Extended Abstract

Motivation This project was motivated by the introduction of Chain of Thought reasoning models
and its affect on the growing computational cost of interacting with large language models (LLMs)
due to increasingly long input prompts. While much work has gone into compressing models
themselves, we explore the less-studied but promising direction of compressing inputs. This allows
the model to not sacrifice on performance computationally. We aim to only keep information that is
important to the model, yielding efficiency gains and interpretability ones as well. By learning what
is important for a model to learn, it could give insight for humans as to what is important for them to
learn.

Method We introduce Compression of Thought, a reinforcement learning framework that trains
language models to compress prompts using purely unsupervised reward signals. Our approach
formulates prompt compression as an RL problem where a trainable model learns a policy to maximize
a reward that balances task accuracy and compression ratio. The core technical innovation lies in
our reward function design and training procedure. Unlike existing methods that rely on semantic
similarity metrics or supervised compression targets, we optimize directly on downstream task
performance. Our reward function provides the only learning signal and only uses compression
ratios and task performance, where accuracy rewards are computed by evaluating a frozen model’s
performance on compressed prompts, and compression rewards incentivize shorter outputs.

We employ Group Relative Policy Optimization (GRPO) rather than standard policy gradient methods,
enabling stable training with our multi-objective reward function. The model is trained using the
MultiRC dataset, a subset of the SuperGlue dataset.

Implementation We use a subset of the MultiRC dataset due to memory constraints, where each
sample consists of a passage, a question, and a possible answer, and a binary yes/no answer. The
trainable model receives the passage and generates a compressed prompt. Then, an evaluation prompt
is created, instructing the model to determine whether the possible answer is correct. The response
to this, in addition to the compression ratio, is used to calculate a reward. The reward function
is calculated without using semantic similarity, optimizing purely on performance on the dataset.
Training is done using a GRPO implementation tailored to this setup, using OLMo and LLaMA
models in various frozen/trainable model pairings.

Results Quantitatively, LLaMA-based models converged faster and produced higher reward scores
compared to OLMo-based models. On average, LLaMA compressions were 88.15 tokens shorter and
yielded a 0.05898 improvement in reward. Qualitatively, LLaMA-generated compressions were often
structured as factual lists, while OLMo tended to anticipate questions, showing divergent strategies
despite identical reward signals and datasets. Examples show successful compressions preserving
key information while drastically reducing prompt length.

Discussion The divergent behaviors between model architectures suggest that compression strate-
gies are deeply influenced by model priors and not just the reward signal. Despite the lack of
instruction, models learned to preserve question-relevant content. The small dataset size (1,520
examples) and limited compute constrained the scope of experiments. Implementation challenges
(including PPO instability) led to switching to GRPO. Nonetheless, the method demonstrates that re-
inforcement learning can guide models to discover task-relevant compression policies autonomously.

Conclusion Compression of Thought presents a novel, unsupervised approach to prompt compres-
sion, offering benefits for both efficiency and interpretability in LLM use. While current results are
preliminary, they suggest that models can learn to compress input while preserving task performance,
without explicit guidance. Future work will expand to larger datasets, longer training runs, and
stronger frozen models to better test the limits and capabilities of learned compression strategies.

Compression of Thought

Andrew Lanpouthakoun
Department of Computer Science
Stanford University
andlanpo@stanford.edu

Abstract

We explore novel techniques in reinforcement learning and prompt compression.
To interact with a large language model, one must prompt it. As these messages
become increasingly large (with quantity of tokens being used increasing monoton-
ically), calls become extremely computationally expensive. With many approaches
to quantizing models targeting the size of the model and pruning, we hope to target
the inputs instead. We hope to boost the performance of specifically Chain-of-
Thought Reasoning Models by decreasing the quantity of input tokens, leading
to a naturally more quantized model. Our approach not only yields results in the
domain of optimization, but also leads to results in the field of interpretability due
to its uninstructed summarization technique.

1 Introduction

Chain-of-Thought (CoT) reasoning models have shown to be excellent at answering complicated
mathematical problems and reasoning through logic. However, many of these models iterate through
too much information and "overthink". This overthinking issue (Chen et al. 2025)[/1]] adds to the
expensive computation that non-Chain-of-Thought models experience already. To make this more
efficient, it would be useful for models to distill the most crucial information from a prompt before
"overthinking".

