
Extended Abstract

Motivation Model-based reinforcement learning (MBRL) has made remarkable strides with
Dreamer V3 (Hafner et al., 2024). Despite its breadth of success, Dreamer’s vanilla vision stack
remains a standard monotonic convolutional neural network (CNN). Meanwhile, the computer vision
community has made rapid progress in richer representation learning—ranging from Variational
Autoencoders (VAEs) with principled information bottlenecks to self–supervised Transformers such
as DINOv2 (Pinheiro Cinelli et al., 2021; Oquab et al., 2023). Our motivation is to investigate whether
these modern, pretrained encoders can provide more meaningful visual latents and thereby accelerate
or stabilize world–model learning and downstream policy performance.

Method We extend the Dreamer V3 framework by replacing its default convolutional encoder
with a range of alternative vision modules, each producing a per-frame latent vector of configurable
dimension. Concretely, we implement and compare:

• A vanilla Conv-Encoder baseline (with optional linear projection).
• A continuous VAE-Encoder trained with a β–KL regularizer.
• A discrete VQ-VAE-Encoder using a learnable codebook.
• A SD-VAE-Encoder based on Stable-Diffusion’s pretrained VAE.
• A self-supervised DINOv2-Encoder based on DINOv2’s patch features.
• A minimal Dummy-Encoder returning a global learnable vector.
• A Zero-Encoder that always outputs the zero latent.

Implementation We built upon the open-source dreamer-v3-torch codebase by extending the
unified Multi-Encoder class that dispatches to one of seven vision backbones—Conv, VAE, VQ-
VAE, SD-VAE, DINO-V2, Dummy and Zero—based on a new –mode CLI flag. Each encoder defines
an outdim and returns an (B,T,outdim) tensor, which is then fed into the RSSM unchanged.
We augmented Multi-Encoder class to support –latent_dim, –disable_decoder, and encoder-
specific flags (e.g. –sd_trainable, –dino_trainable), and we modified the training loop to
compute additional VAE and VQ losses or skip the pixel decoder when required.

Results Our experiments reveal three key findings. First, latent capacity beyond a modest threshold
(128 dimensions) yields diminishing returns: both Conv and VAE encoders recover full performance
by 128 D, with less than 3% variation up to 4096 D (Sec. 5.1–5.3). Second, pretrained vision back-
bones (DINOv2, SD-VAE) offer no convergence speed-up or final return improvements over scratch
Conv/VAE models, even when fine-tuned or frozen (Sec. 5.4). Finally, pixel-level reconstruction
remains critical: decoder ablations on frozen pretrained features fail catastrophically without the
reconstruction loss, whereas including the decoder restores strong performance.

Discussion These results challenge the prevailing emphasis on ever larger latent or pretrained visual
representations in model-based RL. Instead, they highlight that (1) Dreamer’s RSSM readily adapts
to extract control-relevant information from even low-dimensional latents or frozen features, and (2)
dense, per-frame supervision via the decoder is indispensable for grounding imagined trajectories.
Together, these insights suggest that the principal bottleneck lies not in visual capacity, but in the
expressivity of the dynamics model itself. While our experiments provide clear evidence for the
limited value of scaling visual encoders or latent size, they are restricted to three benchmark domains
(Walker–Walk, Walker–Run, and Crafter), and results may differ on tasks with distinct observation or
reward structures. Moreover, we only consider pixel-level reconstruction as the decoder objective;
alternative auxiliary losses, such as contrastive or bisimulation metrics, could alter the decoder’s
impact.

Conclusion We conclude that scaling up the visual encoder or latent dimension beyond the minimal
effective capacity is unnecessary for Dreamer-style agents and may squander resources. Future
work should pivot toward enhancing the RSSM’s temporal modeling—e.g., via transformer-based
architectures—to better leverage visual inputs for long-horizon planning and robust control.
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Abstract

Model-based reinforcement learning (MBRL) methods such as DreamerV3 lever-
age learned world models to enable sample-efficient, long-horizon planning from
pixel observations. Despite achieving state-of-the-art results across over 150 bench-
marks, DreamerV3 still relies on a relatively “vanilla” convolutional encoder to
process rich visual inputs—even though the vision community has developed
powerful self-supervised and multimodal representation learners. In this work,
we integrate regularized autoencoders (VAE, VQ-VAE) and large, off-the-shelf
backbones (DINOv2, SD-VAE) into the Dreamer pipeline and conduct extensive
ablations across latent dimensions (2–4096 D) and encoder variants. We show that
returns saturate by 128 D, pretrained embeddings do not accelerate convergence
or improve final performance, and that a pixel-level reconstruction objective is es-
sential—even with high-capacity frozen features. These results suggest that future
improvements should prioritize richer dynamics modeling (e.g. transformer-based
RSSMs) over further scaling of visual encoders or latent bottlenecks.

