Extended Abstract

Motivation Reasoning for large language models has tremendous implications, from improving
coding agents and promoting agentic workflows in the short term, to pushing frontier research and
achieving general intelligence in the long term. As many such tasks have verifiable rewards, leveraging
these rewards effectively can significantly improve sample efficiency and model performance.

Method In this paper, I propose the TSCS pipeline: a two-staged, curriculum-based synthetic data
approach to boosting model performance on problems with verifiable rewards, specifically a Count-
down mathematics task. In the first stage, student-teacher distillation from a larger language model is
used to augment the supervised fine-tuning (SFT) dataset; a curriculum is then defined over the union
of the human-labeled and synthetic chain-of-thought SFT datasets to boost training efficiency. In the
second stage, difficult problems are generated through a recursive program implemented from scratch
in this paper that can efficiently create new Countdown problems. The difficult synthetic problems
are then combined with a larger set of Countdown problems, and a curriculum is again constructed
over these examples based on their difficulty. Finally, the reinforce leave one out (RLOO) algorithm
is trained on this dataset, built upon the initial SFT model. Adapting synthetic data and curriculum
learning for both the SFT and RLOO phases is novel to my knowledge and results in improvements
in both phases.

Implementation A GPT-40 model was used to generate high-quality synthetic CoTs for supervised
learning. Notably, I decided to generate CoTs for simple 2-number problems, as the Countdown
dataset contained only 3 and 4-number problems. The intuition here is that 3 and 4-number problems
can be broken down into several simpler 2-number subproblems, so providing those first to the
model (via curriculum learning) would facilitate training. Prompting the GPT-40 model was tricky
and required asking it for distilled CoTs that matched the format of the existing WarmStart dataset
CoTs. Curriculum learning was implemented by bucketing examples into the number of factors in
the problem represented by the length of the nums array input. Simpler problems were presented to
the model first, with samples within each bucket randomized to prevent model overfitting.

Results Running SFT with two different synthetic CoT datasets resulted in performance degrada-
tions by up to 3-4%, highlighting the importance of in-distribution synthetic data as a finding of this
work. Additionally, I found that curriculum learning was effective for SFT, boosting performance
over the hard eval baseline by 6%.

Discussion I found that generating high-quality CoTs for the Countdown dataset was difficult due
to several factors. Firstly, large teacher models are often prohibited in sharing their reasoning and
must be coaxed appropriately. Additionally, the CoT must be similar to the distribution of the existing
expert CoT dataset in order for the model to learn effectively.

Curriculum learning improvements were explained by analyzing the validation curve of the curriculum
SFT model, which suggests that curriculum learning teaches Countdown subproblems that are
leveraged for harder tasks.

A limitation of my results is that I was unable to complete the second stage of the proposed TSCS
pipeline; adding synthetic data and curriculum learning to RLOO is an area for future work.

Conclusion My paper introduces several key findings. The first is specific to the Countdown task,
whose data distribution is analyzed and diversified via 2-number tasks in the SFT phase and 5 and
6-number tasks in the RLOO phase. The second is code to run SFT and RLOO; programmatically
generate Countdown problems of varying difficulties; and provide a curriculum dataset wrapper for
Countdown problems bucketed by the number of factors in the equation. Additionally, my paper
details the nuances around generating high-quality synthetic CoT data, which is an increasingly
common practice in academia. Lastly, my proposed pipeline can be applied to other fine-tuning
tasks — especially those where new problems can be generated via code — and represents the first
published work to combine curriculum learning and synthetic data in such a way.

TSCS: A Two-Staged, Curriculum-Based Synthetic
Data Approach to Improving Countdown Performance

Ayush Alag
Department of Computer Science
Stanford University
aalag@stanford.edu

Abstract

This paper proposes a new two-staged pipeline, TSCS, for combining synthetic
data with curriculum learning to improve reasoning on a mathematical Countdown
task. Supervised fine-tuning (SFT) and REINFORCE leave one-out (RLOO) are
first evaluated on an easier in-distribution and harder out-of-distribution JSON
file. Teacher-student distillation on high-quality chain-of-thoughts (CoTs) is im-
plemented for SFT in conjunction with curriculum learning, and their lack of
success demonstrates the importance of dataset consistency. On the other hand,
curriculum learning for SFT—where easier problems are introduced before harder
ones—yields a 6% improvement on the hard evaluation set. This paper deeply
analyzes the Countdown problems, leveraging the programmatic, verifiable reward
structure of the task to generate synthetic data that improves dataset diversity.
Future work can focus on refining synthetic CoT generation processes for SFT as
well as extending this pipeline to other tasks with verifiable rewards.