Even without looking at CoT models, typical Large Language Models already face issues dealing
with large contexts. As context grows in length, models begin to hallucinate more often, with many
models typically having a fixed context window. To converse over a long period of time with a LLM
requires extremely high levels of computational power, often leading to entire truncation and making
it difficult for users without powerful compute to run models locally.

This task of summarization bring in the issue of interpretability of Large Language Models that
continues to evade researchers. The recent release of Mistral’s Sliding Window Attention technique
(Jiang et al. 2023) [5] has shown that attention to every word in a sequence is not completely
computationally necessary. Compression of Thought hopes to target both of these ideas, find what is
truely important to models, and what can we glean from this information. Can we train a model to
only retain information that it truly finds interesting? What can we learn from that?

This research focuses on improving both of these tasks, Compression of Thought hopes to learn to
shrink queries with exclusively an unsupervised reward signal. Our outputs are a summarized version
of the input text. By doing this with small language models (Groeneveld et al. 2024)[4]) the amount
of computation required to complete full queries can go down exponentially, only by pre-appending
or appending a comparably tiny model.

2 Related Work

2.1 Compression Methods
2.1.1 LLM-Lingua 2

LLM-Lingua - 2 (Pan et al. 2024).[7] is a frame work that compresses prompts using supervised
learning methods. It first creates a dataset using GPT-4, instructing the model to compress texts
by only discarding words that it deems unnecessary. Then, it trains a Transformer model to learn
to delete or preserve tokens independently. While this does seem to work well at compressing, it
doesn’t generalize well on tasks outside of the dataset because it learns exclusively on certain tasks.
Compression of Thought hopes to use its unsupervised signal to be more general.

2.1.2 TACO-RL

TACO-RL (Shandilya et al. 2024). [9] is a framework that builds upon LLM-Lingua 2 by introducing
online RL methods to further finetune on downstream tasks. While LLMLingua 2 is a purely
supervised learning task, TACO-RL uses the Vanilla Policy Method to compare the output of the
original prompt to the newly summarized prompt. The paper utilizes F1 and BLEU score to compare
results. While this seems to be incredibly effective on summarizing based off different tasks, the
metrics used are somewhat rudimentary and doesn’t allow the model to learn to be better than the
original. By comparing outputs of the summarized to the original purely based off similarity, we don’t
allow the possibility of the new summarized output being better than the original. This is possible
because there could be simply less noise in the summarized prompt than in the original. Compression
of Thought hopes to improve on this by rewarding based off task performance, by not comparing
with the original text, it allows the new model to improve over the original model.

2.1.3 Nano-Capsulator

Nano-Capsulator (Chuang et al. 2024). [3] is a framework which compresses prompts into capsule
prompts formatted in natural language. This paper is the most similar to the task we are trying
to optimize. It notes that generating texts is an inherently non-differentiable process for which
backpropagation does not apply, and instead seeks to optimize a reward function defined by utilizing
a reward function which reflects the degree of semantic preservation required for the prompt. This
paper also approaches the problem of prompt compression from an unsupervised lens. While this
paper does many interesting methods, it does this through some level of instruction by telling a model
to summarize explicitly. Our model will have this be purely learned, hoping for our model to learn
without instruction. This uninstructed approach will allow a glimpse into what the model values in
terms of information.

2.2 Policy Gradient Methods

Policy optimization methods are a large part of modern reinforcement learning, with the goal of
learning policies that maximize expected cumulative rewards. Classical approaches like REINFORCE
(Williams et al. 1992).[11] introduced the policy gradient theorem, however, this method suffered
from high variance and inefficient data usage and since its introduction in the 1990s, several policy
gradient advancements have been made.

2.2.1 Proximal Policy Optimization

Proximal Policy Optimization: PPO (Schulman et al. 2017)[8]] addresses some stability issues
through clipped objectives and trust regions. Our initial experiments with PPO failed due to gradient
explosion caused by our multi-objective reward function, highlighting the need for more sophisticated
optimization approaches.

2.2.2 Group Relative Policy Optimization

The most recent advancement in Policy Gradient methods is Group Relative Policy Optimization
(GRPO) (Shao et al. 2024). [10]. GRPO represents a novel advancement in preference-based
policy optimization that addresses key limitations of existing methods. Unlike other approaches

that rely on pairwise comparisons or absolute reward signals, GRPO leverages group-wise relative
rankings. GRPO is ideal for our task because it can naturally handle the trade-offs between multiple
objectives, due to its relative comparisons. Rather than optimizing absolute values, GRPO can learn
to rank different compression strategies based on their relative performance across both dimensions
simultaneously.

