
Extended Abstract

Motivation While large language models (LLMs) have demonstrated remarkable reasoning ca-
pabilities, reliably aligning smaller-scale models for complex, multi-step reasoning tasks remains
challenging. Current alignment methods, including Direct Preference Optimization (DPO) and
Reinforcement Learning from AI Feedback (RLAIF), provide scalable alternatives to human-in-
the-loop approaches but frequently suffer from limited diversity in reasoning strategies and logical
inconsistencies. Furthermore, inference-time hallucinations and brittle reasoning significantly hinder
the practical deployment of smaller models in critical applications. To address these limitations, we
propose a structured multi-phase optimization framework designed explicitly to improve reasoning
performance, robustness, and alignment in smaller-scale LLMs.

Method Our proposed framework integrates three synergistic phases: (1) Self-Exploration through
Multi-Agent Debate, (2) Structured Self-Improvement via Supervised Fine-Tuning with Verified
Examples, and (3) Robust Inference through Verifier-Based Output Selection. In Phase 1, two
LLM agents independently generate competing responses for each prompt. Preference pairs derived
from these responses are evaluated using a reward model or symbolic verifier, and subsequently used
to fine-tune the Solver model via DPO. When improvement from debate-based training plateaus,
Phase 2 initiates structured self-improvement. Here, the Solver model generates candidate responses,
which are then verified using symbolic evaluation or a reward model. Positive responses identified
through verification are used as accepted examples, while outputs from our baseline Supervised
Fine-Tuned (SFT) model serve as rejected examples. These verified preference pairs enrich the
training corpus, allowing targeted supervised fine-tuning to enhance reasoning consistency and reduce
hallucinations. Finally, in Phase 3, inference-time robustness is achieved by generating multiple
candidate outputs per prompt and selecting the best candidate through a verifier-based reranking
mechanism, ensuring high correctness without additional retraining.

Implementation We implement our framework using two state-of-the-art models: the Nemotron-
Ultra-253B-v1 model as our primary Solver, and the Deepseek V3 model serving as the competing
debate agent. The multi-agent debate is executed by sampling multiple candidate outputs and rerank-
ing these candidates according to scores provided by the Nemotron-70B reward model. Synthetic
preference data used for training is generated via NVIDIA’s NeMo Inference Microservices (NIM)
API, ensuring high-quality and diverse reasoning examples. The symbolic verifier is implemented
to filter and validate responses based on logical correctness and adherence to task-specific criteria,
providing structured, reliable feedback for model improvement.

Results Experimental evaluations conducted on the UltraFeedback benchmark reveal clear per-
formance gains at each stage of our optimization framework. Initially, the baseline DPO achieves
a moderate win-rate of 53%, indicating room for improvement due to limited diversity. Surpris-
ingly, introducing multi-agent debate without structured verification reduces performance slightly
to 46%, highlighting the risk of noisy or misaligned preference signals. Incorporating structured
self-improvement recovers the original baseline performance (53%), validating the effectiveness
of verified fine-tuning. Most notably, test-time verification significantly enhances performance,
achieving a win-rate of 70% with reranking

Discussion Our results suggest that combining diverse interaction protocols (debate) with structured
evaluation (verifiers) enables more robust reasoning under constrained model sizes. One limitation is
the cost of generating and validating proofs, which may require more scalable symbolic verifiers or
distilled approximations in future work.

Conclusion We introduce a three-phase self-optimization framework that systematically improves
small language models’ reasoning ability via exploration, self-improvement, and inference verification.
Our experiments demonstrate that even under low-resource constraints, models can bootstrap better
reasoning behaviors through structured interaction and validation. This approach opens new directions
in scalable, verifiable alignment for instruction-following LLMs.
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Abstract

We propose a multi-stage self-optimization framework aimed at enhancing the
reasoning and instruction-following capabilities of small-scale language models.
The framework integrates three synergistic phases: multi-agent self-exploration,
structured self-improvement, and robust inference through test-time verification.
Our approach addresses the limitations of existing preference optimization pipelines
by promoting diverse reasoning, fostering logically grounded learning, and ensuring
reliable outputs. Experimental evaluations on UltraFeedback and Countdown
datasets demonstrate significant improvements in reasoning robustness and answer
correctness.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
natural language processing tasks, from question answering and summarization to code generation
and mathematical reasoning. However, aligning smaller-scale language models to follow instructions
and reason accurately remains a persistent challenge, particularly under resource-constrained settings
where model size and training budgets are limited.