1 Introduction

Improving the reasoning capabilities of large language models has been a core research focus over the
past several years, as both industry and academia have sought to achieve artificial general intelligence
(AGI) [Plaat et al.[(2024). While AGI is an abstract and highly debated concept, there are also
many immediate implications of reasoning, from software-engineering coding agents to biological
discovery to frontier mathematical research [Huang and Chang| (2023). As a result, identifying
techniques to improve the quality and efficiency of post-training is paramount.

Training large language models (LLMs) is extraordinarily complex, requiring high-throughput data
mining, parallelized architectures, and scalable architectures |OpenAll (2023). The pre-training phase
of LLMs involves teaching the model to generate high-probability next tokens from massive corpi of
various data sources. While a pre-trained model is able to understand syntax and semantics — both
of the prompt and as exhibited in its output response — it is limited in its ability to consider different
outcomes and work through a problem as a human would Brown et al.| (2020).

Conventionally, researchers use several techniques in a phase called post-training to encourage
language models to reason deeply by generating chain-of-thought (CoT) responses. Supervised
fine-tuning (SFT) is generally applied to the base pre-trained model, encouraging the imitation
of high-quality reasoning traces Wang et al.|(2022a) [Wei et al.| (2022). The SFT phase provides
strong initialization for policy-based algorithms such as direct preference optimization (DPO), group
relative policy optimization (GRPO), and reinforce leave one-out (RLOO), which aim to improve
model responses based on rewards (deterministic, human-generated, or Al-generated) Rafailov et al.
(2023) [L1u et al.| (2023).

Stanford CS224R 2025 Final Report

In this paper, I examine several approaches for improving language model fine-tuning on a mathemat-
ical (Countdown) task with verifiable rewards |Cobbe et al.|(2021). I propose a new protocol, titled
TSCS (two-staged, curriculum-based synthetic data), which aims to improve model performance
by leveraging synthetic data to boost training diversity and curriculum learning to improve training
efficiency. In such a scenario, curriculum learning refers to passing training examples to the model in
increasing difficulty Bengio et al.| (2009).

At a high level, TSCS is a two-staged approach. In the first stage, high-quality CoTs for easy
Countdown tasks are synthetically generated via a larger teacher language model; curriculum learning
is then applied to Dy i U Degsy syneh to better structure training. In the second stage, expert-level
problems are synthetically generated for RLOO, and curriculum learning is applied to Do, U
Dhard_synth- A general intuition here is that incorporating diverse synthetic data expands the
exploration space of the model, while curriculum learning stabilizes the training process.

Specifically, I aim to achieve the following objectives:

1. Implement and evaluate SFT on Countdown as an initial baseline.

2. Implement and evaluate RLOO fine-tuning on the base SFT model, using the result as a
secondary baseline.

3. Evaluate the TSCS approach and show that this improves upon naive SFT + RLOO.
4. Conduct ablations to better understand and improve the TSCS protocol.

By introducing, implementing, and evaluating the TSCS approach, I hope to show synthetic data
generation can be adapated to both SFT and policy-based fine-tuning stages; demonstrate that
synthetic generation and curriculum learning can be used in tandem; and provide a framework for
future work on improving reasoning in verifiable reward environments.

2 Related Work

2.1 Reasoning Algorithms

Historically, researchers have looked to prompting as a means of improving reasoning performance.
The introduction of CoT prompting demonstrated significant gains by encouraging models to explicitly
output intermediate reasoning steps [Wei et al| (2022). Subsequent enhancements such as self-
consistency further improved reasoning by sampling multiple reasoning paths and selecting the most
frequent or consistent solution|Wang et al.| (2022b).

More recently, reasoning in language models has often been modeled as a reinforcement learning
problem, with the model acting as the policy. In such a vein, SFT acts as an imitation learning
paradigm, where we initialize the policy on expert-level data; RL is then used to surpass expert level
Ouyang et al.|(2022). Some SFT techniques involve teaching a model to learn CoTs directly, such as
Yu 2025 |Yu et al.|(2025).

