Extended Abstract

Motivation Emergency room triage remains a significant issue in the healthcare system, with
many hospitals struggling with overcrowding, triaging errors, and lack of resources. A study by
Kaiser Permanente found that "mistriage occurred in nearly 32.2% of 5 million encounters" |(Chang
et al.[(2022)) in hospitals they observed. Due to these inefficiencies, wait times have become longer,
worsening patient outcomes over time. In the US, the average wait time before treatment starts is
nearly 27 minutes, demonstrating the critical need for improvements. This research project aims to
investigate how reinforcement learning can assist ER nurses in making more informed decisions to
help reduce errors in patient triage and improve operational efficiency and patient outcomes.

Method We developed a custom environment using Gymnasium to model the key dynamics of a
basic ER department in hospitals. The environment includes three key classes for patients, hospital
staff, and representing the emergency room. During the environment initialization, we randomly
initialize between 3 to 7 hospital staff and generate 50 new patients with varying age, gender, and
pain level. During the initial timestep, all patients are triaged and enter the waiting queue. At each
step, the RL agent chooses a patient ID in the waiting queue to be admitted for treatment. Once
admitted, patients are treated for the estimated timesteps and later discharged.

Based on the environment dynamics, we developed a dense reward function on a scale between [0,
1]. The agent was evaluated at each step based on the weighted average of the patient’s wait time
and severity level. Additionally, the agent was penalized if beds and staff members were idle when
queued patients needed them. For this setting, we benchmarked Implicit Q-learning against behavior
cloning and modified its objectives to achieve the highest performance. For IQL, we implemented
two variants: one that relies exclusively on offline data for policy learning and another incorporating
environment interaction to enable online data collection.

Implementation After implementing both agents and IQL variants, hyperparameter optimization
was necessary, given the development of a custom environment and expert data. The expert data
was manually created using a heuristic learned from the following dataset, "Patient Flow and Triage
Simulation" [Mahato| (2023). The BC and IQL agents were tested for 700 and 2,000 iterations,
respectively. We utilized the g4dn.xlarge spot instance on AWS, which consists of 1 NVIDIA T4
GPU with 16 GB of GPU memory and four vCPUs.

Results The BC agent provided a solid benchmark to improve upon using the IQL agent. The BC
agent had a average return around 0.45 with a standard deviation of 0.15 across the 700 timesteps.
The average wait time for the BC agent was 26.02 timesteps (minutes) with staff and bed utilization
remaining low around 81& and 34%, respectively. The offline variant of IQL performed highest
among the agents with an average reward of 0.52 and a standard deviation of 0.17. Additionally, it
had the lowest average wait time for patients at 22.71 timesteps, saving 4 minutes from BC agent.
Additionally, staff and beds were utilized efficiently at 97% and 92%, respectively.

Discussion The environment-specific metrics revealed that the results for the BC agent were similar
to those of ER departments in the US. The average wait time was around 26.02 minutes, approximately
the national average. Furthermore, the bed and staff utilization was low due to the expert having
limited information regarding the current state of the emergency room department. By leveraging
the observation space containing the entire state of the ER, the IQL agent could take more informed
actions when prioritizing patient treatment. his advantage is reflected in the plots, where the bed and
staff utilization peaked at approximately 97% and 92%, respectively. Additionally, the agent reduced
the wait time by nearly 4 minutes, demonstrating its ability to improve patient outcomes without
delaying necessary care.

Conclusion This paper aims to solve these issues by presenting a novel method to integrate
reinforcement learning into ER flow. After creating a custom ER environment and testing offline RL
agents, we demonstrate the potential for RL agents to make dynamic, context-aware triage decisions
that consider patient acuity and real-time resource availability. While challenges remain in terms of
interpretability and privacy, this works a step towards augmenting triage decision-making, leading to
better patient outcomes.
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Abstract