A core issue lies in the brittleness of conventional fine-tuning pipelines. Supervised Fine-Tuning
(SFT) using human-annotated datasets can provide useful guidance, but it often fails to generalize
to complex, multi-step reasoning tasks. More recently, preference-based training methods like
Direct Preference Optimization (DPO) have shown promise in aligning models efficiently using
pairwise comparisons. Nevertheless, these methods typically rely on large-scale human-labeled data
or expensive reward modeling, both of which are difficult to scale across diverse domains.

To address these limitations, several lines of research have explored AI-generated feedback mecha-
nisms, such as Reinforcement Learning from AI Feedback (RLAIF) and Constitutional AI (CAI).
While these approaches reduce supervision costs, they tend to degrade in diversity or fidelity over time,
resulting in models that are either repetitive or unstable in their outputs. Furthermore, adversarial
multi-agent debate frameworks have been proposed to improve robustness through agent interaction,
yet these often lack structured learning signals, which makes it difficult to transfer the diversity of
exploration into consistent reasoning improvement.
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Another promising direction is structured self-play theorem proving (STP), where models engage in
conjecture–prove–verify cycles to build logic-grounded training data. However, prior STP methods
have been mostly limited to formal mathematical tasks, offering limited generalizability to open-ended
reasoning problems. Additionally, most current alignment techniques ignore the inference phase,
treating reasoning robustness as a purely post-training concern. In reality, test-time verification can
play a critical role in filtering erroneous outputs and improving model reliability without additional
training overhead.

In this work, we propose a unified, multi-stage self-optimization framework that addresses these
challenges holistically. Our approach combines three key components: (1) self-exploration through
multi-agent debate to surface diverse reasoning paths; (2) structured self-improvement; and (3)
robust inference by applying test-time verification to ensure output correctness and consistency. By
tightly integrating these stages, we create a scalable training paradigm that enhances both the quality
and reliability of model reasoning.

We validate our framework on the UltraFeedback and Countdown benchmarks. Our results show
that the interplay between exploration, structured refinement, and verification yields models that
are not only better aligned but also more capable of handling complex, symbolic, and open-ended
reasoning tasks.

2 Related Work

2.1 Preference-Based Alignment

Recent years have seen growing interest in preference-based training methods as alternatives to
traditional reward modeling. Direct Preference Optimization (DPO) Rafailov et al. (2023) eliminates
the need for scalar reward modeling by directly learning from chosen/rejected response pairs. It has
demonstrated sample efficiency and scalability, making it suitable for language model alignment.

However, DPO and similar methods such as Pairwise Ranking Ouyang et al. (2022) and RewardRank
Li et al. (2023) rely heavily on high-quality preference data, often requiring human annotation at
scale. This limitation has sparked interest in automating preference generation, an idea central to our
multi-agent debate pipeline.

2.2 AI-Generated Feedback and Constitutional AI

To reduce reliance on human-labeled data, researchers have proposed the use of AI-generated
supervision. Constitutional AI (CAI) Bai et al. (2022) aligns models by using a fixed set of principles
to evaluate and revise responses without human input. Reinforcement Learning from AI Feedback
(RLAIF) Lee et al. (2024) builds upon this by using one model’s feedback to train another, forming a
loop of self-improvement.

These methods reduce annotation cost but may degrade in diversity and label quality over time Zhou
et al. (2023). Our framework complements these ideas by introducing dynamic and diverse agent
interactions during training, while also embedding structural verification at each phase.

2.3 Multi-Agent Debate and Adversarial Fine-Tuning

The use of multiple agents in cooperative or adversarial settings has been explored to enhance
reasoning diversity and robustness. The "Socratic debate" model Zhu et al. (2021) and more recent
work on multi-agent fine-tuning Subramaniam et al. (2025) show that diverse agent interactions can
surface latent inconsistencies and promote more thoughtful reasoning trajectories.