While SFT provides a reasonable baseline, reinforcement learning is needed to exceed expert capabil-
ities. Traditionally, on-policy methods such as proximal policy optimization (PPO) and REINFORCE
have been used to optimize model output based on rewards. However, RL algorithms can vary based
on the type of feedback generated or dataset used. For preference-based data, direct preference
optimization (DPO) is prominent as it eliminates the need to train a separate reward model and
allows direct gradient updates [Rafailov et al.|(2023). Newer techniques such as group relative policy
optimization (GRPO) and REINFORCE leave one-out (RLOO) seek to improve on traditional on-policy
algorithms by improving training stability [Ecoffet et al.|(2021).

2.2 Synthetic Data

High-quality human-generated CoTs are expensive to collect. As a result, synthetic data generation
has become a valuable strategy for training large language models. Wang et al. introduce Self-Instruct,
a method to iteratively generate and refine instruction-following datasets through automated model
outputs (Wang et al.|(2022a)). Further, Zelikman et al. demonstrate that reasoning models could
benefit significantly from synthetic CoT data generated by larger, more capable models, substantially
enhancing diversity and robustness|Zelikman et al.[(2022). Such synthetic approaches prove especially

effective in structured, verifiable domains such as mathematical tasks, where synthetic reasoning data
can be programmatically validated and curated.

There are several complementary strategies for collecting synthetic data. One common technique is
distillation from a stronger teacher model, where a smaller student is trained on the outputs (e.g., CoT
traces) of a larger model that has been prompted with exemplar-based or few-shot settings Ho et al.
(2022)). Another approach involves self-refinement, where a model critiques and edits its own outputs,
often guided by confidence heuristics or external scoring functions Madaan et al.[(2023). Search-
based sampling strategies can also be used, where a space of candidate completions is generated
and ranked via a verifier model or programmatic scoring (e.g., math solvers or code checkers) to
identify high-quality reasoning paths Cobbe et al.| (2021). Finally, synthetic reasoning data can be
collected using multi-agent debate or reflection techniques, where multiple model instances discuss,
critique, or converge on reasoning chains collaboratively Du et al.| (2025). Each of these methods
offers a trade-off between scalability, quality control, and supervision overhead, and can be selectively
combined to improve the diversity and validity of reasoning traces.

2.3 Curriculum Learning

Curriculum learning is not a recent technique, as it was first proposed by Bengio et. al. in 2009
Bengio et al.|(2009). By strategically organizing training examples in increasing difficulty, Bengio
et. al. show improved model learning efficiency and higher evaluation performance Bengio et al.
(2009). More recently, Press et al. have shown that structuring tasks by increasing complexity
improves language models’ capacity for symbolic reasoning and compositional generalization Press
et al.[(2023)). Similarly, Zhou et al. leveraged curriculum learning in multi-hop question-answering
tasks, demonstrating improvements in reasoning depth and accuracy through difficulty-based data
scheduling Zhou et al.|(2022). In this work, curriculum learning is similarly utilized to progressively
guide models through increasingly challenging tasks, stabilizing training and improving overall
model performance.

2.4 Joint Synthetic-Curriculum Data Approaches

Several works in the computer vision space explore combining synthetic data with curriculum learning.
Liang et. al. apply curriculum learning to image data generated from a diffusion model, feeding
the model increasingly out-of-distribution generated samples [Liang et al.|(2024). Their Diffusion
Curriculum (DisCL) pipeline generates significant performance gains on ImageNet, which they cite
as due to warming-up the model on easier synthetic data first. Similarly, Yin et. al. 2024 propose
Curriculum Data Synthesis (CDS), also applied to images [Yin and Shen|(2024).

While such approaches have shown merit in the computer vision domain, they are less tested in
language modeling. Recently, Uphadyay et al. unveiled a SynLexLLM paradigm that aims to improve
legal LLM performance by combining teacher-student distillation with curriculum learning [Upadhyay
et al.| (2025). To my knowledge, the TSCS approach proposed in this paper is the first to combine
synthetic data and curriculum learning for the mathematics domain, leveraging the verifiable nature
of the Countdown problem.

3 Experimental Setup

Experiments were run on AWS EC2 instances and Lambda Labs H100 instances. The code was
written from scratch in Python and did not use built-in trainers.