Today, emergency room (ER) nurses in hospitals face significant triage challenges
due to the increasing number of patients, limited resources, and critical time-
sensitive decisions. They must be able to quickly rank patients based on their
symptom type, severity level, and treatment specialty within the constraints of
limited resources, overcrowding, and inadequate information at intake. A study
by Kaiser Permanente found that "mistriage occurred in nearly 32.2% of 5 million
encounters" (Chang et al.|(2022)) in hospitals they observed. This research project
aims to investigate how reinforcement learning can assist ER nurses in making more
informed decisions when prioritizing patients in the emergency room. We created
a custom gym environment to simulate ER dynamics, such as triaging, admitting,
and discharging patients, based on the current state of the ER. Algorithmically, we
implemented a Behavior Cloning (BC) agent and a variant of Implicit Q-learning
(IQL) agent to provide optimal suggestions for ER nurses during triage. Our results
indicate that the IQL agent improved from the baseline set by the BC agent. The
IQL agent received a higher reward of 0.52 compared to 0.45 for the BC agent
while lowering the average patient wait by four timesteps. Additionally, it was
more efficient in using the available resources of staff and beds by nearly 17%
and 58%, respectively. This project addresses a critical gap in emergency care:
reducing errors in patient triage and helping improve operational efficiency and
patient outcomes.

1 Introduction

Emergency room triage remains a significant issue in the healthcare system, with many hospitals
struggling with overcrowding, triaging errors, and lack of resources. Due to these inefficiencies, wait
times have become longer, worsening patient outcomes over time. While crowding and resource
limitations have strained ER departments, the biggest issue can be linked to triage errors. ER
nurses face intense pressure to make time-sensitive, high-stakes decisions that can have life-or-death
consequences for many people. Given the rise of Al in clinical workflows, reinforcement learning
presents a promising approach to optimizing the decision-making process in ER triage.

1.1 Emergency Room Triage

Before analyzing the issue with ER triage, it is vital to understand its mechanics. A typical ER
flow can be categorized into three phases: Input, Throughput, and Output Samadbeik et al.| (2024).
The input phase starts with a patient’s arrival via a walk-in or ambulance. According to the CDC,
there were nearly 139.8 million arrivals in the past year|Centers for Disease Control and Prevention
(2025). During the throughput phase, a clinician will screen the patient and order labs or imaging
for further diagnosis. Based on the diagnosis, a patient is assigned a score based on the Emergency
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Severity Index (ESI). Accordingly, the patient is assigned to one of the following treatment zones:
resuscitation, fast-track, or main ED. After treatment, the patient is either discharged or transferred to
a different department.

A critical challenge in the emergency room triage flow is misclassifying patients into the wrong
treatment zones. Overcrowding forces ER nurses to make quick decisions regarding the patient’s
ESI and their position within the queue. Errors in triage caused by underestimating pain severity or
delaying care can lead to harmful patient outcomes (Guttmann et al.|(2011). Compounding this issue,
nurses must also account for dynamic hospital constraints, including the real-time and projected
availability of hospital resources, such as the number of available beds, doctors, and labs. Balancing
urgency and resource limitations makes ER triaging an inherently complex process.

1.2 Al in Medicine

With the rise of generative Al, more healthcare organizations are integrating Al into their clinical
workflows. EHR companies, such as Epic Systems and Oracle Cerner, are utilizing Al to reduce
the administrative burden on doctors. Currently, over 1,000 Al health systems have been approved
by the FDA, indicating the rise of Al in medicine |Smith|(2025). New systems must be built with
strong ethical foundations, prioritizing trust, transparency, and accountability. Given the sensitivity of
patient health data, privacy and algorithmic bias must be adequately addressed.

2 Related Work

2.1 Supervised Learning Approaches

Much of the current literature emphasizes using supervised learning to enhance the triaging process
in emergency rooms. These approaches involve aggregating patient data to classify them based on the
Emergency Severity Index (ESI) without considering the ER department’s current situation, including
available resources and staff to treat patients. As such, the main goal of these works is to augment
nurses’ decision-making when initially classifying each patient’s level of need.

A recent study focused on enhancing nurses’ subjective assessments when evaluating patients for
their ESI. The researchers implemented recurrent neural networks and attention mechanisms trained
on patient medical records and achieved an accuracy rate of 87% across nearly 118,000 patients. Yao
et al. (2021) A similar study by Beth Israel Medical Center evaluated various supervised learning
approaches, including gradient tree boosting and a two-layer neural network, on structured patient
data, reaching 80% classification success, on average (Goodwin et al.|(2024). While these studies
highlight the improvement of evaluating ER patients during triage, these approaches fail to consider
the current state of the ER, which can significantly influence patient outcomes in the emergency
setting.