3 Method

Here, we introduce the methodology of the Compression of Thought algorithm. Compression of
Thought closely follows the algorithm outlined in Nano-Capsulator. We train by first inputting a
passage from the MultiRC dataset (Khashabi et al. 2018) [6] into our trainable model. Then, we
create a prompt including the associated question from the dataset and ask the frozen model to answer
the question. The goal is to evaluate whether the amount of information provided by the compressed
prompt is enough to answer the question given. We introduce three novel contributions off this
method: a lack of supervision, a different reward function, and a streamlined training loop.

3.1 Lack of Supervision

Nano-Capsulator utilizes a compression prompt that is prepended to the original passage encouraging
summarization. To remove supervision and in an attempt to analyze what the model values deeply
to answer questions, this supervision was removed without replacement. We left the model to learn
exclusively from the reward signal.

3.2 Reward Function
Compression of Thought utilizes the following reward function:

* p; be the original prompt

* ¢; be the compressed completion
* ¢; be the question

* a; be the proposed answer

* [; € {yes,no} be the true label

« [; € {yes, no, invalid} be the predicted label

original_length = len(p;), compressed_length = len(c;)

1.0 if original_length = 0
@ = d_length
"'comp 1 —clip com.pr.esse i , 0.1, 3.0) otherwise
original_length
1.0 ifl; =1
r) ={ 02 ifi; e {yes,no} Al; # 1,

—0.5 ifl; = invalid
r® =067 +04-7)

comp
This reward function rewards both accuracy and compression, weighting accuracy slightly higher
to still encourage sensical compressions. The choice of weights was arbitrary; due to limited time,
further weights were not tested. With more time allowed, further weights would be tested.

3.3 Streamlined Training Process

Clearly from the reward function, Compression of Thought does not compare outputs from the
original model on the input texts to maintain semantic similarity. In fact, there is no effort to maintain
semantic similarity. The reward signal encourages compression that maintains accuracy on questions;
the choice of this streamlining was because it seemed more closely aligned with the evaluation metric.

The model hopes to perform well on this dataset given compressed prompts, comparing semantic
similarity seemed to give it too many parameters to attempt to optimize at once. Additionally, this is
done to make the model run more efficiently, there are now two total passes in a forward step during
training rather than three.

Algorithm 1 Compression of Thought Training Algorithm
Require: Dataset D (MultiRC), trainable model Mp, frozen model M, batch size B
Ensure: Optimized policy parameters 6*

1: Initialize trainable model My and frozen model M

2: for each training batch B = {(prompt;, question,, answer;, label;)} 2 | do
3: /I Generation Phase
4: for each sample i € B do
5: completion,; <— Mpy.generate(inputs,, max_new_tokens = 256)
6: original_length, < |prompt,.split()|
7: compressed_length, < |completion,.split()|
8: end for
9: // Reward Computation Phase
10: for each sample i € B do
i: ratio; < clip (“pEEELE 0.1,3.0
12: compression_score; <— 1.0 — ratio;
13: eval_prompt; <— "Based on the following passage, answer whether"
14: the given answer is correct. Begin Passage: {completion_i}
15: End Of Passage. Question: {question_i} Proposed Answer:
16: {answer_i} Is this answer correct? Respond with ONLY
17: the word ’yes’ or ’no’. Answer:"
18: eval_prompts.append (eval_prompt,)
19: true_labels.append("yes" if label; = 1 else "no")
20: end for
21: // Frozen Model Evaluation torch.no_grad():
22: eval_inputs < frozen_tokenizer(eval_prompts, padding = True)
23: outputs <— M.generate
24: for each sample ¢ € B do
25: response; <— frozen_tokenizer.decode(outputs|[i])
26: reward; <— 0.6 x accuracy_reward, + 0.4 X compression_score;
27: reward; < reward; + A(0,0.01) > Add noise for exploration
28: end for
29: /I GRPO Update
30: grpo_trainer.step (prompts, completions, rewards)
31: if step mod logging_steps = 0 then
32: Log training metrics to tensorboard
33: end if
34: if step mod save_steps = 0 then
35: Save model checkpoint
36: end if
37: end for

4 Experimental Setup

4.1 Dataset

We conduct experiments on a reduced subset of the MultiRC dataset. The original dataset consists of
27,243 samples, but for efficiency and feasibility of rapid iteration, we use a randomly selected subset
of 1,520 samples. Each sample in MultiRC consists of a passage, an associated question, and multiple
candidate answers, each labeled independently as either correct or incorrect. In our experiments, we
simplify the format to one question-answer pair per sample and retain only binary answer labels: yes
or no.