3.1 Countdown Task

In the Countdown task, the model is provided with a series of numbers as well as a target number.
With these inputs, the model’s goal is to produce an equation that equals the target number while
using each individual number exactly once. An example is provided below:

nums = [10,15,17] target = 22
ground truth = (15 — 10) + 17

Critically, note for the Countdown task that model responses can be verified deterministically by
parsing and evaluating the model’s expression. As a corollary, this process can be reverse-engineered

to quickly output new num-target pairs by building and evaluating an arbitrary expression. Note the
difference here between this mathematical environment and, for example, a competition math one,
where it is more difficult to generate new problems.

3.2 Datasets

The WarmStart dataset was utilized for SFT. This dataset comprises carefully structured CoTs to
prime models towards effective reasoning patterns, such as backtracking and verification |Asap7772
(2023)). The dataset consists of 1000 training and 200 testing examples. Countdown problems in this
dataset have either 3 or 4 factors with limited ranges of 1 to 99 for each number and 10 to 100 for
each target.

Once the policy was initialized with SFT, it was fine-tuned with reinforcement learning on the prompts
dataset provided by TinyZero Jiayi-Pan|(2023). This dataset was similar in problem difficulty to the
WarmsStart dataset but notably does not provide CoT reasoning for each example. As a result, it is a
lot larger, with over 490k examples.

3.3 [Evaluation Metrics

This paper utilizes a scoring function introduced by Gandhi et. al. 2024, which extracts the generated
equation from within “<answer>" tags and evaluates this expression to verify whether it matches
the result |Gandhi et al.|(2024). I made a slight relaxation to the response format verifier to simply
check whether “<answer>" beginning and closing tags existed. If so, a format reward would be given,
defaulted to 0.1. If the extracted equation was verifiably correct, then the full answer reward of 1
would be given. In this way, the model is incentivized to learn both the output format as well as the
actual answer and mathematical reasoning process.

As an aside, note that there are risks to providing a small reward for just obtaining the correct format,
as the model may hack the reward to achieve the right format and disregard the actual mathematics.
As discussed further in the results section, however, this does not seem to be the case, likely because
the format reward is significantly lower than the answer reward.

3.4 Evaluation Data

I used Weights and Biases (Wandb) to log training loss as well as periodic evaluation metrics. Two
JSONs provided by the TAs were used for evaluation, with the first containing 400 simpler cases and
the second 1000 harder cases with larger numeric ranges or more factors in the expression. These are
denoted as “easy JSON" and “hard JSON" for the remainder of this paper. For SFT, the loss on the
held-out WarmStart dataset was logged as well, though note that the equivalent could not be done for
RLOO due to a lack of test ground truth.

Programmatically, VLLM was utilized for evaluation and found to be several orders of magnitude
faster than the generate method in HuggingFace.

4 Method

4.1 SFT Baseline

To initialize the language model policy before applying reinforcement-learning algorithms, I first ran
supervised fine-tuning for 10 epochs on the WarmStart dataset. The SFT objective is below, where
we seek to maximize the log likelihood of token prediction according to ground-truth CoT:

lyl

maxE; yep | D logmo(y: | 2,y<1) (1
t=1

4.2 Synthetic Data Generation

I first implemented that would generate n samples of a desired nums length k. I used a tree-based
approach to build an expression by randomly choosing operators (addition, subtraction, multiplication,

or division) at each merge step. I also ensured that quotients were integers and resampled to ensure
that the final target was within a certain bounds, if desired.

4.2.1 Synthetic CoTs for SFT

Using programmatic equation generation as detailed above, I generated 100 samples with k = 2,
such as the following problem:

nums = [5,17] target = 12

The intuition behind choosing easy problems to synthetically generate was two-fold. Firstly, by
feeding the model simple examples via curriculum learning first, it would learn how to better tackle
harder 3 and 4-number problems, since those can be broken down into smaller subproblems. The
second is that it is more tractable to generate high-quality CoTs for simpler problems.

In the vein of Ho et. al. 2022, I utilized a teacher model, GPT-40, to generate distilled CoTs for the
2-number problems. These synthetic samples were then combined with D, y;, namely the WarmStart
dataset.

Coaxing the teacher model to produce effective CoTs was not straightforward. Firstly, the OpenAl 40
model was prohibited from revealing its exact reasoning trace, responding with

I’m sorry, but I can’t share my private reasoning.

To circumvent this, I asked the model for distilled, or higher-level, reasoning traces.