2.2 Reinforcement Learning Approaches

One particular paper by Babylon Health in the UK presented a different approach from the limited
hard-coded decision trees. Using 1,374 clinical vignettes representing about three triage decisions by
doctors, the researchers trained a Deep Q-learning system to effectively classify patients based on
limited patient information. Buchard et al.| (2020) At each step, the agent would determine if it is
appropriate to make a triage decision at the current state or if a follow-up question should be asked.
While this approach performed similarly to earlier supervised methods, it was better at adapting
to unseen cases by asking additional questions—something standard supervised learning methods
cannot do.

Another approach used a partially observable Markov Decision Process to provide real-time infor-
mation support and direction for patients in remote locations. Thapa et al.|(2005) Doctors would
automatically be notified if the patient’s wearable triggered an alert and would assign the patient to
the nearest location with the available doctor and resources to treat the patient. Existing literature
does not adequately explore the application of reinforcement learning in medical triage. While the
two above-mentioned papers utilized reinforcement learning to optimize medical triage, their findings
are limited and not sufficiently encompassing for real-world situations, offering little practical value.
This research aims to address these shortcomings.



3 Method

3.1 Custom ER Environment

Existing literature explores this problem by classifying patients according to the Emergency Severity
Index (ESI) using supervised learning. One paper utilizes RL to effectively rank patients using
a limited number of questions or information. Our novel approach lies in simulating a resource-
constrained ER triage as a Markov Decision Process and utilizing RL agents to effectively rank
patients under uncertainty. We will integrate patient information from the "Patient Flow and Triage
Simulation" Mahato (2023) dataset from Kaggle to accurately model environment dynamics. We
developed a custom environment using Gymnasium to model the key dynamics of a basic ER
department in hospitals. The environment includes three key classes: Patient, HospitalStaff, and
EmergencyRoom. Each class contains specific attributes designed to replicate essential components
of ER operations. This modular design enables better experimentation with different environment
dynamics, such as staffing policies and patient flows.

3.1.1 Patients

Each patient was identified with a unique ID and health metadata, including their age, gender, arrival
time, and pain level. For this environment, we assumed all patients were created at the initial timestep
and placed into the category of not triaged. Additionally, we assumed that all non-triaged patients
were immediately triaged in the next timestep and were diagnosed with a severity level, estimated
treatment time, and whether they required a bed (overnight stay). The diagnosed severity level and
treatment time were determined based on the patient’s age and self-reported pain level. Based on
the chosen action of the RL agent, a patient can be admitted and assigned to a staff member to begin
treatment. At the end of treatment, the patient is automatically discharged. The wait time of each
patient was calculated based on the number of timesteps between triage and admittance.

3.1.2 Hospital Staff

Similar to patients, each staff member was identified with a unique ID. Each member was restricted
to a specific capacity and allowed to treat between 1 and 3 patients at a given timestep. In future
iterations, each staff member can be restricted from treating particular symptoms based on their
specialty and role.

3.1.3 Emergency Room

During the environment initialization, we randomly initialize between 3 to 7 hospital staff and
generate 50 new patients with varying age, gender, and pain level. During the initial timestep, all
patients are triaged and enter the waiting queue. At each step, the RL agent chooses a patient ID in
the waiting queue to be admitted for treatment. We first validate whether this patient ID exists in the
queue and determine if any staff can treat the patient. Additionally, patients who require a bed are
only admitted if beds are available. Once admitted, patients are treated for the estimated treatment
timesteps and later discharged. The iteration is complete after all patients are treated or the number
of timesteps exceeds 200.

Based on the environment dynamics, we developed a dense reward function on a scale between [0, 1].
The agent was evaluated at each step based on the weighted average of the patient’s wait time and
severity level. Additionally, the agent was penalized if beds and staff members were idle when queued
patients needed them. If the agent selected an invalid action, such as choosing a patient not in the
waiting queue, it received a reward of 0. The total cost was normalized to be scaled between [0, 1].
Although the theoretical maximum is 1, the agent is expected to be unable to achieve this value, as
the queue introduces unavoidable penalties. We also considered developing a more sparse reward
function but opted against it as enough expert data was not collected.
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Figure 1: Custom ER Environment Flow

3.2 Reinforcement Learning Algorithms

We implemented Implicit Q-learning as our reinforcement learning agent for training. For this
setting, we benchmarked it against behavior cloning and modified its objectives to achieve the highest
performance. Both agents will be evaluated using several metrics, such as their ability to reduce the
average patient wait time and efficiently use the available hospital staff and beds. Several helper
classes were created to create expert data from the downloaded dataset, train the RL agents, and log
relevant metrics to tensorboard. We adapted the infrastructure code from the class homework to help
implement these classes for a discrete action space.

