
Extended Abstract

Motivation Quarto is a 2 player board game that consists of a 4 by 4 board with 16 distinctive
pieces, where the objective of the game is to get 4 pieces of a common attribute in a row, column, or
diagonal. On each turn, a player places a piece on the board and gives the opponent their piece to
play next. Similar to other board games, game play in Quarto consists of multi-turn trajectories that
end in a terminal state of win, loss or draw. This creates a sparse reward structure which existing
works on RL for Quarto use. We are interested in introducing intermediate rewards to encourage
certain gameplay strategies using heuristics, to create a dense reward environment for training. This
project answers the question: What is the impact of dense reward environments on offline and online
RL methods for Quarto? We observe the resulting impact of training in a dense reward environment
on agent performance, behavior, and rate of learning.

Method Our novel approach was to create a custom, dense reward environment by implementing a
heuristic-based reward model that incentivizes certain agent behavior. In addition, we implemented
Conservative Q Learning as an offline RL method. We compare the performance of an agent trained
using CQL, MaskedPPO, and MaskedPPO with self-play in sparse and dense reward environments,
to understand the effects of the intermediate rewards.

Implementation To evaluate agent performance in the game of Quarto, we tracked outcome-based
metrics: win rate, loss rate, draw rate, and custom behavior-based metrics: the number of threats
created, threats blocked, bad pieces given, and game turns. Our primary success metric was win
rate, and our other metrics helped reveal behavioral differences across training regimes. For offline
learning, we implemented Conservative Q Learning (CQL) from scratch, generating datasets of
30,000 episodes under both sparse and custom dense reward settings, with games between random
opponents adn trained MaskedPPO agents. The CQL agent was trained for 1 million steps using an
alpha penalty of 1.0. For online learning, we extended the Quinto codebase to train MaskedPPO
agents in both sparse and dense reward environments, against both random opponents and in self-play
settings for 1 million timesteps.

Results Our experiments reveal with online MaskedPPO, a dense reward environment led to
signficant performance improvement compared to sparse rewards. In self-play, MaskedPPO trained
with dense rewards achieved a 98.6% win rate, significantly outperforming the sparse counterpart at
27.7%. Even against random opponents, the dense-reward model achieved 78.6% win rate versus
50.3% in the sparse setting. These performance gaps are accompanied by reductions in bad piece
selection and average game turns, suggesting better outcomes and more efficient and strategic play.
However, we also discover that other heuristics, such as Threats Created and Threats Blocked, did
not correlate with optimal performance. In contrast to MaskedPPO, our offline CQL experiments
showed a minimal difference between dense and sparse environments.

Discussion Our results demonstrate that dense reward shaping in online MaskedPPO settings can
significantly improve online reinforcement learning performance in Quarto. However, our offline
learning experiments using Conservative Q Learning showed more insignificant differences, likely
due to the limitation of not enough training on enough high-quality data. This contrast points to a
broader insight: while reward shaping is powerful, its effectiveness is conditional on the training
setting, and offline RL remains highly sensitive to the diversity and quality of collected data.

Conclusion Beyond Quarto, these findings underscore the value of integrating domain knowledge
into reward design for environments with sparse feedback. The benefits of intermediate rewards—
incentivizing strategic behavior, and accelerated convergence—can generalize to other sequential
decision-making problems such as robotic planning or multi-step control tasks. Future directions
could include leveraging learned reward functions via inverse reinforcement learning to better
align training signals with expert-level strategy, or scaling to larger and more complex games.
Ultimately, our work contributes to a broader understanding of how structure and feedback interact
in reinforcement learning, and we hope it informs both future research in game-playing agents and
real-world applications with sparse or delayed rewards.