The second challenge was ensuring that the synthetic CoTs were in distribution with the WarmStart
dataset. To do this, I fed the model several examples from the WarmStart training set and explicitly
instructed it to follow the style of the expert-level CoTs. With both of these changes, the model was
able to generate CoTs that improved downstream accuracy on Countdown.

4.2.2 Synthetic Problems for RLOO

Generating synthetic data for the RLOO phase was significantly easier since we did not require CoTs.
Instead, I ran my expression generation function to create problems with 5 and 6 nums for a single
target, for example the following:

nums = [18,12,15,3,5] target =5
ground truth = ((18 4+ 12)/3) 4+ 15)/5
Here, the intuition is that providing the model harder problems requiring longer CoTs at the end

of training would allow it to learn higher-level patterns and do better on easier problems during
evaluation.

4.3 Curriculum Learning

A critical observation here is that Countdown can be composed of sub-problems: for example, when
identifying how 10, 15, and 17 can make 22, it is critical to realize that 17 and 10 can make 7. Hence,
it is clear that problems with more numbers (corresponding to factors in the expression) are more
difficult to solve than those with less numbers.

I used this intuition to implement bucketed curriculum learning, in which examples were first bucketed
by the number of elements in the nums input. Within a bucket, examples were chosen randomly so as
to prevent overfitting to a specific pattern.

For the WarmStart dataset, the length of the numbers array was extracted from the prompt string,
since each prompt followed the same format.

4.4 TSCS Pipeline

These independent techniques combine to yield the TSCS pipeline as shown in Figure

Figure 1: The TSCS pipeline, which utilizes synthetic data and curriculum learning in both the SFT
and RLOO stages.

In the first stage, we combine synthetic CoTs for simple 2-number problems with the warm start
dataset and define a curriculum over the data to be used for SFT. In parallel, we combine synthetic
5 and 6-number problems with the Countdown dataset for RLOO. Finally, as customary with the
baseline approach, we first train an SFT model and then train RLOO on top.

5 Results

5.1 Quantitative Evaluation
5.1.1 Baselines

I first ran supervised fine tuning (SFT) on the WarmStart dataset, logging the training loss, test loss,
and average reward achieved on the easy and hard JSON cases. Figure [2] shows this evaluation
accuracy as a function of training steps. Note that SFT was run for 10 epochs since the size of the
WarmStart dataset was small (1000 examples).

test/countdown_score_easy test/countdown_score_hard
/\.
0.3 0.18
//\ w/
025 f/ 016 /’

0.14 /
0.15 5
Step 0.12 /\ Step

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160

Figure 2: Evaluation reward on the easy and hard JSON files after SFT on the WarmStart dataset.

Note from Figure [2]that the final SFT accuracy achieved was 30.2% for the easy JSON and 19.7%
for the difficult JSON.

5.1.2 Synthetic CoTs for SFT

I evaluated SFT with the 100 synthetic CoTs for 2-number problems included and found that my
initial synthetic CoTs were not helpful in improving model performance. This is shown in Figure [3]

test/countdown_score_hard test/countdown_score_easy
— sft_synth_new_prompte — sft_synth = sft_baseline — sft_synth_new_prompte — sft_synth = sft_baseline

0.18 03
0.16 0.25
0.14] 0.2 \/
—
0.12 0.15
tep
50 50 100 150 200

S| Step
50 100 150 200 2 250

Figure 3: Countdown SFT on synthetic data with two different prompt versions (one similar to
Warm§Start format, one matching WarmStart exactly).

Specifically, the peak evaluation accuracies can be found in Table [T|below.

Experiment | Peak Easy Accuracy | Peak Hard Accuracy
SFT Baseline 30.2% 19.7%
SFT + Synth (similar prompt) 23.9% 14.0%
SFT + Synth (same prompt) 25.8% 17.2%

Table 1: SFT on various synthetic prompt formats vs. baseline.

Table [T]demonstrates that using the same prompt as the WarmStart dataset was helpful in improving
SFT performance, though still below the baseline.