3.2.1 Behavior Cloning Agent

The behavior cloning (BC) agent serves as a supervised learning baseline by mimicking the actions
from the generated expert dataset. Rather than exploring the environment independently, the BC
agent attempts to minimize the difference between its predicted actions and those in the dataset.
While this approach provides a sufficient baseline, the agent is only as performant as the expert
dataset. Therefore, in more complex environments like the created ER environment, we expect that
the behavior cloning agent will have respectable performance but will not significantly improve from
the current performance of real-world ER departments.

3.2.2 Implicit Q-Learning Agent

Unlike the behavior cloning agent, we expect the Implicit Q-Learning agent to have high performance
and reveal opportunities for using RL in the ER department. IQL is an offline reinforcement learning
algorithm that is designed to learn effective policies from expert data. However, unlike the BC agent,
IQL estimates value functions for each transition. Using this value function, IQL can update its
Q-values to create an advantage estimate for (state, action) pairs, allowing it to extract better actions
even if they are underrepresented in the data.

To adapt IQL to our environment and allow it to achieve the best performance, we modified the
observation space to include information about the patients in the waiting queue and available staff
and beds. Additionally, since the action space (the waiting queue) changed during each environment
step, we created an action mask within the info variable to restrict the agent from taking invalid
actions (choosing patient ID outside the waiting queue). For IQL, we implemented two variants:
one that relies exclusively on offline data for policy learning and another incorporating environment
interaction to enable online data collection.



4 Experimental Setup

After implementing both agents and IQL variants, hyperparameter optimization was necessary, given
the development of a custom environment and expert data. The expert data was manually created
using a heuristic learned from the following dataset, "Patient Flow and Triage Simulation"
(2023). The BC and IQL agents were tested for 700 and 2,000 iterations, respectively. We utilized
the g4dn.xlarge spot instance on AWS, which consists of 1 NVIDIA T4 GPU with 16 GB of GPU
memory and four vCPUs. This setup provided the necessary GPU capabilities to train our lightweight
RL models while remaining cost-efficient.

Key Hyperparamter Values

* Train Batch Size: 1024

* Evaluation Batch Size: 256

* AWAC Lambda (IQL): 0.5

* Learning Rate (IQL): 1 x 1073
* Expectile (IQL): 0.8

Evaluation Metrics

* Average Return

 Standard Deviation

* Average Patient Wait Time

* Average Severity-Weighted Patient Wait Time

e Bed Utilization (Total beds used / Total beds needed)
Staff Utilization (Total staff assigned / Total staff capacity)

5 Results

5.1 Behavior Cloning Agent
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Figure 2: The BC agent had a average return around 0.45 with a standard deviation of 0.15 across the
700 timesteps.
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Figure 3: The average wait time for the BC agent was 26.02 timesteps or similar to the average wait
time in the US. The wait time weighted by the patient’s severity level was around 150 timesteps.
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Figure 4: The agent had a staff utilization around 0.81, meaning that 19% of the available staff were
not assigned any patients. Similarly, the bed utilization was extremely low around 0.34, indicating
that many patients that required beds were not given one.



5.2 IQL Agent
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Figure 5: The IQL agent, which was initially trained on expert data, had an average return of 0.48
with a standard deviation of 0.19 across 2,000 iterations.
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Figure 6: The higher average reward indicates that the IQL agent should have a slightly lower patient
wait time as shown in the plots with an average patient wait time of 24.93 timesteps across the 2,000

iterations.



Eval_Bed_Utilization

0.8

0.6

SRR S

0.4
0 500 1,000 1,500 2000 2,500
Vs

Run Smoothed Value Step Relati\
® igl_er_06- 0.7375 1 2,483 1.7541

06-

2025_03-

01-48

(a) Bed Utilization

Eval_Staff_Utilization

0 500 1,000 1,500 2,000 2,500
V]
Run 1t Smoothed Value Step Relati\
® igl_er_06- 0.8881 0.8125 2,483 1.754|
06-
2025_03-
01-48

(b) Staff Utilization

Figure 7: The IQL agent efficiently assigned beds and hospital staff members to patients. Bed
utilization was around 74% and staff utilization was close to 88%. This efficient utilization explains

the higher rewards received by the agent.

