Extended Abstract

Motivation We consider the problem of setting optimal retail prices and promotions for a multi-
product category when demand information needs to be explored. Retail pricing and promotion
planning are big spending items for retailers such as Safeway, Macy’s and consumer packaged
goods (i.e., CPG) manufacturers such as P&G and General Mills. CPG companies worldwide invest
20% of their revenue in trade promotions [7]]. Current promotion planning is largely done by using
heuristics and judgments from human planners. Up to 59% promotions are losing money, so there
is an opportunity to use model-based reinforcement learning to improve the quality of pricing and
promotion planning for retailers and consumer packaged goods manufacturers [7].

Method We developed a causal model-based reinforcement learning (RL) framework for adap-
tive pricing and promotion planning. The proposed RL agent can automate decision making by
balancing the sample efficient exploration of demand parameters and the optimization of price and
promotion (under the learned demand parameters). Specifically, we have used the discrete choice
model of consumer demand as a causal world model. This helps to handle the high-dimensional action
space and coupled rewards by using the mapping from (true) demand parameters to optimal (retail)
prices and promotions. For exploration, we used the d-optimal design of the Fisher information
matrix to select prices and promotions from candidate proposals, which maximize the learning of the
demand parameters. By alternating d-optimal exploration and exploitation (i.e., price and promotion
optimization conditional on demand parameters), we showed that we can achieve more sample
efficient price and promotion optimization compared to a greedy method or Thomspon sampling
method.

Implementation The proposed algorithm is implemented in Python and PyTorch. To reduce overall
run-time, we have used Ray for parallelization. In the algorithm, We have alternated exploration and
exploitation rounds. In the exploration round, We used D-optimal design with Fisher Information
Matrix to select price and promotion combinations, which can maximize demand parameter learning.
Demand parameters for a multi-nomial logit demand model are estimated by using maximum
likelihood (i.e., MLE.) In the exploitation round, we used the learned demand model to find and
set optimal prices and promotions. Based on stylized simulated dataset, we have assessed the
performance of the proposed algorithm compared to the baseline of greedy algorithm.

Results After implementing the algorithm, we calculated a cumulative regret and % of optimal
profit and compared the result with the baseline cumulative regret from a "greedy" method where the
algorithm initially plays some random prices for a period T (explore). At each time after this, it uses
the MLE to estimate the model based on the data up to that point and then plays the optimal price and
promotion according to the estimated model.In other words, "greedy" methods only do "exploitation"
after initial periods of random price exploration. The result showed that we can reduce the cumulative
regret by conducting sample efficient demand parameter explorations by using the proposed method.
In addition, the proposed D-optimal algorithm is more effective compared to Thompson sampling
approach, which was state-of-the-art in the literature.

Discussion In the greedy setting, we found that the lack of strategic exploration in prices make it
stuck in sub-optimal prices and promotions. As a result, the data it gathers are not very informative.
In contrast, in our proposed d-optimal exploration algorithm, more sample efficient exploration
helps to conduct more informative price and promotion exploration, which helps to recover true
demand parameters. This resulted in smallest cumulative regret and large % of optimal profits among
three algorithms that we compared: (1) baseline of "Greedy", (2) Thompson Sampling (TS), and (3)
proposed D-Optimal exploration.

Conclusion In conclusion, this study provides an effective approach to adaptive pricing and
promotions with a discrete choice model as a causal world model. Using a D-optimal exploration
approach based on Fisher information matrix, we develop a regret minimizing, (or profit maximizing)
algorithm for a retailer. Using simulations based on stylized settings, we show that the proposed
method significantly outperforms existing baseline approaches. This approach can be used to optimize
prices and promotions adaptively while simultaneously learning the demand model.
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Abstract

We consider the problem of setting optimal retail prices and promotions for a multi-
product category when demand information needs to be explored. We developed
a causal model-based reinforcement learning (RL) framework for adaptive
pricing and promotion planning. The proposed RL agent can automate decision
making by balancing the sample efficient exploration of demand parameters and
the optimization of price and promotion (under the learned demand parameters).
Specifically, we have used the discrete choice model of consumer demand as a
causal world model. This helps to handle the high-dimensional action space and
coupled rewards by using the mapping from (true) demand parameters to optimal
(retail) prices and promotions. For exploration, we used the d-optimal design of the
Fisher information matrix to select prices and promotions from candidate proposals,
which maximize the learning of the demand parameters. By alternating d-optimal
exploration and exploitation (i.e., price and promotion optimization conditional
on demand parameters), we showed that we can achieve more sample efficient
price and promotion optimization compared to "greedy" or "Thompson sampling"
baselines.