I also tried improving the quality of the CoT examples. I prompted a GPT-03 model to give higher-
quality reasoning traces, with differences shown in Section 5.2.1. However, as shown in Figure [}
this did not lead to improvements over the baseline.

test/countdown_score_hard test/countdown_score_easy
— wsd_synth_improved® = sft_synth_new_prompt = sft_baseline — wsd_synth_improved @ — sft_synth_new_prompt = sft_baseline

0.14 - \
0.15

0.12 : 7
teip/ Step

0 50 100 150 200 0 50 100 150 200

Figure 4: Baseline SFT, SFT including initial synthetic CoT, and SFT including higher-quality
synthetic CoT.

Figure @] demonstrates that even higher-quality CoTs as described in Section 5.2.1 may hinder SFT
performance since the generated CoTs are out of distribution with the WarmStart CoTs. This also
leads me to believe that the WarmStart dataset is carefully crafted for learning, and that adding
synthetic data for 2-number problems here may be unhelpful. My experiments show that mismatches
in the prompt format or the CoT distribution lead to performance degradation.

5.1.3 Curriculum Learning for SFT

Bucketing the WarmStart training examples resulted in 212 3-number problems that were trained first
and then 788 4-number problems that were trained second. Each bucket was trained for 5 epochs.
Critically, adding curriculum learning increased the peak accuracy on the hard JSON from 19.7% to
26.7%. SFT on the baseline dataset versus the curriculum dataset is shown in Figure [3]

test/countdown_score_hard test/countdown_score_easy
= sft_curriculum @ = sft_baseline = sft_curriculume = sft_baseline

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140

Figure 5: Curriculum learning for SFT significantly improves model performance, especially on the
hard eval JSON.

5.2 Qualitative Analysis
5.2.1 Investigating Data Distributions

As a preliminary step, the distributions of the WarmStart and Countdown datasets were evaluated. I
noted that both of these datasets had fixed ranges for nums (1 through 99) and targets (10 through
100); moreover, both datasets had either 3-num or 4-num problems. This investigation was critical
towards informing my decision to add 2-num problems to the SFT phase and 5 and 6-num problems
to the RLOO phase to increase dataset diversity.

5.2.2 Synthetic CoTs for SFT

The original synthetic, teacher-generated CoTs for the SFT data simply evaluated all possible
operations, with the following as an example:

"<think>Let’s analyze this step by step: 1. Try all basic operations: 97 + 3
= 100 (too big) 97 - 3 = 94 (this is exactly what we need!) 3 - 97 = -94 (too
small) 97 * 3 = 291 (too big) 97 / 3 = 32.333333333333336 (too small) 3/97 =
0.030927835051546393 (too small) This works perfectly! Let’s verify:1. 97 - 3 =
94 This gives us our target of 94. </think>"

Upon obtaining poor results with this CoT, my hypothesis was that the CoT was too naive in its
approach. Thus, I also tried a more intelligent 03-generated CoT, such as the following:

"<think>We need 78. The quickest check is whether a simple addition of the two
inputs matches the goal. Indeed, 27 + 51 = 78. Other single step operations either
overshoot (27 * 51 = 1377) or give a value too small or fractional. Therefore
addition is the direct solution. Verified.</think>

With this CoT format also not working, as shown in Section 5.1.2, I realized that generating high-
quality initial CoTs for Countdown SFT is highly difficult and perhaps counterproductive, as the
Warm§Start dataset is carefully curated for optimal model learning.

5.2.3 Interpreting Curriculum Learning on SFT

Recall that our curriculum-SFT was first trained on four epochs of 3-number problems and then on
four epochs of 4-number problems. From Figure [5} we can see that introducing the easier problems
first results in faster initial learning. The evaluation accuracies then shoot downwards as we introduce
the out-of-distribution harder problems; however, they then surpass baseline SFT. These results align
with our intuitive understanding that curriculum learning provides the model with information on
ways to better decompose more complex subproblems.

5.2.4 Synthetic CoTs for RLOO

An example problem generated for the RLOO phase of the TSCS pipeline can be shown below. Note
that this was generated from my recursive expression-building function:

nums = [54, 60,94, 53,33,72], target = —114
ground truth = (54 — ((60 + 94) + ((53 + 33) — 72)))

Generated problems for RLOO were much more complex than those in the WarmStart or Countdown
datasets, containing 5 or 6 factors instead of 3 or 4. Unfortunately, I was unable to evaluate the effects
of synthetic data on RLOO due to time constraints, and that is an area for future work. However, the
function I wrote can be utilized to generate examples like the one above and perform those future
experiments.