RL on Quarto: Experimenting with Dense Reward
Environments

Ishvi Mathai
Department of Computer Science

Stanford University
ishvim@stanford.edu

Humishka Zope
Department of Computer Science

Stanford University
zope@stanford.edu

Aditri Patil
Department of Electrical Engineering

Stanford University
apatil26@stanford.edu

Abstract

Quarto is a two-player board game with a sparse reward structure, making it a
challenging environment for reinforcement learning (RL). This project investigates
how introducing dense, heuristic-based intermediate rewards impacts learning
performance in both online and offline RL settings. We implemented a custom
reward model to incentivize strategic gameplay behaviors and evaluated agent
performance using outcome metrics (e.g., win rate) and behavior metrics (e.g.,
threats created, bad pieces given). For online learning, we trained agents using
MaskedPPO with and without self-play in both sparse and dense reward environ-
ments. For offline learning, we implemented Conservative Q Learning (CQL).
Results show that dense rewards significantly improve online performance: in
self-play, dense-trained agents reached a 98.6% win rate compared to 27.7% in the
sparse setting. Offline learning with CQL, however, showed minimal difference
between reward conditions, likely due to limited high-quality data. These findings
suggest that while dense reward shaping can accelerate learning and encourage
efficient strategy in online RL, its benefits are conditional in offline settings. More
broadly, this work highlights the importance of integrating domain knowledge into
reward design, especially for sequential decision-making problems with sparse or
delayed feedback.

1 Introduction

In this project, we explore the impact of dense reward environments on both offline and online RL
methods on Quarto. Quarto is a 2-player board game where the object is to get 4 pieces, of 16 unique
pieces that are characterized by 4 attributes, that share an attribute in a row, column, or diagonal. On
each turn, a player places a piece on the board and gives the opponent their piece to play next. A
unique aspect of Quarto is that players choose the piece that their opponent places next. Thus, the
goal becomes "trapping" the next player into giving you a winning move, making Quarto a great
game for strategic and anticipatory thinking and adversarial planning.

However, similar to many other board game structures, Quarto’s game ends after multi-turn trajectories
in a terminal state of win, draw, or loss. This structures the problem as a sparse reward environment,
which can lead to more challenges when training agents to play the game. We found that existing
implementations only used sparse reward environments (with rewards given at the terminal states)
to train RL methods on Quarto. Furthermore, existing methods have only implemented online Rl

Stanford CS224R 2025 Final Report



algorithms (such as PPO) largely due to the limitations of a sparse reward environment, and these
methods took a relatively large time to train (anywhere from 6 hours to 1 week). Thus, we wondered
about the impact of dense reward environments, where we reward not only the final state (for a win,
loss, draw) but also use specific heuristics for attributes of game-play that occur during the game
to assign intermediate rewards in trajectories. Our specific research question is: What is impact of
a dense reward environment on agent performance, behavior, and rate of learning in both online
methods (MaskedPPO) and offline methods (Conservative Q Learning)?

Our experiments reveal the impact of specific heuristics that incentive better performance (higher
win-rate) and improvements in agent strategy. Furthermore, using our dense reward environment,
we further explored the performance of offline methods by implementing Conservative Q-Learning.
In addition, we explored the performance improvement of dense rewards with MaskedPPO when
playing against a randomly trained opponent versus self-play.

2 Related Work

While existing work on RL methods for Quarto is limited, prior research has explored approaches
have explored using both traditional and reinforcement learning methods. Pedersen (2019) examined
Quarto as a reinforcement learning (RL) problem, implementing various RL techniques trained via
self-play. His findings highlighted that while the choice of learning algorithm had limited effect
on overall performance, differences in hyperparameter configurations significantly influenced agent
behavior and learning dynamics over time. This work underscores the sensitivity of Quarto-playing
agents to training regimes and provides foundational insight into neural value function approximation
in combinatorial game settings.

Another approach to Quarto AI has relied on classical search methods. Mohrmann et al. (2013) has
Java-based implementation used depth-first search with alpha-beta pruning, transposition tables, and
constraint solvers to effectively narrow the search space and enable real-time gameplay against human
opponents. While not learning-based, this method demonstrated the effectiveness of domain-specific
heuristics and optimization in game tree search.