New
Design

/ \
Il \
Text Comp! Model Frozen Model 4)1' Evaluation j
-
old
Design
—
/ N
——— \
Text Comp| Model Frozen Model ——————»{ Evaluation |
\ /
b /

Figure 1: Streamlined vs Original Training Process

4.2 Model
Two models are used in the training process:
* Trainable model: This model receives the full passage and is responsible for producing a

compressed prompt. Here we use OLMo-2-1B or LLama 3.2-1B.

* Frozen model: This model remains unchanged throughout training. It is tasked with
answering a question based on the compressed prompt generated by the trainable model.
Here we also use OLMo-2-1B or LLama 3.2-1B.

Both models are variants of open-source transformer-based language models. Across experiments,
we test multiple mixtures of trainable and frozen model pairs to evaluate their effect on compression
quality and question-answering performance.

4.3 Training
Compression of Thought is trained using reinforcement learning where each training step involves:

* Feeding the full passage to the trainable model to generate a compressed prompt.
 Constructing a new prompt containing the compressed passage and question.
* Using the frozen model to answer the question based on the compressed prompt.

* Computing a reward based on both the correctness of the answer and the degree of compres-
sion (as described in Section 2).

Training is done using GRPO with reward feedback at each step. To streamline computation, each
forward pass involves only two model calls.

5 Results

We evaluate Compression of Thought across four model configurations, analyzing both compression
efficiency and task performance. Our results demonstrate significant architectural differences in
compression learning capabilities and reveal unexpected patterns in how different models approach
the compression-accuracy trade-off.

5.1 Quantitative Results

We found that experimental groups that involved LLama as the trainable model performed generally
better than groups with OLMo as the trainable model, with an average difference in maximum
completion lengths of 88.15 tokens, as seen in Figure [2] The effect of this can be seen in the
evaluation rewards, with rewards having an average difference of 0.05898 between base models.

Completion Length

250

200

g

Model

Maximum Completion Lengths

Evaluation Reward Values
0.0965

242.3

Reward Value

g
8

g

((%
%

%
K
%
K
%

o .
§° <
S W

O(
<
"o,
<,

O(

o & - & o P & &
& N4 S S & N4 S S

Trainable Model - Frozen Model Trainable Model - Frozen Model

Figure 2: Comparison of Different Model Mixtures

Examining convergence patterns reveals several architectural differences. Llama based configurations
converged much faster than OLMo ones, as seen in Figure 3] with Llama based models converging
in around 100 training steps and have rapid initial improvement. However, OLMo based models
converged in around 350 training steps. This suggests LLaMA’s inductive biases are better aligned
with compression tasks. Additionally, LLama, while having slightly less parameters than OLMo,
performed much more efficiently on this task, with OLMo performing at least 1.32x slower than
LLama models.

Configuration Hours/Step | Relative Speed | Efficiency Rank
LLaMA — OLMo 0.0055 1.00x Ist
LLaMA — LLaMA 0.0057 1.02x 2nd
OLMo — LLaMA 0.0073 1.32x 3rd
OLMo — OLMo 0.0079 1.42x% 4th

Table 1: Training speed per step comparison normalized to fastest configuration

Model Configuration Time Steps | Convergence
(Trainable — Frozen) | (hours) | to 840 Efficiency
LLaMA — LLaMA 4.75 840 Fastest
LLaMA — OLMo 4.66 840 Most Efficient
OLMo — LLaMA 6.14 840 Moderate
OLMo — OLMo 6.65 840 Slowest

Table 2: Training time comparison across model configurations. All experiments ran for 840 training
steps. LLaMA-based configurations demonstrate superior training efficiency.