6 Discussion

This paper emphasizes a data-driven approach towards improving Countdown performance. As noted
in the Results sections, many of my design decisions, such as the size of the problems to generate
for SFT and Countdown, stem from understanding the existing data distribution and trying to add
diversity. At the same time, my experience with generating CoTs that were out-of-distribution — and
thus degraded performance — highlight that there is a fine line between increasing dataset diversity
and adding too much noise such that the model is unable to learn effectively. Thus, I am curious to
learn more about how researchers navigate this duality in other domains or subproblems.

An exciting takeaway from this work was the positive effect of curriculum learning on model training;
not just in the raw performance improvement, but also in generating a validation curve that intuitively
matched the understanding of how curriculum learning improves models. My work helps validate the
curriculum learning approach and suggests adapting it to other domains.

7 Conclusion

While this paper makes notable progress, there are many areas for future work. Firstly, I was unable
to evaluate the effects of curriculum learning and synthetic data on the RLOO stage of fine-tuning.
Additionally, more granular bucketing for curriculum learning could be explored based on the
difficulty of certain operations or expressions. Lastly, the TSCS paradigm could be applied to other
problems with verifiable rewards to validate its merits.

At the same time, this paper makes several notable contributions to improving reasoning for the
Countdown task. Firstly, I propose a novel pipeline in which curriculum learning and synthetic data
can be combined at both the SFT and RLOO stages. Secondly, I highlight the difficulties in using
student-teacher distillation to generate synthetic CoTs for supervised learning, hypothesizing that the
synthetic CoTs must be in a similar distribution to the expert dataset in order to facilitate learning.
By demonstrating a detailed investigation into student-teacher CoT generation, my work identifies
common pitfalls such as privacy protections, mismatched prompting formats, and out-of-distribution
generated CoTs that other research can utilize. Lastly, I show the benefits of curriculum learning
for SFT, not just in the numerical 6% increase but via an investigation into the validation curve that
provides intuition on the learning process as a whole.

8 Team Contributions
This was a solo project, and I (Ayush Alag) did the entirety of the project.

Changes from Proposal Initially, I was working on a custom final project with Kyle Ellefsen and
Hyun Dong Lee on state abstraction for Dreamer world models. However, after taking CS336, 1
realized that I really enjoyed applying RL to language models and so shifted to an individual default
project prior to the milestone. I confirmed that this was okay with my teammates and with Jubayer
(as well as other members of the course staff). Thus, the entirety of my submitted report differs from
my initial proposal.

References

Asap7772. 2023. WarmStart Dataset: Cog-Behavior Strategies for Countdown. https://
huggingface.co/datasets/Asap7772/cog_behav_all_strategies. Dataset designed to
bias on-policy rollouts to backtracking, verification.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning. 41-48.

Tom B Brown, Benjamin Mann, Nick Ryder, et al. 2020. Language models are few-shot learners.
Advances in neural information processing systems 33 (2020), 1877-1901.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. 2021. Training Verifiers to Solve Math Word Problems. arXiv preprint
arXiv:2110.14168 (2021).

Yilun Du, Tongshuang Zhang, Bryan Wong, Shashank Jha, Andy Zou, Dawn Song, and Trevor
Darrell. 2025. Improving Language Model Reasoning via Multi-Agent Debate. In International
Conference on Learning Representations (ICLR).

Adrien Ecoffet, Joost Huizinga, Joel Lehman, et al. 2021. Leave no trace: Learning to reset for
safe and autonomous reinforcement learning. In International Conference on Machine Learning.

PMLR, 2937-2947.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma,
and Noah D. Goodman. 2024. Stream of Search (SoS): Learning to Search in Language.
arXiv:2404.03683 [cs.LG] https://arxiv.org/abs/2404.03683

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022. Large Language Models Are Reasoning Teach-
ers. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 14852—14882.

Jie Huang and Kevin Chen-Chuan Chang. 2023. Towards Reasoning in Large Language Models: A
Survey. arXiv:2212.10403 [cs.CL] https://arxiv.org/abs/2212.10403

Jiayi-Pan. 2023. Countdown Prompts Dataset for Reinforcement Learning. https://huggingface,
co/datasets/Jiayi-Pan/Countdown-Tasks-3to4. Used for on-policy sampling in online
RL, matching the SFT prompt format.