While promising, many of these systems lack mechanisms for translating exploratory outputs into
teachable patterns. Our approach addresses this gap by coupling multi-agent debate with structured
self-play refinement.

2.4 Structured Self-Play and Theorem Proving

Self-play has been widely adopted in strategic game settings, such as AlphaGo Silver et al. (2016)
and AlphaZero Silver et al. (2017), and is now being extended to logical and symbolic reasoning.
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Figure 1: Method Overview.

Self-Play Theorem Provers (STP) Dong and Ma (2025) apply iterative conjecture–prove–verify cycles
to build formal reasoning datasets in a self-supervised manner. Similar strategies have been used in
natural language tasks like proof generation Jiang et al. (2022), symbolic math Lee et al. (2022), and
chain-of-thought reasoning Nye et al. (2021).

While prior STP frameworks focus on formal domains (e.g., mathematics or programming), our
framework generalizes this idea to open-ended and hybrid tasks by combining logical proof traces
with diverse natural language prompts.

2.5 Inference-Time Verification

Post-hoc verification during inference has emerged as a low-cost method for improving model
reliability. Self-consistency Wang et al. (2022) and dynamic reranking Snell et al. (2024) demonstrate
that generating multiple outputs and aggregating them can improve answer correctness in reasoning
tasks. Verifier-based reranking approaches, such as VERIFIER Licht et al. (2023) and ReAct with
critics Yao et al. (2023), have also shown promise.

However, most existing methods treat inference-time verification as an afterthought, independent of
the training pipeline. Our work differs by integrating verification mechanisms both during training
and inference, ensuring end-to-end consistency and robustness.

3 Method

Our framework is composed of three tightly coupled stages, each contributing distinct strengths to
the alignment and reasoning capabilities of large language models. This section describes each stage
in detail, including their design motivations, algorithmic mechanisms, and theoretical foundations.

3.1 Phase 1: Self-Exploration via Multi-Agent Debate

The first phase promotes exploration by enabling adversarial and collaborative interactions between
multiple language model agents. A primary "Solver" model is paired with an "Opponent"—often a
periodically distilled version of the Solver—to generate diverse outputs for a given prompt x.

For each prompt, both agents independently produce completions yS and yO. These responses are
evaluated by a separate reward model or verifier V (x, y), such as the Countdown verifier or Nemotron
reward model. The outputs are ranked, and a preference pair (yw, yl) is formed based on their scores:

V (x, yw) > V (x, yl) (1)

This process forms a preference dataset , which is used to fine-tune the Solver model using methods
like Direct Preference Optimization (DPO) or Reinforcement Learning via Leave-One-Out (RLOO).
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The DPO loss is expressed as:

LDPO = −E(x, yw, yl)
[
log σ

(
β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

))]
(2)

This debate-induced exploration surfaces diverse reasoning paths that would not be easily discov-
ered through supervised learning alone, while also collecting high-quality preference signals for
downstream fine-tuning.

3.2 Phase 2: Structured Self-Improvement via Self-Play Theorem Proving (STP)

When the model’s improvement stalls under preference-based learning, we activate a second phase:
Structured Self-Improvement. This phase introduces a formal, logic-grounded curriculum into
training by mimicking theorem-proving workflows.

The Solver model is prompted to generate conjectures or subgoals c from a problem prompt x. It then
attempts to generate proofs p in a structured step-by-step manner. These traces (x, c, p) are passed to
a symbolic verifier V that performs rule-based evaluation:

V(x, c, p) =
{
1 if the proof trace is valid 0

otherwise
(3)

Only valid traces are incorporated back into the training corpus. These validated reasoning paths
are then used to construct supervised learning targets for the model to imitate via log-likelihood
maximization:

LSTP = −
∑

t = 1|p| log πθ(pt|x, c, p<t) (4)

STP thus builds an evolving, model-generated curriculum composed of logically grounded proofs.
This structured feedback reduces hallucination and enforces logical consistency, especially in tasks
requiring multi-step reasoning.

3.3 Phase 3: Robust Inference via Test-Time Verification

Even with high-quality training, LLMs can generate spurious or partially correct outputs at inference
time. To address this, we apply test-time verification during deployment.