1 Introduction

Model Predictive Control Garcia et al. (1989); Qi et al. (2025) and Model-Based Reinforcement
Learning Ha and Schmidhuber (2018); Hansen et al. (2024) have played a pivotal role in advancing
robotic control and autonomous navigation by enabling agents to predict future states based on their
actions. These paradigms leverage predictive world models to facilitate long-horizon planning and
robust task execution, thereby significantly enhancing sample efficiency and decision-making under
complex dynamics.

Despite DreamerV3 achieving state-of-the-art performance across more than 150 diverse continuous
control benchmarks (Hafner et al., 2024), its default convolutional encoder-decoder architecture
may lack the capacity to capture complex visual cues and semantically meaningful latent structures
required for generalizable imagined trajectories and stable actor-critic updates. To address this
limitation, our project investigates the integration of latent-space regularized autoencoders, including
Variational Autoencoders (VAE) Pinheiro Cinelli et al. (2021) and Vector-Quantized VAEs (VQ-VAE)
van den Oord et al. (2018), as well as the use of pretrained encoder features, like SD-VAE Podell
et al. (2023) or DinoV2 Oquab et al. (2023), into the Dreamer-style world model pipeline.

Furthermore, the original Dreamer literature provides limited ablation studies isolating the contribu-
tions of individual architectural components within the Recurrent State-Space Model (RSSM). To
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bridge this gap, we conduct extensive ablations to examine the impact of latent dimensionality and
the presence or removal of the encoder and decoder modules on overall model performance. Through
this investigation, we aim to better understand the design choices that influence the learning stability
and representational capacity of dreamer-like model-based reinforcement learning algorithm.

2 Related Work

Model-Based Reinforcement Learning. Model-based reinforcement learning (MBRL) centers
on learning a predictive model of the environment’s dynamics to facilitate policy optimization
through imagined trajectories. Early work by Ha and Schmidhuber introduced mixture density RNN
(MDN-RNN) to train agents entirely within their own imagined latent spaces (Ha and Schmidhuber,
2018). PlaNet (Hafner et al., 2019b) proposed a Recurrent State-Space Model (RSSM) with both
stochastic and deterministic latent variables, enabling gradient-based planning directly from pixel
inputs. Dreamer (Hafner et al., 2019a) improved this pipeline by integrating actor-critic learning
through backpropagation within the imagined latent space.

More recently, DreamerV2 and DreamerV3 extended this framework with better scalability and task
generalization (Hafner et al., 2022, 2024). DreamerV3, in particular, demonstrated strong generaliza-
tion across over 150 tasks using a single RSSM configuration. However, these works rely on relatively
simple convolutional encoders and decoders, which may be insufficient for capturing the full richness
of high-dimensional visual observations. Recent extensions such as MuDreamer (Burchi and Timofte,
2024) replace pixel-based reconstruction with value and action prediction to improve performance in
visually complex environments, while HRSSM (Sun et al., 2024) introduces hierarchical masking and
bisimulation-inspired losses to improve generalization. Nevertheless, few of these studies explicitly
isolate the contribution of visual representations to rollout accuracy or policy quality.

Visual Representation Learning. In parallel, the representation learning community has developed
a suite of methods for learning structured and semantically rich latent spaces from high-dimensional
sensory input. Variational Autoencoders (VAEs) (Pinheiro Cinelli et al., 2021) impose a probabilistic
prior over the latent space to enable generative sampling and regularized inference, while Vector
Quantized VAEs (VQ-VAEs) (Van Den Oord et al., 2017) discretize the latent space using a codebook,
which yields sharper reconstructions and categorical latent structure, albeit at the cost of optimization
challenges due to non-differentiable quantization.

More recent advances integrate large-scale pretraining and multimodal priors. SD-VAE (Podell et al.,
2023) and DINOv2 (Oquab et al., 2023) provide powerful pretrained vision encoders that capture
geometric and semantic consistency across varied data domains.