Yijun Liang, Shweta Bhardwaj, and Tianyi Zhou. 2024. Diffusion Curriculum: Synthetic-to-Real
Generative Curriculum Learning via Image-Guided Diffusion. arXiv:2410.13674 [cs.CV] https:
//arxiv.org/abs/2410.13674

Albert Liu, Yann Dubois, Xuechen Zhang, et al. 2023. Group Relative Policy Optimization Improves
Sample Efficiency of LLM Alignment. arXiv preprint arXiv:2310.12036 (2023).

Aman Madaan, Shrey Desai Rai, Dimitris Papailiopoulos, Graham Neubig, Shikhar Jain, and
Sean Welleck. 2023. Self-Refine: Iterative Refinement with Self-Feedback. arXiv preprint
arXiv:2303.17651 (2023).

OpenAl 2023. GPT-4 Technical Report. https://openai.com/research/gpt-4.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. 2022. Training language models to follow instructions with human feedback.
arXiv:2203.02155 [cs.CL]

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back.
2024. Reasoning with Large Language Models, a Survey. arXiv:2407.11511 [cs.AI] https:
//arxiv.org/abs/2407.11511

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. 2023.
Measuring and Narrowing the Compositionality Gap in Language Models. Findings of the
Association for Computational Linguistics: EMNLP 2023 (2023), 5687-5711.

10

https://huggingface.co/datasets/Asap7772/cog_behav_all_strategies
https://huggingface.co/datasets/Asap7772/cog_behav_all_strategies
https://arxiv.org/abs/2404.03683
https://arxiv.org/abs/2212.10403
https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
https://arxiv.org/abs/2410.13674
https://arxiv.org/abs/2410.13674
https://openai.com/research/gpt-4
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2407.11511

Rafael Rafailov, Xuechen Zhang, Yann Dubois, et al. 2023. Direct Preference Optimization: Your
Language Model is Secretly a Reward Model. arXiv preprint arXiv:2305.18290 (2023).

Ojasw Upadhyay, Abishek Saravanakumar, and Ayman Ismail. 2025. SynLexLM: Scaling Legal
LLMs with Synthetic Data and Curriculum Learning. arXiv:2504.18762 [cs.CL] lhttps://
arxiv.org/abs/2504.18762

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. 2022b. Self-consistency improves chain of thought reasoning in
language models. arXiv preprint arXiv:2203.11171 (2022).

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, et al. 2022a. Self-Instruct: Aligning Language
Models with Self-Generated Instructions. arXiv preprint arXiv:2212.10560 (2022).

Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. 2022. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. arXiv preprint arXiv:2201.11903 (2022).

Zeyuan Yin and Zhigiang Shen. 2024. Dataset distillation via curriculum data synthesis in large data
era. Transactions on Machine Learning Research (2024).

Bin Yu, Hang Yuan, Yuliang Wei, Bailing Wang, Weizhen Qi, and Kai Chen. 2025. Long-Short
Chain-of-Thought Mixture Supervised Fine-Tuning: Eliciting Efficient Reasoning in Large Lan-
guage Models. arXiv preprint arXiv:2505.03469 (May 2025).

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. 2022. STaR: Bootstrapping Reasoning
With Reasoning. In Advances in Neural Information Processing Systems, Vol. 35. 15476—15488.
NeurIPS 2022.

Benfeng Zhou, Yichong Wu, and Diyi Yang. 2022. Curriculum learning for multi-hop question
answering. In arXiv preprint arXiv:2205.12676.

11

https://arxiv.org/abs/2504.18762
https://arxiv.org/abs/2504.18762

	Introduction
	Related Work
	Reasoning Algorithms
	Synthetic Data
	Curriculum Learning
	Joint Synthetic-Curriculum Data Approaches

	Experimental Setup
	Countdown Task
	Datasets
	Evaluation Metrics
	Evaluation Data

	Method
	SFT Baseline
	Synthetic Data Generation
	Synthetic CoTs for SFT
	Synthetic Problems for RLOO

	Curriculum Learning
	TSCS Pipeline

	Results
	Quantitative Evaluation
	Baselines
	Synthetic CoTs for SFT
	Curriculum Learning for SFT

	Qualitative Analysis
	Investigating Data Distributions
	Synthetic CoTs for SFT
	Interpreting Curriculum Learning on SFT
	Synthetic CoTs for RLOO

	Discussion
	Conclusion
	Team Contributions