5.2 Qualitative Results

Beyond quantitative metrics, our qualitative analysis reveals the interesting diversity of compression
strategies that emerge from identical training signals. These findings provide insight into how
different model architectures approach compression tasks.

Training Rewards

0.180

0,000

Training Step

— Liama — Liama Llama — OLMo — OLMo - Liama — OLMo— OLMo

Figure 3: Comparison of Different Model Mixtures

We see several interesting results from the model outputs. The model seems to learn various different
techniques to compress prompts without direction. Even more interestingly, it seems that the OLMo
model and LLama model learn different methods of compression, even though both are provided the
exact same reward signal and dataset. This is likely due to the GRPO Gradient Method implemented
in the experiment. It is likely that without it, the model would have learned more uniform methods of
compression.

Example Prompt 1: Antonio Badalamenti , a Sicilian who has been settled for many
years in Northern Italy and is employed in a car factory in Milan , takes a vacation with his family ,
leaving behind the modern...

Original Length: 259 words

Example Prompt 2: There was a little murmur of protest at this, for the house appeared to be
scarcely bigger than the automobile. But Uncle John pointed out, sensibly enough, that they ought
not to undertake an unknown road at nighttime, and that Spotville, the town for which they were
headed, was still a long...

Original Length: 220 words

5.2.1 LLaMA Patterns

LLaMA models developed structured, fact-oriented compression approaches that prioritize informa-
tion density over linguistic fluency.

LLama to Llama Compressed Prompt 1: 1. Antonio is a Sicilian. 2. Marta is a Sicilian. 3. Antonio
and his wife have a son. 4. Antonio has a gun. 5. Antonio is a Mafia member. 6. Antonio is an
undercover FBI agent.

Compressed Length: 36 Words.

LLama to OLMo Compressed Prompt 1: 3. What is the tone of the passage? A. The narrator is
looking back at his life. B. The narrator is looking forward to his life. C. The narrator is looking
forward to his vacation. D. The narrator is looking forward to his trip. Answer: C

Compressed Length: 46 Words.

LLama to Llama Compressed Prompt 2: The ladies found the bungalow so comfortable that they
soon fell asleep, and when they awoke the next morning they found themselves in a strange land.
Compressed Length: 26 Words.

LLama to OLMo Compressed Prompt 2: He was a good-natured, well-built man, of middle age,
who looked as if he had never been ill. He was not in good health, but he was quite hearty and hearty
in his manner.

Compressed Length: 34 Words.

5.2.2 OLMo Patterns

On the other hand, OLMo models developed anticipatory approaches that attempt to predict and
prepare for potential questions

OLMo to Llama Compressed Prompt1 : answer the following question: What is the name of the
person that the don wants them to carry out? A: Antonio Badalamenti
Compressed Length: 36 Words.

OLMo to OLMo Compressed Prompt 1: Guess a valid title for it! A: The Godfather Part III
Compressed Length: 11 words.

OLMo to Llama Compressed Prompt 2: It was only when they were called upon to retire that they
realized how large a place the bungalow was. They had not reckoned upon a bedroom for Dan’l, and
they were startled by the fact that the bungalow contained two, each comfortable and well lighted,
with a good bath between. Question: What is the Major’s last name? Answer: A: Not the answer
given

Compressed Length: 64 words.

OLMo to OLMo Compressed Prompt 2: Question: What did the Major think of the bungalow?
Options: A. not enough information B. He thought it was comfortable and cozy. C. He thought it was
a bit small. D. He thought it was a bit cramped. === The correct answer is B

Compressed Length: 44 words.

LLaMA and OLMo models show fundamentally different approaches to determining what information
matters. While LLaMA prioritizes concrete, verifiable facts (proper nouns, numbers, specific actions),
OLMo prioritizes contextual relationships and potential question topics. LLaMA’s strategy makes
more intuitive sense, as it is actually learning information, rather than "cheating" for a correct guess
at the question.

6 Discussion

The results from Compression of Thought highlight several interesting insights regarding prompt
compression and its interaction with different model architectures. The most surprising seemed to be
the difference in compression methods with the same reward signal and dataset. This was a single
example, and there are likely far more different behaviors that the trained models exhibit, but it
is incredibly interesting that the model essentially learned the task it was preparing for without a
gradient passing through the frozen model.