The SD-VAE used in Stable Diffusion is trained as a variational autoencoder on hundreds of millions
of internet-scale captioned image-text pairs from the LAION dataset. It optimizes a standard ELBO
objective that balances pixel-space reconstruction accuracy and KL-divergence regularization:

LSD-VAE = Eq(z|x)[log p(x|z)]−DKL(q(z|x)∥p(z)).
As a result, the SD-VAE encoder captures rich semantic, geometry-aware features that are well-suited
for downstream generative tasks.

DINOv2 is trained using a self-supervised teacher-student framework that leverages a multi-crop
strategy and Vision Transformer backbones. It uses a cross-view alignment loss between the teacher
and student embeddings of multiple global and local crops of the same image:

LDINO = −
∑
i

p
(i)
teacher log p

(i)
student,

where p(i) denotes normalized patch token distributions. DINOv2 is trained on curated, diverse,
high-resolution images without labels, resulting in representations that exhibit strong intra-class
clustering and transfer well to novel tasks, including dense prediction and few-shot learning. Its
patch-token representation supports fine-grained localization and semantic abstraction, which are
critical for generalizable latent dynamics in RL.

While these pretrained and generative representations have demonstrated compelling performance
in vision-language and generation tasks, their integration into model-based RL pipelines remains
underexplored. In particular, it is unclear how improvements in visual latent structure influence
imagination fidelity, policy stability, and downstream task success in diverse control environments.
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Our work bridges these two domains by incorporating regularized and pretrained encoders into the
Dreamer architecture and studying their influence through targeted ablations in world modeling and
actor-critic learning.

3 Method

DreamerV3 Architecture. DreamerV3 employs a Recurrent State-Space Model (RSSM) to learn
compact latent dynamics from high-dimensional pixel observations. The RSSM consists of an encoder
qϕ(zt|ht, xt) that encodes image xt and recurrent hidden state ht into a latent variable zt, a transition
model pϕ(zt|ht) that predicts future latent states, and a decoder pϕ(x̂t|ht, zt) that reconstructs pixel
observations. The world model is optimized to jointly predict the image, reward rt, and terminal
signal ct via:

L(ϕ) = Eqϕ

[
T∑

t=1

(βpredLpred + βdynLdyn + βrepLrep)

]
,

where:
Lpred = − log pϕ(xt|zt, ht)− log pϕ(rt|zt, ht)− log pϕ(ct|zt, ht),

Ldyn = max (1,KL [sg(qϕ(zt|ht, xt)) ∥ pϕ(zt|ht)]) ,

Lrep = max (1,KL [qϕ(zt|ht, xt) ∥ sg(pϕ(zt|ht))]) .

In parallel, Dreamer uses a separate actor-critic module trained on imagined trajectories from the
RSSM. The policy π(at|zt, ht) and value function V (zt, ht) are optimized using rollouts simulated
purely in latent space.

Encoder and Decoder Architecture. The standard convolutional encoder consists of S =
log2(H/hmin) convolutional stages with stride 2 and kernel size 4:

x(l+1) = SiLU(Norm(Convk=4,s=2(x
(l))))

followed by a flattening and optional linear projection:

zt = MLP(Flatten(x(S))).

The decoder applies a symmetric transposed convolutional stack that upsamples from latent vectors
to full-resolution images:

x̂t = DeconvS(Linear(zt)).

Integrating VAE into RSSM. To encourage structured and regularized latent representations, we
replace the encoder with a variational autoencoder. As before, input xt is passed through the same
convolutional backbone, and two MLP heads predict:

qϕ(zt|xt) = N (zt;µt, σt), µt, log σ
2
t = MLPµ,σ(x

(S)).

A sample is drawn via reparameterization:

zt = µt + σt ⊙ ϵ, ϵ ∼ N (0, I).

The total objective becomes:

LVAE = Eqϕ(zt|xt)[log pϕ(xt|zt)]− β DKL(qϕ(zt|xt) ∥N (0, I)).

Compared to the standard encoder, the VAE encourages the hidden space to align with a standard
Gaussian prior, promoting stability and generalization in imagination rollouts.

Integrating VQ-VAE into RSSM. For discrete latent modeling, we use VQ-VAE. The encoder first
downsamples via convolutional blocks as before, then projects to a latent feature ze:

ze = MLP(Flatten(x(S))).

Each vector in ze is replaced with its nearest codeword from a learned codebook E = {ek}Kk=1:

zq = Quantize(ze) = arg min
ek∈E

∥ze − ek∥22.