1 Introduction

We consider the problem of setting optimal retail prices and promotions for a multi-product category
when demand information needs to be explored. Retailers typically sell a large number of products in
a given category. They need to make two key decisions: (1) setting retail prices (continus variables)
and (2) assigning promotions (binary assignment.). For example, in Figure 1, Safeway has 146 coca
cola products (even more if we consider other cola products such as Pepsi or store brands) for which
the retailer has to decide on retail prices and promotion assignment.

If the retailer has perfect information on the underlying demand model, it can solve a joint optimization
problem for optimal prices and promotion to maximize category profits. However, retail stores
lack such demand information. The two standard ways to learn demand information are: (1) use
observational data to estimate demand models or (2) run A/B tests. The former can lead to misleading
demand parameter estimates, especially when the price movements are limited and concentrated in
a few products. There are also confounder problems. The latter approach is very costly and does
not scale with a large number of products. Thus, we investigate an algorithm based on the causal
demand model-based reinforcement learning (RL), which can balance sample efficient exploration
with exploitation (i.e., price and promotion optimization under learned demand parameters).

2 Related Work

The proposed work relates to three broad streams of literature - (1) the adaptive pricing work in
operations research and computer science literature (also referred as dynamic pricing), (2) discrete
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Figure 1: An example page of an online retailer selling cola

choice model of consumer demand literature in economics and marketing, and (3) model-based RL
literature in computer science.

Adaptive Pricing: The work on adaptive pricing is quite extensive in operation research literature.
However, most of studies follow a very simplified setup: one retailer/seller who sells a single
product for a fixed number of rounds and chooses a price and then observe an associated demand|[3]].
However, multi-products setting with as many as 5000 products are very common in practice, which
significantly limits practical applicability of these models.

In addition, many of the works in the pricing literature employ "forced/random exploration”, which is
not managerially feasible. The only exception is model-based exploration by Lalit et al[5]. Both
parametric and non-parametric models are explored in the literature. It is shown that parametric
approach is more appropriate given the limitation in the data[3].

Consumer Demand Model: Academics in Marketing Science and Economics proposed
pricing and promotion planning models based on an econometric modeling of consumer demand. [8]]
Econometric promotion decision support models are based on either (1) log-log model or (2) discrete
choice models. In the log-log model, log of the unit sales (i.e., volume) is used as response variable
and log of (own) prices and other control variables are used as features. This model specification is
motivated from the observations that the multiplicative model specification shows better predictive
accuracy in point-of-sale (POS) data. In the multiplicative model specification, the impact of each
feature is multiplied to each other. Taking log of multiplicative model gives an additive model in
log-log space, which can be estimated with the linear regression methods or hierarchical Bayes
method. In addition, the use of log(price) allows to use the coefficient of log(price) variable as the
estimate of price elasticity, which is defined as:

_ log(Q)

_dQ p
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where () is quantity sold, and p is a price of the good.

For model estimation, an ordinary least square (OLS) linear regression is used if we can
assume the same price elasticity across products and location, without having too many parameters.
This is restrictive assumption, thus mixed effect model, which allows different price elasticties
across products and stores are used to address the limitation of the constant price elasticity model
[2]. The log-log model suffers the curse of dimensionality with respect to cross price elasticity
estimation since cross price elasticy scales with the square of number of products. An aggregate



or individual-level discrete choice models were proposed to address this curse of dimensionality
challenge [1l]. Discrete choice models impose economic theory-based structure on the model
specification to handle the limitation in the data [1]]. This can be viewed as a causal world model of
demand in which a microeconomic theory of consumer demand complements the data gaps.

For machine learning models, which focused on demand forecasting tasks, it has been shown that
tree-based models such as boosted tree models (e.g., XGBoost, LightGBM) or random forests
perform the best in predictive accuracy for tabular panel data. However, it is unclear whether these
models can provide good counter-factual simulation results, which match with the economic theory.
As an example, if prices and unit sales have been always higher for products with unobserved
high quality, the ML model may learn the correlation between high prices and high sales without
recognizing confounding unobserved product quality.

Therefore, I will use the discrete choice model of consumer demand as a base world model
for model-based RL approach in this study

Model-based RL: In the realm of model-based reinforcement learning (MBRL), Dream-
erV3, developed by DeepMind, stands out as a significant advancement. This algorithm demonstrates
remarkable generalization across over 150 diverse tasks using a single configuration [3].