More recently, the Capuano and Matteotti (2023) Quinto project introduced a modern deep reinforce-
ment learning framework for Quarto. This work focuses on an on-policy learning setup enhanced with
innovative components such as action masking and incremental self-play. The use of action mask-
ing—filtering out illegal or non-optimal actions during learning—aligns particularly well with the
complex action space in Quarto and represents a notable step toward scalable learning in constrained
environments.

A limitation of these prior works is that they all use sparse reward environments. Our project
introduces the novel approach of experimenting with dense reward environments. We build upon
Quinto, which provides a setup for MaskedPPO in a sparse environment, and additionally implement
an offline technique of Conservative Q Learning.

3 Method

To understand the impact of dense reward environments, we evaluated performance using Online
methods (MaskedPPO) and Offline methods (Conservative Q-Learning). To do this, we created a
custom environment with dense rewards and behavior tracking, set up agent training, and implemented
Conservative Q Learning. In addition, we evaluated performance in training with both a random
opponent and self-play (playing against ourselves) with sparse and dense reward environments. We
contrast our agents’ behavior and performance with our baselines, MaskedPPO with sparse rewards
and CQL with sparse rewards.

Our rationale with implementing both an offline method and an online method was that we wanted to
understand whether including intermediate rewards would make offline learning more feasible, as
offline learning is generally challenging in sparse reward environments. Furthermore, we decided to
experiment with self-play to evaluate whether training against a progressively stronger agent leads
to more robust policies, especially in dense reward settings. Self-play has shown success in other
strategic games by allowing agents to learn increasingly sophisticated behaviors through iterative
competition. By comparing self-play with training against a random opponent, we aimed to isolate

2



how much of the agent’s improvement stems from the reward shaping itself versus the quality of the
opponent. This also allowed us to assess whether dense rewards accelerate learning even in more
adversarial, non-stationary training regimes.

A full list of experiments we ran:

• Conservative Q-Learning in Dense Reward Environment
• Conservative Q-Learning in Sparse Reward Environment (Baseline)
• Conservative Q-Learning with Self-Play in Dense Reward Environment
• Conservative Q-Learning with Self-Play in Sparse Reward Environment (Baseline)
• MaskedPPO with Random Opponent in Dense Reward Environment
• MaskedPPO with Random Opponent in Sparse Reward Environment (Baseline)
• MaskedPPO with Self-Play in Dense Reward Environment
• MaskedPPO with Self-Play in Sparse Reward Environment (Baseline)

3.1 Dense Reward Environment

We developed four different heuristics to model optimal gameplay in Quarto and designed a custom
environment that rewards or penalizes the agent based on the following criteria:

• Threats Created: The agent is awarded +2 (previously +6 in Reward Model #1) every
time it places a piece that creates a row, column, or diagonal of pieces with shared attributes.

• Threats Blocked: The agent is awarded +2 (previously +7 in Reward Model #1) every
time it places a piece that blocks the opponent from completing a row, column, or diagonal
of pieces with a common attribute.

• Bad Pieces: The agent is penalized −10 (equivalent to a loss) if it hands the opponent a
piece that allows them to win on their next move.

• Game Turns: To encourage strategic and efficient gameplay, the agent is penalized
−0.5 × (number of turns played). This discourages the agent from accumulating inter-
mediate rewards unnecessarily and instead focuses on quick victories.

We also define terminal rewards based on the game outcome:

• Win: +10

• Lose: −10

• Draw: 0 (previously 0.2 in Reward Model #1)

To determine the appropriate reward values for each heuristic and game state, we ran experiments
across a variety of hyperparameter settings. The final reward model was selected based on configura-
tions that maximized the agent’s win rate.