The loss includes reconstruction and two stop-gradient terms:

LVQ-VAE = ∥xt − x̂t∥22 + ∥sg(ze)− zq∥22 + βcommit∥ze − sg(zq)∥22.
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This structure discretizes the latent space, encouraging the model to learn compact and semantically
meaningful latent representations.

Integrating Pretrained Autoencoder into RSSM. To exploit large-scale semantic priors, we adopt
the VAE encoder and decoder from Stable Diffusion (SD-VAE), trained on diverse web-scale data.
Given an image xt, the encoder produces latent zt = fSD(xt), and reconstruction is done with the
pretrained decoder.

x̂t = f−1
SD (zt), zt ∼ SDVAE(xt).

Integrating DINOv2 Features into RSSM. We also explore using DINOv2 (Oquab et al., 2023), a
self-supervised ViT trained via teacher-student contrastive learning. The input xt is first normalized
and patchified:

xt → Patchify(xt) → ViTDINO.

The ViT produces a set of patch tokens, which we flatten and project:

zt = Proj(Concat(DINO(xt))).

This zt is then passed to the RSSM as the latent embedding.

4 Experimental Setup

4.1 Environments

We evaluate on three visually distinct benchmarks:

• DM-Control Walker–Walk: 64×64 side view RGB observations, six dimensional continu-
ous torques, dense reward = forward velocity − control cost − posture penalty.

• DM-Control Walker–Run: Same observation and action spaces as Walker–Walk, but with
a higher required locomotion speed and sparser reward signal emphasizing rapid forward
motion.

• Crafter: 64×64 bird’s-eye RGB observations, 18 discrete actions (movement, mining,
crafting, combat), sparse achievement rewards (e.g. +20 for wooden pickaxe, +1000 for
diamond) and survival incentives (health, hunger).

4.2 Encoder Variants & Latent Dimensions

For each run we replace Dreamer’s default ConvEncoder with one of:

• conv, vae, vqvae, sdvae, dinov2, dummy, zero

We sweep the latent dimension

latent_dim ∈ {2, 8, 16, 32, 62, 128, 256, 512, 1024, 2048, 4096}
to probe capacity effects, and for VQ-VAE we test codebook sizes K ∈ {32, 128, 512} with 128-D
codes.

4.3 Training Details

• Batching: Replay-buffer samples of length T = 64, batch size B = 16.
• World-model: RSSM with deter = 512, stoch = 32, discrete = 32 (except continuous

mode for VAE and SD-VAE).
• Loss scales: βdyn = 0.5, βrep = 0.1; for VAEs βvae = 10−3.
• Optimizer: AdamW, learning rate 10−4 for model; 3 × 10−5 for actor/critic; ϵ = 10−8,

grad-clip=1000.
• Steps:

– If evaluation return converges before 500 K steps, terminate at 500 K.
– Otherwise continue training up to 1M steps.

4.4 Hardware

All experiments were conducted on NVIDIA A100 GPUs, except for runs involving the DINOv2
encoder, which were executed on NVIDIA H100 GPUs.
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5 Results

5.1 Impact of Latent Dimensionality

We begin our analysis by examining the effect of latent dimensionality on performance in the Walker-
Walk environment. Table 1 presents the episode returns for both convolutional and VAE encoders
across latent dimensions ranging from 32 to 1024.

Walker–Walk
Encoder 32 64 128 256 512 1024
Conv 956.9 957.8 964.8 961.3 961.7 959.4
VAE 948.9 940.1 946.3 953.6 949.8 948.2

Table 1: Walker-Walk performance across standard latent dimensions. Values represent mean episode
returns.

Remarkably, both encoder architectures maintain highly stable performance across this range, with
less than 3% variation between the lowest and highest performing configurations. This stability is
particularly striking given that the original DreamerV3 configuration uses a latent dimension of 4096,
suggesting substantial over-parameterization for this task.

To further probe the limits of this robustness, we extended our evaluation to extremely low latent
dimensions. Table 2 shows that even with severe information bottlenecks, both encoders maintain
surprisingly competitive performance.

Encoder 2 4 8 16
VAE 843.98 893.62 945.80 945.68
Conv 843.57 909.85 939.45 940.12

Table 2: Walker-Walk performance at extremely low latent dimensions. Values represent mean
episode returns.

Even at 2D, the agent still learns nontrivial locomotion. We hypothesize that this behavior may
arise because (1) Walker–Walk is an easy, fully observable task that does not demand rich visual
encodings; (2) the RSSM and policy may overfit the reward–signal dynamics rather than relying on
per-frame latents; or (3) the pixel decoder provides an implicit auxiliary reconstruction objective that
compensates for the tiny latent. We address these hypotheses in subsequent experiments.