DreamerV3’s architecture comprises three primary components[3]]:

(1) World Model: Learns a latent representation of the environment’s dynamics, enabling the agent to
predict future states and rewards without direct interaction.

(2) Actor: Determines optimal actions based on the latent representations provided by the world
model.

(3) Critic: Evaluates the value of predicted future states to guide the actor’s learning process.

The world model utilizes a Recurrent State-Space Model (RSSM) with discrete latent vari-
ables, allowing it to capture complex temporal dependencies in the environment. This model is
trained using a combination of reconstruction loss, reward prediction loss, and a Kullback-Leibler
(KL) divergence term to ensure consistency between predicted and actual latent states [3]].

Drawing inspiration from DreamerV3, I propose to apply a model-based RL approach to
pricing and promotion planning. However, instead of employing neural networks for the world
model, I propose to utilize a discrete choice model of consumer demand, which is causal and
more explainable. It has additional benefits of reduced problem space due to the mapping from
low-dimensional demand parameters to high-dimensional optimal prices and promotions based on
economic theory. Discrete choice models are particularly effective in capturing underlying demand
patterns, especially when dealing with limited data, as they model individual decision-making
processes and can incorporate various factors influencing consumer choices. We do not need actor
or critic models since optimal prices and promotions are defined as long as we can recover true
demand model. Therefore, the main problem to solve in our case is (1) how to recover true demand
parameters in sample-efficient exploration and (2) how to balance exploration and exploitation.

The comprehensive surveys and research from the Berkeley Artificial Intelligence Research
(BAIR) lab, provided valuable insights, which helped me to design and implement model-based RL
algorithms [6} 4]].

3 Method

Setup

We consider a retailer (e.g., Amazon, Safeway) that sells multiple products in a given prod-
uct category. A retailer can be either e-commerce site or physical store. In each period, the retailer
decides how to price each product and whether to promote them. These promotions can be feature
or display promotions such as (1) highlighting a product on a search result page of a e-commerce
website, (2) placing products on end-of-the-aisle displays in a physical supermarket, or (3) promoting
products in mailers/email sent to customers. The retailer does not know the true demand pa-
rameters but tries to maximize category profits over a time horizon by choosing prices and promotions.



Mathematical Problem definition

Suppose that a retailer has a set of K products (in a given category) that it offers to a con-
sumer in each of 7' periodsp_-] In each time period ¢, 1 <t < T, the retailer must choose a price and a
promotion for each of the K products in the category. Let the price vector be

Pt = (p1t7"’>pKt) € P:: [gau]K

where ¢, u € R are, respectively, lower and upper bounds on the admissible prices. The promotion
allocation is
K
Xy = (xlt,...,l’Kt) e XCR ,

where X denotes the feasible set of such allocations. We can assume that X is finite.)
After observing (p¢, X ), the consumer chooses a product
I, € {0,1,...,K},

where I; = 0 corresponds to the no-purchase option. Each item 7 has a marginal cost m; > 0 for the
retailer. Therefore, in round ¢ the seller’s reward (profit) is

pr, —mip, lfIt € [K]a
0, i1, = 0.

The retailer’s policy is adaptive: the choice of (p;,x;) may depend on the full history up to round ¢,

{(pS7X87IS7 r?)}i;ll

Following econometric demand estimation literature, we assume that the probability the consumer
selects product 7 is given by a random-utility model (i.e., discrete choice model of consumer demand.)
Specifically, there exists a parameter vector

0 = [al,...,a;{, B, .-, Bk, 71,..‘,7;(] S RKXR§OXR§O

such that the utility the consumer receives from each alternative is modeled accordingly.

The consumer’s utility from purchasing product ¢ at price p;; with promotion variable x;
is

Upit,zit) = i — Bipie + ViTit + Eit, (H
where ¢;; follows a type-1 extreme-value distribution. We allow both the price sensitivity 5; and the
promotion response ; to differ by product
The probability that the buyer selects product  in period ¢, conditional on (p¢, x;) and the past history
{(ps, Xs, Is, rs)}z;ll, is given by the multi-nomial logit formula

exp (o — Bipit + Yitit)
1+ S0 exp(an — Bupre + Wone)

where 6 = [a1,...,ak,B1,..., Bk, M, -, 7K] and the associated probability and expectation are
denoted Pry and Ey, respectively.