Given a prompt x, the Solver samples k candidate outputs y(1), ..., y(k) from πθ(y|x). These outputs
are scored by a reward or verification function R(x, y), and the best candidate is selected:

y∗ = argmax
i

R(x, y(i)) (5)

This process is inexpensive compared to retraining the model and substantially increases correctness.
The reranking function can be a rule-based evaluator (e.g., answer format + correctness) or a neural
verifier trained on reward signals.

The expectation of improvement over greedy decoding can be analyzed via self-consistency:1 If y
maximizes expected correctness over samples, then:

E[R(x, y)] ≥ E[R(x, y(1))] (6)

where y(1) denotes the top-1 sample without reranking.

3.4 Summary

Our framework transitions from exploration (debate) to structure (STP) to robustness (verification),
progressively building reliable reasoning capability. The training pipeline is flexible: DPO or RLOO
can be used depending on whether offline preference data or online rewards are available. STP
introduces interpretable and verifiable proof structures, while test-time reranking ensures that the
final answers meet quality standards without sacrificing efficiency. Together, these stages form a
cohesive methodology for aligning LLMs to complex reasoning tasks.

1See Wang et al. (2022) for a theoretical foundation.
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4 Experimental Setup

Datasets. We evaluate our method on the UltraFeedback benchmark, which consists of open-
ended prompts paired with human-preferred completions. This dataset requires models to produce
coherent, helpful, and preference-aligned responses across diverse reasoning tasks. For RLOO, we
use countdown as our dataset.

Metrics. We report the win-rate of model outputs evaluated using the Nemotron-70B Reward
Model, which estimates human preferences without direct annotation. For symbolic tasks, we also
consider rule-based correctness.

Ablations. To isolate the impact of each stage in our self-optimization pipeline, we conduct ablations
for: (1) multi-agent debate-based exploration, (2) structured self-play theorem proving (STP), and
(3) test-time verification with k-sample reranking. Each phase builds upon the previous to show
incremental gains in performance.

Training Details. All models were initialized with a supervised fine-tuned (SFT) checkpoint trained
on Smoltalk data. DPO was applied using preference pairs from Countdown. Multi-agent debate
samples were generated using nucleus sampling (p = 0.9), and STP traces were filtered using reward
model verifiers. Test-time verification reranked from k = 2 to k = 30 generations per prompt.

5 Ultrafeedback Results

5.1 Quantitative Evaluation

Table 1 reports UltraFeedback win-rates at each optimisation stage. The baseline DPO model reaches
53%, showing that preference learning alone yields moderate alignment but still lacks sufficient
reasoning diversity.

Adding multi-agent debate (+Debate) without any verification reduces the score to 46%. We attribute
this drop to noisy or contradictory preference pairs produced by unverified debate agents, which can
mis-guide the Solver during fine-tuning.

To counteract that noise, we introduce Structured Self-Improvement (+Debate+SSI). Here, every
candidate answer is vetted by a verifier; only the verified positives are paired with lower-quality SFT
outputs as negatives for an additional supervised pass. This step restores the win-rate to the original
53%, indicating that even lightweight, automatically verified data can correct the misalignment
introduced by debate.

The largest gain comes from test-time verifier reranking. Reranking the best of k=6 samples pushes
the win-rate to 70%. Expanding the candidate pool to k=10 yields a final score of 86%, confirming
that inference-time scaling is a cost-effective way to surface high-quality reasoning without further
training.

Table 1: UltraFeedback win-rate (%) across optimisation stages.

Method Win-Rate (%)
DPO baseline 53

+ Debate 46
+ Debate + Structured Self-Improvement (SSI) 53
+ SSI + Verifier Rerank (k=6) 70
+ SSI + Verifier Rerank (k=10) 86

To probe robustness, we ran focused ablations on difficult prompts (Table 2). Even without reranking,
DPO fine-tuning can reach 77–98% win-rates on certain hard cases once the preference data are
sufficiently clean, underscoring the value of verified examples.

Take-away. Training-time improvements (debate + verified fine-tuning) stabilise the model, but
test-time scaling—i.e. sampling and verifier reranking—delivers the largest jump in reliability. This
result suggests that, for smaller LLMs, inexpensive inference-time verification can compensate for the
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Table 2: Solver win-rate vs. reference model on selected challenging examples.