5.2 Ablation: Global and Zero Latents

To test whether Dreamer can “guess” observations from reward signals alone, we replace the per-frame
encoder with two extreme baselines:

• DummyEncoder: returns a single learnable vector z̄ for every step.
• ZeroEncoder: always returns the zero vector, providing no information.

Both variants disable the pixel decoder and reconstruction loss.

Encoder Return @500k Return @1M
Dummy (global latent) 162.02 35.4
Zero (no latent) 150.28 98.8

Table 3: Evaluation returns on Walker–Walk using Dummy vs. Zero latent encoders.
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These ablations demonstrate that without per-frame latents, performance degrades sharply, invalidat-
ing the hypothesis that Dreamer simply overfits the reward and the observation is not being used by
the model.

5.3 Bottleneck Effects on Harder Tasks

Next, we evaluate on the more challenging Walker–Run task, where forward speed is harder to
maintain. Table 4 shows final returns at 500 K steps for four latent sizes:

Encoder 2 8 32 128
Conv 365.9 743.3 779.6 809.2
VAE 465.2 761.5 795.8 806.8

Table 4: Final evaluation returns on dmc_walker_run for varying latent dimensions.

On the harder Walker–Run task, we observe a dramatic performance drop when the latent dimension
is extremely constrained: the ConvEncoder falls to 365.9 return at 2 dims and 743.3 at 8 dims,
while the VAE preserves more information, scoring 465.2 and 761.5 respectively. This confirms
that insufficient latent capacity becomes a critical bottleneck as task difficulty increases. However,
once the latent size reaches 32 dimensions, both Conv and VAE encoders recover to approximately
780–795 return, and at 128 dims they match the original 4096-D Conv baseline (813.1). Thus, beyond
a minimal capacity threshold, further expansion of the latent offers diminishing returns. Notably, the
VAE’s stochastic bottleneck consistently outperforms the ConvEncoder in the most compact regimes,
suggesting its regularisation helps compress the most task-relevant features into very low-dimensional
embeddings.

5.4 VQ-VAE Mode Collapse in RSSM Dynamics

After initially integrating a Gaussian VAE, we observed that its continuous normal prior N (0, I)
may conflict with DreamerV3’s RSSM posterior, which we parameterize as a categorical distribution
over a 16 × 16 sufficient-statistic matrix for stability. To address this mismatch, we switched to a
Vector-Quantized VAE (VQ-VAE), which eschews the Gaussian assumption and leverages a discrete
codebook E = {ek}Kk=1:

zq = arg min
ek∈E

∥ ze − ek∥22.

Despite this, the VQ-VAE induces severe mode collapse during early training (see 1a): almost all
posterior mass concentrates on a single codebook entry. We quantify this by tracking the unclipped
forward KL divergence used in Ldyn and the posterior entropy:

KLdyn(qt∥pt) = Eqt

[
log qt(z)− log pt(z)

]
, H(qt) = −Eqt

[
log qt(z)

]
.

At initialization, VQ-VAE’s KLdyn ≈ 1.5 —far below the VAE and Conv baselines (≈ 6). Over
∼ 600k steps, all methods converge to KLdyn ≈ 4.5.

However, VQ-VAE’s early “code collapse” cannot be fully reversed: its posterior entropy remains
systematically lower than that of the VAE and ConvEncoder throughout training (see 1b). This
persistent information bottleneck degrades the RSSM’s imagined rollouts and yields consistently
lower reward returns (see 5 and 2).

Encoder Type 256 512 1024 2048
Convolutional 6.09 6.64 7.79 9.21
VAE 6.30 6.42 6.31 6.77
VQ-VAE 6.36 5.35 4.84 6.77

Table 5: Final evaluation return on Crafter for various latent dimensions and encoder types.
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Figure 1: Latent space diagnostics for Conv, VAE, and VQ-VAE encoders in Crafter. VQ-VAE
exhibits low KL and entropy early in training, indicating mode collapse.
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(b) Evaluation return on Crafter.

Figure 2: Training and evaluation returns on Crafter for different encoder types. VQ-VAE underper-
forms due to poor early latent usage.