Pt, Xt, {(pS7XSa IS7TS) ];;11> =

P;r(lt .y )

Therefore, the retailer’s expected profit in period ¢ is

K
_ exp(a; — Bipit + ViTit
Re(ptvxt) = E9|:Tt ptaXt7{(pSaXS7ISaTS) 1;:11:| = Z(pitimi) K ( ) .
o 1+ 30 g exp(an — Brprt + VrTrt)
3)
Throughout we assume bounded parameters,
O‘ie[_MaM]v 61'6[07M}7 P)/iE[O»M]a

'Throughout, K and T are positive integers.
2Although theory might suggest homogeneous price and promotion effects across items, empirical studies
(e.g., ? ) document substantial heterogeneity.



for some known constant M > 0. These restrictions 5; > 0 enforces diminishing utility in price,
while ; > 0 captures the (weakly) positive impact of promotion on utility.

Retailer’s Goal

The aim of the retailer is to develop a policy that simultaneously learns the profit maximiz-
ing price vector and the promotion vector for the K products while balancing exploration and
exploitation. For any fixed demand parameter 6, let the profit-maximizing pair be

(p*,X*) = PEP, XGXRO(p7X)7 (4)
where Ry(p, x) is the expected profit defined in (3).

We assume p* € P = [¢,u]¥ Taking a Bayesian viewpoint, let the unknown parameter 6 ~ Il,
where the prior ITy may be uninformative or encode the firm’s domain knowledge.

The retailer’s goal is to regret minimization: minimize the total loss in profits due to the exploration
of the pricing and promotion. The time T cumulative regret is defined as:

T
Regp = EQNHO{Z Ry(p*,x* Ra(pnxt))}
=1

— gy T Ro(p i (P %) |- 5)

We refer to Reg? simply as the regret.

The simple regret at period t is
sr¢(0) == Ro(p",x") — Ro(Pt,Xt). (6)

Recap of Problem Statement. Based on the problem formulation until now, we recap our problem
statement:
Play a sequence {(p¢, x;)};_; that minimizes cumulative regret ().

Change in Exploration Space

The use of demand model allows us to do exploration in low-dimensional demand parameter space
instead of high-dimensional prices and promotion spaces. I will show how optimal prices and
promotion can be calculated conditional on a true demand model.

Optimal price vector for a fixed promotion. For a given x € X, there exists a unique global
maximizer

P*(x) := pers, Ro(p.x),

which can be characterized by a fixed-point scalar equation.

Fix x € X. The optimal price vector p*(x) = (p7, ..., pj) satisfies

1
p: E+R+mza i:l,...7K, M

where the scalar R solves

R = Z—exp (1+ BiR + Bimy) + ai + vizi]. 8)

Optimal promotion - Outer Loop. Lalit et al. show that only a finite collection of promotion
vectors can be optimal, i.e. we may assume X is finite, which makes the optimization of fixed
promotion tractable. [S]. For details, please refer to Lalit et al.[5]



4 Experimental Setup

4.1 Setup: Experiment with Stylized Setting

We follow Lalit et. al. for the design of numerical experiment in stylized setting. [5]. The key
differences are (1) smaller number of purchase decisions and replications due to time constraint:
5,000 purchase decision steps and 10 replications, and (2) exploration of the impact of different batch
sizes (10 vs. 500)

We consider a retailer in a market with three products (K = 3) that must decide how to
set prices and promotions for these products. In each period ¢ the retailer may choose prices
pit € [0,$30.00] fori = 1,..., K and a binary promotion variable z;; that satisfies the simplex
constraint

3
dww=1,  wpe{0,1}, Vt>1L
i=1

In other words, the firm can promote at most one product per period (or promote none), consistent
with the result of Theorem 1.

Demand for each product follows the choice model described in the previous section. The parameter
values are reported in Table[T] and marginal costs are normalized to zero for simplicity. The table also
lists the optimal price p, and promotion x, for each product, along with the corresponding optimal
revenue.

Table 1: Parameters and outcomes at the optimal pricing/promotion for a three-product case. The
optimal revenue is R(py, x,) = $10.5.

Parameters Product 1 Product2 Product 3

Q 1 1 1

8 0.1 0.2 0.3
~ 0.8 0.3 0.5
P $20.50 $15.50 $13.83
Xy 1 0 0

So far, I have implemented two baseline policies: (1) Greedy and (2) Thompson Sampling (TS). The
TS algorithm is based on Lalit. et al. [5]

In the experiments, We compare two alternative policies the retailer might adopt under different batch
setting (10 vs. 500). Note that the prices and promotion are maintained at the same level within the
same batch:

1. Greedy. A purely myopic benchmark in which, at each period, the firm (i) estimates the
demand parameters by maximum likelihood (i.e., MLE) from all data observed so far
(prices, promotions, and realized market shares) and (ii) chooses the price-promotion pair
that maximizes the resulting in-sample revenue prediction. Thus, Greedy relies exclusively
on exploitation and performs no deliberate exploration.