Example ID Win-Rate (%)
2 77.5
5 91.5
15 96.8
20 95.8
30 97.8

instability of preference-based training and provide state-of-the-art performance without additional
retraining.

These results collectively illustrate that structured reasoning (via STP) and verification-based inference
synergistically improve model alignment and reliability, significantly outperforming traditional DPO
training alone.

5.2 Qualitative Analysis

Figure 2: Qualitative reasoning scores (0–10) assigned to each response for three prompts across
SFT, DPO, and Debate+Verify stages. Each score reflects structure, correctness, relevance, and
insightfulness. We use GPT4 as our judge

To further illustrate improvements across training stages, we qualitatively analyzed model responses
to three representative prompts across different domains: corporate technology strategy, hardware
comparison, and wellness habit formation. The results are summarized in Figure 2.

• VR for Employee Training. The SFT model failed to generate any output. DPO produced
a surface-level list of pros and cons, but lacked supporting evidence. After applying multi-
agent debate and test-time verification, the model structured its analysis into cost-benefit
categories, cited research, and considered long-term organizational impact.

• Graphics vs. Sound Card for Gaming. SFT made factual errors (e.g., classifying both as
"GPUs"). DPO reduced these errors but made the counterintuitive claim that sound cards
are more important than graphics cards for gaming. Only after verifier-guided reranking did
the model produce a technically correct comparison, clarifying domain-specific trade-offs in
frame rate versus audio fidelity.

• Meditation Practice Challenges. SFT responses were repetitive and vague. DPO outputs
were more structured but included redundant or generic advice. The final model (Debate
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+ Verification) offered a nuanced breakdown of psychological, logistical, and emotional
barriers, with clear actionable suggestions and supporting reasoning.

These results highlight that while SFT and DPO improve fluency and coherence, they struggle
with factuality and deep structure. Only after incorporating debate (for exploration) and verifier
reranking (for selection) do the responses exhibit reliable reasoning, accurate domain knowledge,
and human-aligned structure. This emphasizes the necessity of layered reasoning feedback beyond
standard preference tuning.

Prompt SFT Output DPO Output Debate + Verification Output
1. VR for Employee
Training
Examine the poten-
tial consequences
and long-term
implications that
companies may
encounter when im-
plementing virtual
reality technology
as a primary tool for
employee training
and development,
considering factors
such as the impact
on knowledge re-
tention, employee
engagement, and
overall productivity,
as well as potential
challenges including
equipment costs,
technical difficulties,
and the need for
specialized support
staff, and provide
a comprehensive
analysis of the bene-
fits and drawbacks
of this approach,
including evidence-
based examples
and insights from
relevant research
studies to support
your claims.

Additionally, consider the potential role
of AI and machine learning in enhancing
employee training outcomes.

To analyze the potential consequences
and long-term implications of implement-
ing virtual reality technology as a primary
tool for employee training and develop-
ment, let’s break down the key factors
involved:1. **Impact on Knowledge Re-
tention**: Virtual reality can enhance
knowledge retention by providing immer-
sive and interactive training experiences
that simulate real-world situations. This
can help employees develop skills and
knowledge more effectively. However,
it may also be challenging for employ-
ees to fully grasp the material, as they
may rely more on visual aids and audi-
tory cues. Additionally, some employ-
ees may be less comfortable with technol-
ogy, which could lead to decreased pro-
ductivity.2. **Impact on Employee En-
gagement**: Virtual reality can increase
employee engagement by providing op-
portunities for social interaction and so-
cialization. This can help reduce feel-
ings of isolation and increase motivation.
However, it may not be as engaging as
traditional training methods, and employ-
ees may not be able to fully participate in
the learning process....