3.2 Sparse Reward Environment (Baseline)

Our baseline was running experiments in a sparse reward environment where a reward was only given
to the terminal state:

• Win: +1

• Lose: −1

• Draw: 0

3.3 Assumptions

We make the following assumptions:

• We assume full observability of the board state and the opponent’s given piece.

3



• The environment is deterministic; randomness arises only from the opponent’s policy or
initial conditions.

• Agents receive information about the game state as a structured observation, which includes
the current board layout and the given piece.

• Opponents are either fully random or use the same policy network (self-play).

3.4 Math/Algorithm Details Behind Conservative Q-Learning

Conservative Q-Learning (CQL) is an offline reinforcement learning algorithm designed to learn
policies from fixed datasets without interacting with the environment during training. CQL adds a
penalty to the Q-function objective that explicitly reduces overestimation of unseen actions, improving
stability and generalization.

From Finn (2025), CQL optimizes the following objective:

LCQL = E(s,a,r,s′)∼D

[(
Q(s, a)− r − γmax

a′
Q(s′, a′)

)2
]
+α·Es∼D

[
log

∑
a

exp(Q(s, a))− Ea∼πβ
Q(s, a)

]
The first term is the standard Bellman error, and the second is the conservative penalty, where α is a
hyperparameter controlling conservatism, and πβ is the behavior policy from the dataset.

We use a dataset of trajectories generated from a expert opponent in the Quarto environment, and
train the Q-function using a replay buffer of offline interactions. The policy is implicitly derived from
the learned Q-values via softmax.

3.5 Math/Algorithm details behind MaskedPPO

MaskedPPO is a variant of Proximal Policy Optimization (PPO) tailored for environments like Quarto
where not all actions are valid at each timestep. At each decision point (e.g., selecting a square or
choosing a piece), the agent receives an action mask indicating which actions are valid.

The PPO objective is:

LPPO = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
where rt(θ) = πθ(at|st)

πθold (at|st) is the ratio of new to old policy probabilities, and Ât is the advantage
estimate at time t.

To account for invalid actions, we apply a masking operation during both sampling and policy
evaluation, ensuring that probability mass is only assigned to legal actions.

MaskedPPO agents are trained using environments where the observation includes both the board state
and the given piece, with dense or sparse rewards depending on the experiment. Self-play training
alternates between the agent playing as the piece-placer and board-player, mirroring turn-based play.

4 Experimental Setup

4.1 Metrics

We used these metrics:

1. Win-rate: percent of game trajectories agent won
2. Loss-rate: percent of game trajectories agent lost
3. Draw-rate: percent of game trajectories agent drew

To track agent behavior, we also track the average of Threats Created, Threats Blocked, Bad pieces,
and Game Turns. The primary metric used to evaluate overall performance was win rate.

We used tensorboard and wandb to create visualizations of the game trajectories, and log metrics and
loss curves.

4



4.2 Implementation Details for Conservative Q Learning

To run our experiments for CQL, we implemented CQL from scratch. This means first generating
the dataset with 30,000 episodes. We chose this size after experimenting as it provided diverse data
and manageability. We generated rollouts in our custom dense rewards environment vs the prior
sparse environment. We also compare rollouts containing games of 2 random opponents versus
self-play of 2 MaskedPPO v3 opponents. Each transition contains the info dictionary with fields
like "threat_blocked" and "bad_piece". Then we load this data and train a CQL agent with an alpha
penalty weight of 1.0. We train for 1M steps and after each step the Bellman error and CQL penalty
are logged to the tensor board. We choose to evaluate against a random opponent to keep it consistent
across the parameters.