2. D-optimal Exploration (DO). This is the proposed algorithm based on sample efficient
D-optimal exploration. We have alternated exploration and exploitation rounds. In the
exploration round, We used D-optimal design with Fisher information matrix to select price
and promotion combinations, which can maximize demand parameter learning. Demand
parameters for a multi-nomial logit demand model are estimated by using maximum
likelihood (i.e., MLE.) In the exploitation round, we used the learned demand model to find
and set optimal prices and promotions.

3. Thompson Sampling (TS). This algorithm follows the Bayesian / posterior-sampling ap-
proach outlined in Lalit. et. al. to balance exploration and exploitation through randomized
draws from the posterior over demand parameters. [S]]



We conduct a Monte Carlo experiment with 10 independent replications, each consisting of 5,000
purchase decisions with a bath size of 10. Note that prices are promotions are maintained within the
same batch across multiple purchase occasions. Results are averaged across replications and plotted
in Figure 1.

5 Results

The results of the experiments are averaged across replications and plotted in Figures 1. The optimal
revenue at time t that the firm would have earned playing the optimal price and promotion is $10.5 x
Tin Figure 1, the cumulative regrets (i.e., optimal revenue - realized revenue) are plotted when the
batch size is 10. As the reference paper ([S]) claimed, Thompson sampling (TS-Laplace) resulted in
lower cumulative regrets compared to the "Greedy" case, since the "Greedy" case can stick in inferior
local optimum and stops exploration. Our proposed D-optimal algorithm (Optimal-DO) achieved
the lowest cumulative regret, as expected. This shows that a sample efficient D-optimal exploration
based on Fisher information matrix can be very effective compared to the baseline and other approach
based on Thompson sampling of demand parameters.
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Figure 2: Cumulative Regret with Batch of 10

5.1 Quantitative Evaluation

Table 2 summarizes both (1) cumulative regret and (2) % of optimal profit to compare three algorithms.
It clearly shows that our proposed D-optimal exploration method results in the least cumulative regret
(1861) and largest % optimal profit (96.5 %). Thompson sampling (TS) is second best, followed by
the baseline of "Greedy" algorithm.

5.2 Qualitative Analysis

When we investigated promotion histories, the proposed D-optimal exploration algorithm properly
found that it is optimal to promote Product 1. In contrast, a "Greedy" algorithm often stuck in local
optimum and select to promote either Product 2 or Product 3. Thompson sampling algorithm (TS)
was also able to properly found that it is optimal to promote Product 1.



Table 2: Performance Comparison

Method Cumulative Regret % of Optimal Profit
Baseline (Greedy) 6201 88.2%
Our Approach (DO) 1861 96.5%
Thompson Sampling (TS) 3621 93.1%

6 Discussion

In the greedy setting, we found that the lack of strategic exploration in prices makes it stuck in
sub-optimal prices and promotions. As a result, the data it gathers are not very informative. In
contrast, in our proposed d-optimal exploration algorithm, more sample efficient exploration helps
to do more informative price and promotion exploration, which helps to recover true demand
parameters. Compared to Thompson sampling method (TS), the proposed D-optimal algorithm is
shown to be more sample efficient.

7 Conclusion

In conclusion, this study provides an effective approach to adaptive pricing and promotions with
a discrete choice model as a causal world model. Using a D-optimal exploration approach based
on Fisher information matrix, we develop a regret minimizing, (or profit maximizing) algorithm
for a retailer. Using simulations based on stylized settings, we show that the proposed method
significantly outperforms existing baseline approaches. This approach can be used to optimize prices
and promotions adaptively while simultaneously learning the demand model.

8 Team Contributions

* Minha Hwang: This is a solo project: 100% contribution

Changes from Proposal Not applicable since this is a solo project.
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A Implementation Details

The proposed algorithm is implemented in Python and PyTorch. To reduce overall run-time, we have
used Ray for parallelization. In the algorithm, We have alternated exploration and exploitation rounds.
In the exploration round, We used D-optimal design with Fisher Information Matrix to select price
and promotion combinations, which can maximize demand parameter learning. Demand parameters
for a multi-nomial logit demand model are estimated by using maximum likelihood (i.e., MLE.)
In the exploitation round, we used the learned demand model to find and set optimal prices and
promotions. Based on stylized simulated dataset, we have assessed the performance of the proposed
algorithm compared to the baseline of greedy algorithm.
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