Virtual reality (VR) technology has the
potential to revolutionize the way busi-
nesses train their employees, enhancing
both knowledge retention and job satis-
faction. However, there are several con-
siderations that must be addressed be-
fore integrating VR into various indus-
tries.**Consequences and Long-Term Im-
plications**1. **Impact on Knowledge
Retention**: By providing immersive ex-
periences through VR, organizations can
increase employee engagement by creat-
ing an interactive environment where they
feel like they’re learning firsthand. This
can lead to improved job satisfaction with
increased motivation levels. Research
suggests that 60-75% more engaged em-
ployees use work-life balance tools to
manage stress, leading to lower turnover
rates. Furthermore, students in computer
science fields often report higher self-
esteem, which is believed to contribute
to better academic performance.2. **En-
hanced Employee Engagement**: Us-
ing VR can make employees more ac-
tive in their personal and professional
lives. They could explore new hobbies,
join online communities, attend work-
shops, or engage in activities related to
their interests, fostering a sense of com-
munity among them. On-the-job training
becomes less tedious due to immersive ex-
periences.3. **Improved Work-Lifestyle
Balance**: With VR, it’s possible for
managers to create an ideal working envi-
ronment, allowing employees to develop
a positive relationship with their work-
place. For example, if a company wants
to improve physical health, VR can sim-
ulate outdoor exercise classes, wellness
programs, or even virtual fitness sessions.
A study found that employees who used
VR had significantly shorter absences
than those who did not. Moreover, using
VR can promote healthier habits – reduc-
ing sedentary behavior and encouraging
longer breaks between work hours......

2. Graphics vs
Sound Card

A graphics card and a sound card are
two different types of graphics processing
units (GPUs)...

A graphics card and a sound card are both
essential components in gaming...

A graphics card (or GPU) and a sound
card (or DAC/ALC) serve different pur-
poses in your computer’s audio system...

3. Meditation Prac-
tice Challenges

Developing a consistent meditation prac-
tice can be challenging, but there are sev-
eral strategies to help individuals over-
come common obstacles...

When developing a consistent meditation
practice, individuals may face various
challenges that hinder progress toward
mental clarity...

When developing a consistent medita-
tion practice, individuals often encounter
various challenges that may hinder their
progress toward increased mental clarity
and emotional balance...

Table 3: Full model outputs for three evaluation prompts across training stages. SFT shows limited
reasoning or surface-level engagement.

6 Extra credit: Countdown Math Reasoning: RLOO Results

Experimental Setup. Following the CS224R project recipe, we fine-tune a Qwen 2.5 0.5B
model that was warm-started with the Asap7772/cog_behav_all_strategies dataset. We then
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apply RLOO 2 on the Jiayi-Pan/Countdown-Tasks-3to4 train split. The rule-based scorer in
countdown.py assigns a reward of 1.0 for a correct expression, 0.1 for a syntactically valid but
wrong answer, and 0 otherwise. RLOO is trained for three epochs with batch size 4, generating
four on-policy rollouts per prompt (T=64, Ttemp=0.6, k=20, p=0.95). At test time we sample 20
candidates per prompt with vLLM and return the answer with the highest rule-based reward.

Table 4: Countdown held-out performance (rule-based reward).

Model / Setting Reward Score
SFT baseline 0.200
RLOO (no rerank) 0.284
RLOO + verifier rerank (20 cands) 0.324

Analysis. RLOO improves the SFT baseline by +0.12 absolute reward and clears the 0.30 leader-
board threshold. Verifier-guided reranking supplies an additional boost, echoing the UltraFeedback
finding that test-time scaling is a simple yet powerful way to harvest high-quality answers from a
fine-tuned policy.

7 Discussion

Our empirical study reveals complementary strengths and weaknesses across the three stages of our
framework and across two very different benchmarks.

UltraFeedback. Direct Preference Optimization (DPO) alone provides a fast alignment baseline (53
% win-rate) but lacks incentives for reasoning diversity or built-in error checking. Adding multi-agent
debate supplies exploratory breadth, yet—without verification—actually hurts performance (46 %),
demonstrating that unfiltered preferences can mis-guide the policy. Our verified fine-tuning stage
restores the baseline by injecting logically sound examples, and test-time verifier reranking supplies
the dominant lift, pushing the win-rate to 86 %. This confirms that inexpensive inference-time scaling
can compensate for the noisiness of preference learning. However, we found that the new held-out
prompts in the ultrafeedback is alot more challenging than the milestone ones. While we achieve
nearly 100% winrate compared to the ref model, we failed to generate sufficient responses on the
leaderboard. For the Test-time-verification, the verifier is crutial for the final results. Countdown.
On symbolic arithmetic, a supervised-only model achieves 0.20 reward. RLOO fine-tuning raises
this to 0.28, and adding verifier-based reranking with 20 candidates yields 0.324, surpassing the 0.30
leaderboard bar. The pattern mirrors UltraFeedback: reinforcement learning improves over SFT, but
the largest single gain comes from verifier-guided selection at inference.