5.5 Pretrained Features Do Not Improve Convergence

Having established the minimal latent requirements, we next evaluated whether off-the-shelf pre-
trained embeddings could accelerate learning. We swapped in two high-capacity backbones—a
DINOv2 vision transformer and the Stable-Diffusion VAE—and trained Dreamer with these frozen or
fine-tuned encoders, comparing against randomly initialized Conv and VAE baselines. Surprisingly,
neither DINOv2 nor the pretrained VAE delivered any measurable speed-up. Even at very early stages,
return trajectories are statistically indistinguishable. This suggests that, within the joint optimization
of Dreamer’s world-model and actor–critic, the RSSM quickly adapts to extract task-relevant features,
and the inductive biases of large, pretrained vision models offer little extra benefit for these control
tasks.

Frozen feature gap analysis. Even though pretrained features are not useful in terms of perfor-
mance and covergence speed, it povides a way for us to examine the role of decoder in the model.
First, we froze the pretrained encoder (either DINOv2 or SD-VAE) and trained only the RSSM
transition and actor–critic modules. Despite receiving task-agnostic visual features, the model still
learned to run in Walker–Run, as show in Figure 5a. This indicates that the discrepancy between
pretrained and task-specific features is surprisingly small: the RSSM can leverage frozen features to
extract most of the information necessary for control.

Decoder ablation with pretrained features. Next, we compared two setups using the same frozen
pretrained encoder:
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(a) Walker–Run: Conv vs. DINOv2
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(b) Walker–Walk: Conv vs. SD-VAE

Figure 3: Evaluation Return curves comparing scratch Conv baseline against DINOv2 and SD-VAE
encoders.
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(a) Frozen DINOv2: w decoder vs. w/o decoder.
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(b) Fine-tuned DINOv2: w decoder vs. w/o decoder.

Figure 4: (a) Performance of Dreamer with frozen DINOv2 features; (b) Impact of retaining the pixel
decoder when fine-tuning DINOv2. The “No-Decoder” variant fails to learn meaningful returns.

• With-Decoder (Figure 5b): we retain the pixel decoder and reconstruction loss alongside
dyn and rep.

• No-Decoder (Figure 5c): the RSSM is trained with only the dyn and rep losses (no
reconstruction), relying solely on the pretrained features for observation information.

Despite access to high-capacity frozen features, the No-Decoder variant failed to learn any meaningful
policy (returns remained near random throughout training), showing that the reconstruction objective
is still essential for grounding the RSSM in observation space. In contrast, the With-Decoder
converged to reasonable performance.

6 Limitation

While our study explores valuable insights into the roles of latent capacity, pretrained encoders, and
the pixel decoder in Dreamer-style agents, it has several important limitations. First, our evaluation
is confined to three benchmark domains—Walker–Walk, Walker–Run, and Crafter—which share
similar observation modalities and reward structures; results may differ in environments with higher
visual complexity, partial observability, or multi-agent interactions. Second, we focus exclusively on
pixel-level reconstruction as the auxiliary decoder objective; alternative losses, such as contrastive
representation learning or bisimulation metrics, could yield different trade-offs between grounding
and abstraction. Third, our pretrained encoder experiments are limited to two models (DINOv2
and SD-VAE); other self-supervised or multimodal backbones (e.g., CLIP, masked autoencoders, or
video-trained encoders) may interact differently with the RSSM.
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(a) Frozen DINOv2: policy visualization

(b) Fine-tuned DINOv2 with decoder: policy visualization

(c) Fine-tuned DINOv2 without decoder: policy visualization

Figure 5: Policy visualizations for (a) frozen DINOv2 features, (b) fine-tuned DINOv2 with pixel
decoder, and (c) fine-tuned DINOv2 without decoder. Each subfigure displays sampled frames
arranged in a grid.

7 Conclusion

We have shown that the benefits of increasing latent dimension in Dreamer-style world models quickly
saturate: beyond a modest capacity threshold (128 D), further scaling yields negligible performance
gains (Sec.5.3). Similarly, swapping in large, pretrained vision backbones (DINOv2, SD-VAE) does
not accelerate convergence or improve final returns, indicating that richer visual priors alone are
insufficient for enhanced control performance. Through decoder ablations, we demonstrated that the
pixel-level reconstruction objective remains essential—even with high-capacity frozen features—to
ground the latent dynamics (Sec.5.4).

Future Work These insights suggest that, rather than further over-parameterizing the visual encoder
or latent bottleneck, future efforts should focus on scaling and enriching the RSSM itself. In particular,
integrating transformer-like architectures into the state-space model may enable more expressive
temporal modeling and better utilization of visual features for long-horizon planning.
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