5.3 IQL Variant Agent
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Figure 8: The offline-exploitation variant of IQL had an average reward of 0.52 with a standard
deviation of 0.17, which is the best performance across all of the agents.
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Figure 9: The average wait time for this IQL variant was 22.71 timesteps, which was lowest among
all of the tested agents. Similarly, the severity weighted wait time was 144.18 timesteps, lowest
among all agents, partially explaining the higher reward received by the agent.
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Figure 10: Staff and bed utilization for this IQL variant was 97.64% and 92.45%, respectively. These
results and the previous plots explain the higher average reward for the agent and demonstrate its
better performance compared to the other agents.



5.4 Quantitative Evaluation

We quantitatively evaluated the performance of all three agents using key metrics, such as average
return, patient wait time, and resource utilization. The table below summarizes these results, providing
a side-by-side comparison highlighting each agent’s ability to manage emergency room operations.

Table 1: Performance Comparison

Method Avg Reward Std Dev  Avg Wait Time  Staff Utilization Bed Utilization
Behavior Cloning 0.45 0.15 26.02 0.81 0.34
IQL 0.48 0.19 24.93 0.74 0.88
Offline IQL 0.52 0.17 22.71 0.98 0.92

6 Discussion & Future Work

The behavior cloning agent trained on the manually created expert data established a comparable
baseline to test the efficacy of the IQL agent in this environment. Despite a theoretical maximum
reward of 1, the BC agent achieved a reward of 0.45, representing a decent return with a relatively low
standard deviation of 0.15. The environment-specific metrics revealed that the results were similar to
those of ER departments in the US. The average wait time was around 26.02 minutes, approximately
the national average [Horwitz et al.[(2010). Furthermore, the bed and staff utilization was low due to
the expert having limited information regarding the current state of the emergency room department.

Both IQL agents improved on the benchmark set by behavior cloning, with the offline-exploitation
variant achieving the highest performance among all agents. By leveraging the observation space
containing the entire state of the ER, the agent could take more informed actions when prioritizing
patient treatment. This advantage is reflected in the plots, where the bed and staff utilization peaked
at approximately 97% and 92%, respectively. Additionally, the agent reduced the wait time by nearly
4 minutes, demonstrating its ability to improve patient outcomes without delaying necessary care.

The IQL agent’s performance demonstrates RL’s potential to optimize triage decision-making. By
leveraging a comprehensive, high-dimensional representation of the ER state, the agent can be used
in conjunction with clinicians to prioritize patients more effectively. Rather than replacing clinical
judgment, these models serve as assistive tools, allowing staff to focus more on accurate patient
symptom logging and diagnosis. Future work includes adopting a hybrid approach by combining
offline and online RL. The offline model will provide a baseline, while the online version will
incorporate real-time feedback using direct preference optimization.

Integrating this agent within existing EHR systems will require interpretability, trust, and ethical
oversight. To mitigate any potential bias, the model must be trained on a diverse and representative
dataset of patient health records. Given the sensitivity of protected health information (PHI), secure
data access and HIPAA compliance must be established to protect patient privacy. Additionally, the
recommended actions taken by the agent will need to be reviewed by a certified nurse, as incorporating
a human-in-the-loop is essential in the medical field, particularly for diagnostic systems.

7 Conclusion

Emergency room triaging remains a significant issue in the medical field due to resource limitations,
staff burnout, and overcrowding. This paper aims to solve these issues by presenting a novel method
to integrate reinforcement learning into ER flow. After creating a custom ER environment and testing
offline RL agents, we demonstrate the potential for RL agents to make dynamic, context-aware triage
decisions that consider patient acuity and real-time resource availability. While challenges remain in
terms of interpretability and privacy, this works a step towards augmenting triage decision-making,
leading to better patient outcomes.

8 Team Contributions

Since I completed the entire project individually, the project was entirely my contribution.
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Changes from Proposal The main goal of the proposal has remained the same throughout the
research project. Initially, we proposed using additional offline agents, such as CQL, and implement-
ing DPO to provide real-time human feedback to the agent for more realistic agent performance.
However, due to time constraints, we opted against implementing CQL and DPO, instead focusing
on improving the ER environment and IQL’s performance.
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