To call attention to the model differences, LLama-generated compressions tended to retain discrete
facts in list-like formats, whereas OLMo-generated compressions were often question anticipation.
These patterns emerged without explicit guidance, supporting our hypothesis that models can learn
complex behaviors without direct instruction.

Because of the eventual learned positive reward, the model was able to produce compressions that
answered questions correctly. While this may have to be studied further on what the model is getting
correct or incorrect, it seems likely that a large part of the model’s ability to answer questions comes
from the model’s inherit ability to answer questions, meaning, the information the model already
holds.

In terms of interpretability, this project provides interesting insight as to what the model cares about
in answering questions. While the model often seems to "cheat" by guessing the question beforehand,
the Llama to Llama compression leads us to believe that the model does collect relevant information
and lists them.

With respect to the training process, some limitations surfaced the training set size (1,520 examples
due to memory and compute constraints) limited our model’s ability to generalize, and we expect
better results with larger-scale experiments. Though, the experimental process was extremely difficult.
While this project was originally meant to implemented with Proximal Policy Optimization (PPO)
with a custom library, it was instead implemented with GRPO due to compatibility issues and

exploding gradients because of the unique reward function method. However, the environment was
not the most friendly in data collection, and the code will be reworked to gather more substantial
results in the future. Much of the work of this project was not with the experimentation or research
question, but was left with fixing coding. In an ideal scenario, further experiments would be ran
and more data would be collected. Future work includes gathering more informative data metrics,
utilizing larger models for both training and question and answering, and applying this to multiple
datasets.

Additionally, Nano-Capsulator [3] utilizes models such as Vicuna-13B (Chiang et al. 2023) [2] to
answer questions. Their "frozen" model contained much more parameters and is likely much better at
answering questions than our model was.

7 Conclusion

This work introduces Compression of Thought, a novel reinforcement learning framework that
enables language models to learn prompt compression strategies without human supervision or
semantic similarity constraints. We demonstrate that language models can autonomously develop
effective compression strategies that maintain some semantic similarity using only task performance
feedback. Unlike existing approaches that rely on human-designed compression examples, prompting,
or semantic similarity metrics, our method discovers compression policies purely through interaction
with downstream tasks. This represents a shift from supervised to self-supervised prompt optimization.
Our most significant finding is that different model architectures develop different compression
strategies despite identical training signals. LLaMA models consistently learned factual extraction
strategies, creating structured lists of key information, while OLMo models developed question
anticipation approaches. This architectural determinism suggests that compression strategies are
deeply influenced by models’ inductive biases, opening new avenues for interpretability research. In
the future, this project would benefit from larger models to train with, a hyperparameter sweep to
learn which are best for learning, and further data gathering.

8 Team Contributions

* Group Member 1: Andrew Lanpouthakoun. Only me. Did everything

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do
not think that much for 2+3=? on the overthinking of o1-like llms, 2025.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.

Yu-Neng Chuang, Tianwei Xing, Chia-Yuan Chang, Zirui Liu, Xun Chen, and Xia Hu. Learning
to compress prompt in natural language formats, 2024.

Dirk Groeneveld, 1z Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkin-
son, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar,
Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell
Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge,
Kyle Lo, Luca Soldaini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the
science of language models, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking
beyond the surface:a challenge set for reading comprehension over multiple sentences. In

Proceedings of North American Chapter of the Association for Computational Linguistics
(NAACL), 2018.

Zhuoshi Pan, Qianhui Wu, Huiqgiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei
Lin, Victor Riihle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Dongmei Zhang.
Llmlingua-2: Data distillation for efficient and faithful task-agnostic prompt compression, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

Shivam Shandilya, Menglin Xia, Supriyo Ghosh, Huiqiang Jiang, Jue Zhang, Qianhui Wu,
and Victor Riihle. Taco-rl: Task aware prompt compression optimization with reinforcement
learning, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229-256, 1992.

10

	Introduction
	Related Work
	Compression Methods
	LLM-Lingua 2
	TACO-RL
	Nano-Capsulator

	Policy Gradient Methods
	Proximal Policy Optimization
	Group Relative Policy Optimization

	Method
	Lack of Supervision
	Reward Function
	Streamlined Training Process

	Experimental Setup
	Dataset
	Model
	Training

	Results
	Quantitative Results
	Qualitative Results
	LLaMA Patterns
	OLMo Patterns

	Discussion
	Conclusion
	Team Contributions