4.3 Implementation Details for MaskedPPO Learning

To run our experiments using the MaskedPPO algorithm, we utilized the existing Quinto codebase .
We first created a custom environment with a different reward function to capture all the intermediate
rewards in our dense environment. We then trained an agent using a random opponent, and then
the agent itself for self-play. We also enhanced the Quinto base environments to keep track of our
intermediate metrics: "threats created", "threats blocked", "game turns", and "bad pieces given"
to track the effects of the dense environment as compared to the baseline sparse environment
performance. We also used wandb to track sample trajectories to qualitatively analyze the training
and performance of the agent in the dense reward environment. We trained for 1M timesteps for each
run during which we have already found comparable and superior results to Quinto’s performance.

5 Results

5.1 Quantitative Evaluation

Metric Offline CQL (Dense) Offline CQL (Sparse)
Avg. Win Rate 33.9% 32.2%
Avg. Loss Rate 64.2% 65.7%
Avg. Draw Rate 1.9% 2.1%
Threats Created 1.83 1.85
Threats Blocked 0.57 0.64
Bad Pieces 2.34 2.21
Game Turns 6.62 6.69

Table 1: Comparison of Offline CQL performance under dense and sparse reward settings, trained
with offline trajectories of random opponents and evaluated against a random opponent.

Metric Offline CQL Self-Play (Dense) Offline CQL Self-Play (Sparse)
Avg. Win Rate 32.15% 30.42%
Avg. Loss Rate 67.85% 69.58%
Avg. Draw Rate 0% 0%
Threats Created 1.84 1.74
Threats Blocked 0.48 0.71
Bad Pieces 2.30 3.41
Game Turns 6.62 6.60

Table 2: Comparison of Offline CQL performance under dense and sparse reward settings with offline
dataset generated with self-play, evaluated against a random opponent.

5



Metric MaskedPPO (Dense) MaskedPPO (Sparse)
Avg. Win Rate 78.6% 50.3%
Avg. Loss Rate 19.5% 47.4%
Avg. Draw Rate 1.9% 2.3%
Threats Created 1.67 1.85
Threats Blocked 0.73 0.55
Bad Pieces 1.54 2.33
Game Turns 11.04 12.21

Table 3: Comparison of MaskedPPO against Random opponent under dense and sparse reward
settings.

Metric MaskedPPO Self-Play (Dense) MaskedPPO Self-Play (Sparse)
Avg. Win Rate 98.6% 27.7%
Avg. Loss Rate 1.4% 70.3%
Avg. Draw Rate 0.0% 2.0%
Threats Created 0.19 1.25
Threats Blocked 0.06 0.30
Bad Pieces 0.03 1.40
Game Turns 5.62 11.13

Table 4: Comparison of MaskedPPO with Self-play performance under dense and sparse reward
settings.

5.1.1 CQL Results Analysis

When comparing Offline CQL performance trained on trajectories from random opponents (in Table
1), we observe minimal differences between the dense and sparse reward conditions. The average win
rate was slightly higher in the dense setting (33.9%) compared to sparse (32.2%), with a corresponding
marginal decrease in loss rate (64.2% vs. 65.7%). However, the difference is very slight, which
suggests that introducing intermediate feedback did not significantly improve performance in this
setting. Metrics related to gameplay behavior, such as threats created and game turns, were nearly
identical across both reward schemes. Overall, these results indicate that when the quality of the
training data is low (e.g., random play), dense rewards do not provide a substantial advantage in
offline CQL training.

In contrast, our results in Table 2 show that when the offline dataset is generated from self-play, a
clearer distinction emerges between the dense and sparse reward settings. The model trained with
dense rewards achieved a higher average win rate (32.15%) than the sparse counterpart (30.42%),
with a corresponding reduction in loss rate (67.85% vs. 69.58%). Although these gains are modest,
they are more consistent than in the random-opponent case. A notable behavioral difference appears
in the number of bad pieces given—models trained with sparse rewards gave significantly more bad
pieces on average (3.41) than those trained with dense rewards (2.30), suggesting that intermediate
feedback may have helped the model avoid tactically harmful moves. However, we also see that
the sparse-reward model blocked more threats (0.71 vs. 0.48), implying that ’threats blocked’ as a
heuristic behavior might not be completely aligned with winning strategies. These findings suggest
that dense rewards can improve learning from higher-quality data by reinforcing more beneficial
intermediate decisions, however further investigation is required (limitations discussed in Discussion
section).