Across tasks. These results suggest the following guidelines for small-model alignment:

• Exploration is necessary but not sufficient. Multi-agent debate surfaces novel trajectories,
yet must be paired with verification to avoid performance regressions.

• Verified data pay double dividends. They stabilise training (structured self-improvement)
and power efficient inference (reranking).

• Inference-time scaling is a low-cost, high-reward strategy. Sampling+verifier reranking
delivered the largest absolute gains on both open-ended (UltraFeedback) and symbolic
(Countdown) tasks.

Remaining challenges include the compute cost of large candidate pools and the design of fast,
high-recall verifiers; probing these trade-offs is an important direction for future work.

8 Conclusion

We introduced a three-phase self-optimization framework that combines (i) debate-based exploration,
(ii) supervised fine-tuning on automatically verified examples, and (iii) verifier-guided inference. On

2REINFORCE Leave-One-Out baseline.
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UltraFeedback, this pipeline boosts win-rate from 53 % (DPO) to 86 %. On the Countdown math
benchmark, RLOO plus the same verifier-rerank strategy raises reward from 0.20 (SFT) to 0.324.
The consistent improvements across domains indicate that coupling verification with exploration is
a simple, scalable recipe for strengthening small LLMs under tight resource budgets. Future work
will focus on lighter-weight verifiers and adaptive candidate budgets to further reduce inference cost
while preserving robustness.

9 Team Contributions

• Virginia Chen: Led idea development, implemented the debate and DPO pipeline, integrated
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A Implementation Details

A.1 Hardware and Software Environment
• GPUs: 8 × NVIDIA A100 80 GB (PCIe) on an internal cluster.
• Frameworks: PyTorch 2.1, HuggingFace Transformers v4.39, TRL v0.7, and NVIDIA

NeMo NIM micro-services.
• Mixed Precision: all training runs use BF16; inference uses FP16 with vLLM v0.4.0.

A.2 UltraFeedback Pipeline

Base Checkpoint. We start from Nemotron-Ultra-253B-v1 (the Solver) warm-started on the
UltraFeedback-SFT corpus (5 epochs, AdamW, LR 2×10−5).

Phase 1: Multi-Agent Debate.

• Opponent: DeepSeek-V3 (23 B) held fixed for each debate round.
• Sampling: nucleus (p=0.9), T=0.7, max_new_tokens=256.
• Preference Scoring: Nemotron-70B reward model.
• DPO Hyper-params: batch 32, β = 0.1, LR 1×10−6, epochs 1.

Phase 2: Structured Self-Improvement.

• Positive examples: Solver generations with reward ≥ 0.8.
• Negative examples: outputs from our smaller SFT baseline (7B).
• Fine-tuning: cross-entropy, LR 5×10−6, batch 64, 2 epochs, gradient clipping 1.0.

Phase 3: Verifier-Guided Inference.

• Generation: vLLM, 20 candidates per prompt, T = 0.6, top_p=0.95.
• Reranking: Nemotron-70B reward; best-score answer returned.

A.3 Countdown–RLOO Pipeline

Base Checkpoint. Qwen-2.5-0.5B SFT-initialized on Asap7772/cog_behav_all_strategies
(3 epochs, LR 3×10−5).

RL Stage (RLOO).

• Environment: countdown.py official scorer.
• Rollouts: 4 candidates/prompt, max_new_tokens=64.
• Reward: 1 (correct), 0.1 (valid expression), 0 (otherwise).
• Optimizer: AdamW, LR 5×10−7, batch 4, epochs 3, gradient clip 1.0.
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Inference. Generate 2-20 candidates per prompt (vLLM), select the answer with the highest
rule-based reward or nemotron verifier reward.
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