step vs Population Size

6 Discussion

Our experimental results demonstrate several key successes in scaling population-based training to
multi-agent reinforcement learning. Most significantly, we showed that larger populations consistently

7



achieve better final performance, with improvements continuing up to 64 agents. The logarithmic
scaling relationship we observed (Figure 2) indicates that while gains diminish, they remain substan-
tial even at larger population sizes. The evolutionary selection mechanism proved highly effective at
maintaining policy diversity while propagating successful strategies. Populations of 8 or more agents
reliably achieved positive rewards and completed the collaborative task, while smaller populations
consistently failed to converge. This suggests that the exploration benefits of population diversity are
crucial for overcoming the coordination challenges inherent in multi-agent learning. Our mutation
rate experiments successfully identified the importance of balanced exploration-exploitation trade-
offs. The 60-80% mutation rate range yielded optimal performance, demonstrating that moderate
perturbations allow policies to build upon successful strategies while still exploring new approaches.
This finding provides practical guidance for practitioners implementing population-based training.
The GPU-native implementation achieved our goal of making population-based training computa-
tionally tractable. By embedding both neural network weights and hyperparameters directly within
Madrona’s ECS architecture, we eliminated costly CPU-GPU transfers and enabled seamless scaling
across available hardware. The wall clock times reported in Table 3 show that training 32-64 agents
requires comparable time to training smaller populations, making large-scale evolutionary approaches
practically viable.

Despite these successes, several constraints emerged. Performance gains diminished beyond 32-64
agents, suggesting fundamental scalability limits due to increased mutation noise and resource con-
tention. Our evaluation was limited to a single environment, raising questions about generalizability to
other multi-agent tasks. The sensitivity to mutation rate also highlights a key limitation: the approach
still requires manual tuning of mutation parameters, indicating that fully automated hyperparameter
optimization remains elusive. Additionally, while larger populations improved training efficiency
in terms of iterations, wall clock time benefits were modest, suggesting suboptimal GPU resource
utilization at scale.

7 Conclusion

Population-based training offers substantial improvements over traditional single-policy PPO when
implemented at sufficient scale (16-32 agents optimal). However, it requires adequate population
size to be effective and is not universally superior to traditional methods. The integration with
GPU-accelerated simulation opens new possibilities for large-scale multi-agent learning, though
future work should focus on adaptive mutation strategies and broader task generalizability.

7.1 Directions for Future Work

Several promising directions remain for exploration:

• Advanced Selection Mechanisms: Future iterations could incorporate selection strategies
grounded in behavioral diversity metrics, such as trajectory embeddings or state visita-
tion frequency, rather than relying solely on reward-based rankings. This may improve
exploration and policy robustness.

• Adaptive Population Sizing: Introducing dynamic population management that scales
based on convergence speed or diversity collapse could lead to more efficient use of compute
and better adaptation across training regimes.

• Cross-Environment Generalization: To assess policy robustness and transferability, it is
valuable to evaluate evolved policies across a broader suite of multi-agent tasks, particularly
those with distinct coordination dynamics or environmental structures.

8 Team Contributions

• Charlotte: Charlotte led the design of the evolutionary component of the algorithm and
implemented a scratch version with mock policy weights.

• Asanshay: Asanshay integrated this algorithm into the final Escape Room Madrona envi-
ronment and conducted the experiments.
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Changes from Proposal: This is similar to the plan we laid out in the proposal, with a few shifts to
account for the quirks of integrating with the Madrona simulator.
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A Chosen Hyperparameters

Hyperparameter Value
Experiment Type escape_room
Elite Fraction 0.2
Learning Rate 1× 10−4

Discount Factor (γ) 0.998
Entropy Coefficient 0.01
Value Loss Coefficient 0.5
Channels 256
Separate Value Network False
Steps per Update 40
FP16 Enabled True

Table 4: Consistent hyperparameters shared across all experiments. These values were fixed to isolate
the effects of population size and mutation parameters.
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