Interestingly, we see that overall, the win rate for CQL trained with random trajectories is slightly
higher than our CQL models trained with self-play, regardless of the environment. We hypothesize
that this is because using random opponents to generate trajectories leads to a more diverse dataset
where more states and actions are explored, compared to expertwhere the agent may tend to overfit to
a narrower distribution of game scenarios.

5.1.2 MaskedPPO Results Analysis

When running MaskedPPO against Random opponents (Table 3), the difference between sparse
and dense environments becomes more significant. Our model trained with dense rewards achieved

6



a markedly higher win rate (78.6%) compared to its sparse counterpart (50.3%), along with a
significantly lower loss rate (19.5% vs. 47.4%). This suggests that intermediate rewards provided
meaningful guidance during training, enabling the policy to converge on more successful strategies.
Our results also show the impact of specific heuristics that were optimal for agent strategy. The
dense-reward agent gave far fewer bad pieces (1.54 vs. 2.33) and blocked more threats (0.73 vs. 0.55),
suggesting that these two heuristics led to better strategy. However, we see that the the sparse-reward
agent created slightly more threats (1.85 vs. 1.67), suggesting that rewarding threat creation is
not very useful for optimal agent performance. Overall, our results underscore that dense rewards
significantly improved game win rate and agent game-play.

When looking at the self-play model performance (Table 4), the difference between dense and spare
environments becomes even more significant. We see a more significant difference in win rate
between our models, and also see a significant decrease in the average number of game turns in dense
versus sparse environments. This suggests that because the agent is learning optimal strategy in the
dense environment, it is able to win the game in much fewer moves. Interestingly, self-play leads
to worse performance than random-opponent training in the sparse reward setting, likely because
the agent overfits to its own suboptimal strategies; however, in the dense reward setting, self-play
significantly outperforms random data, suggesting that intermediate feedback enables the agent to
effectively bootstrap and refine its own play over time.

Compared to Capuano and Matteotti (2023), our model achieves 98% win rate, comparable to the
best model in the Quinto project. However, we see that our model required 1M initial training steps +
200k self-play whereas their model used 120M training steps.

In the figure below, we visualize the training of a MaskedPPO model in the dense reward environment
for 1M training steps (grey) alongside self-play training using that model for 1M steps (pink). We
see that the better model trained using self-play learns to give less bad pieces, which is strongly
correlated with its win rate. However, the plots for "threats created", "threats blocked", "game turns"
and "reward" seem to show that our reward model was not entirely optimal and that more unnecessary
threats are being created and blocked without adversely affecting win rate to increase reward.

Figure 1: Visualization of a random opponent (grey) vs. self play (pink) training in dense reward
environment.

5.1.3 Analysis of optimal game strategy

Based on our results and by contrasting the behavior of our models, we see that the most significant
difference in agent behavior comes from the "Bad Pieces" heuristic. This penalizes the agent for
giving the opponent a piece which then can be placed on the board for the opponent to win. Our
results show better performing agents signficantly reduce the number of bad pieces given.

Our results also show how our reward model was not fully optimal, as metrics like threats created or
blocked do not correlate with performance as strongly as the bad piece metric. In fact, some agents

7



that created more threats performed worse overall. Overall, our analysis highlights that optimal
strategy in Quarto may depend more critically on foresight and safe piece-giving than on aggressive
play or threat generation alone.

5.2 Qualitative Analysis

To perform a qualitative analysis of our best model that was trained using the MaskedPPO algorithm
and self-play, we analyze a sample gameplay trajectory after convergence (Figure 1).

In the first play, the agent chooses piece 11 for the opponent, and the opponent places it at (2,0).

In the second play, the agent places piece 5 that was chosen by the opponent at (1,2) and chooses 13
for the opponent which places the piece at (2,3).

In the next play, the agent places piece 3 at (3,2) and gives the opponent piece 9 which it places at
(2,1).

The following play is very interesting because the agent uses the chosen piece 0 and places it at (2,2)
which blocks the opponent’s threat of shared first attribute along the 3rd row, but also creates a threat
of 3 pieces sharing their first attribute along the 3rd column. Here we see the effects of the threat
blocked and threat created rewards. The agent also chooses not to give the opponent a piece with first
attribute False that would allow the opponent to win the game. Here we see the effect of a penalty for
bad piece given. Instead the agent gives the opponent piece 10 which it places at (1,0).

On the next turn, agent gets piece 1 which has the first attribute False and places it at (0,2) to use the
threat created to win!

The agent choosing to place this piece to win shows a culmination of effects of choosing a reward for
winning far greater than any intermediate rewards in the environment, and also penalizing number of
game turns to encourage the agent to win the game strategically and quickly.

Figure 2: Visualization of a gameplay trajectory.

8



6 Discussion

6.1 Limitations and challenges

We faced a challenge when generating the offline dataset for Conservative Q learning. Specifically,
we faced memory issues with storing large datasets. As a result, the largest dataset size we were
able to generate for offline learning was 30,000 trajectories, as our AWS instance would crash with
larger dataset sizes. Moreover, the process would get killed both on the local machine and on AWS.
However, as Quarto is a complex game with 16 board positions and 16 distinct pieces, this lead to
a large amount of possible board configurations, all of which could not have been covered by our
offline dataset. And thus, it was difficult to achieve high diversity and quality of the dataset, not
allowing the model to generalize and exploit novel strategies. This is a limitation of our Conservative
Q Learning results, making it more difficult to view the difference in results between our experiments
with CQL.

Another challenge we faced was shaping an effective reward function. While we observed that "bad
pieces given" was a good heuristic for strategic gameplay, when the values for "threats created" and
"threats blocked" were too high, this caused the model to prefer prioritizing them over winning the
game by unnecessarily increasing trajectory lengths to boost reward. Moreover, the values used for
penalizing every turn and the win reward and loss penalty were tuned to ensure that the model learned
that winning was the priority.

6.2 Broader Impact

Overall, our experiments show that dense rewards do have a significant impact on improving online
RL for Quarto, and this difference is further exaggerated in a self-play environment. More generally,
our project demonstrates that adding intermediate rewards has potential to improve agent strategy
in board games. Since board gamesoften serve as standard benchmarks for evaluating planning
and decision-making in RL, our findings go beyond just Quarto. They show that careful reward-
shaping and well-chosen heuristics for intermediate feedback in sparse environments can improve
sample efficiency, increase win rates and accelerate convergence. These benefits could apply to other
domains such as robotic manipulation and autonomous decision-making tasks. By integrating domain
knowledge with RL, we show that agent behavior can be improved in challenging environments with
delayed and sparse rewards.

7 Conclusion

The ability to play and win board games has often been related to signs of reasoning, anticipatory
and strategic thinking. Board games, such as Chess and Go, are considered some of the hardest tasks
for computers to beat humans at, and are often used as a testbed to measure AI agents. Through
our project, we demonstrate the potential of adding intermediate awards to Quarto by showing how
it improves game win rate, agent strategy, and optimizes training time with a variety of methods
(PPO, Conservative Q Learning, and self-play). Future work in this direction could include exploring
other heuristics that could lead to optimal strategy, as well as explored learned reward models using
techniques such as inverse reinforcement learning to better align reward shaping with human strategy.
Through our project, we hope to inspire future work on improving agents performance on other board
games with similar methods.

8 Team Contributions

• Group Member 1: Ishvi Mathai Defined the dense reward environment and implemented
a custom dense environment. Ran experiments with random opponent and self-play using
MaskedPPO in sparse and dense reward environments. Analyzed results to create reward
model #2 for better dense environment. Analyzed trajectories for qualitative analysis.

• Group Member 2: Humishka Zope Defined the dense reward environment. Ran experi-
ments with MaskedPPO with random opponent. Analyzed results to create reward model #2
for better dense environment for training. Analyzed results for quantitative analysis.

9



• Group Member 3: Aditri Patil Defined the dense reward environment. Analyzed results
to create reward model #2 for better dense environment for training. Implemented and ran
experiments for CQL training with random opponent and self-play in sparse and dense
environments.

References
Francesco Capuano and Matteo Matteotti. 2023. Quinto Report. https://github.
com/fracapuano/Quinto/blob/main/Quinto_Report.pdf. https://github.com/
fracapuano/Quinto/blob/main/Quinto_Report.pdf Final project report for the "Com-
putational Intelligence" course @ PoliTo, 2022/2023.

Chelsea Finn. 2025. CS224R Spring 2025 Homework 3: Offline Reinforcement Learning. https:
//cs224r.stanford.edu/material/CS224r_Homework3_updated.pdf. Accessed: 2025-
06-09.

Jochen Mohrmann, Michael Neumann, and David Suendermann. 2013. An artificial intelligence for
the board game ’Quarto!’ in Java. 141–146. https://doi.org/10.1145/2500828.2500842

Frode Stig Nørgaard Pedersen. 2019. Quarto as a Reinforcement Learning problem. https:
//api.semanticscholar.org/CorpusID:207902811

A Additional Experiments

One influential experiment that pointed us towards Reward Model #2 was training with Reward
Model #1 and noticing the very high rewards. We observed that despite the fall of the win rate after
peaking around 75%, the reward continued to increase, as well as the threats created and blocked.
Through qualitative analysis of the trajectories we noticed longer games where threats were being
created and blocked unnecessarily when more direct wins were possible. SO we adjusted the rewards
in Reward Model #2 to reduce the weight given to threats created and blocked, penalized number of
turns, so as to prioritize winning over accumulating intermediate rewards.

We also ran an experiment using Quinto’s best fine-tuned model (120M training steps) as an opponent.
This gave us nearly a 100% win rate and showed us that the agent can quickly learn from the opponent
in the dense reward environment. This led us to experimenting with better opponents than the random
opponent, i.e., self-play as a promising next step to better results.

Figure 3: Visualization of training metrics with Reward Model #1 (orange) and Quinto opponent
(yellow).

10

https://github.com/fracapuano/Quinto/blob/main/Quinto_Report.pdf
https://github.com/fracapuano/Quinto/blob/main/Quinto_Report.pdf
https://github.com/fracapuano/Quinto/blob/main/Quinto_Report.pdf
https://github.com/fracapuano/Quinto/blob/main/Quinto_Report.pdf
https://cs224r.stanford.edu/material/CS224r_Homework3_updated.pdf
https://cs224r.stanford.edu/material/CS224r_Homework3_updated.pdf
https://doi.org/10.1145/2500828.2500842
https://api.semanticscholar.org/CorpusID:207902811
https://api.semanticscholar.org/CorpusID:207902811

	Introduction
	Related Work
	Method
	Dense Reward Environment
	Sparse Reward Environment (Baseline)
	Assumptions
	Math/Algorithm Details Behind Conservative Q-Learning
	Math/Algorithm details behind MaskedPPO

	Experimental Setup
	Metrics
	Implementation Details for Conservative Q Learning
	Implementation Details for MaskedPPO Learning

	Results
	Quantitative Evaluation
	CQL Results Analysis
	MaskedPPO Results Analysis
	Analysis of optimal game strategy

	Qualitative Analysis

	Discussion
	Limitations and challenges
	Broader Impact

	Conclusion
	Team Contributions
	Additional Experiments

