
Extended Abstract

Motivation Large language models (LLMs) at test time typically generate a single response,
but recent work has shown that investing extra compute by sampling multiple reasoning paths
can substantially boost performance. Snell et al. (2024) In particular, the self-consistency strategy -
sampling N reasoning paths and answers, then selecting the most common final answer - yields strong
gains on many tasks. Wang et al. (2023) However, its underlying mechanisms remain unexplored; it’s
unknown whether self-consistency’s success stems more from upweighting likely-to-appear reasoning
traces or from leveraging diversity among reasoning traces, though the method’s authors suspect
the latter. Wang et al. (2023) Simultaneously, its efficacy has not been assessed in settings with
high-dimensional outputs, like the Countdown task, where answers are arithmetic expressions whose
equivalence is nontrivial to determine. We address three questions: (1) Does self-consistency improve
performance in Countdown’s high-dimensional answer space? (2) Which component - likelihood or
diversity - drives its gains? (3) How does self-consistency compare to alternative test-time strategies,
like a ground-truth verifier or stream-of-search? Gandhi et al. (2024)

Method We build on Qwen 2.5 0.5B Base, performing supervised finetuning (SFT) on the Warm-
Start dataset, which imparts knowledge of the Countdown task, correct answer formatting, and a
toolkit of reasoning strategies to think through the problem before generating a final answer.

From this SFT checkpoint, we run four test-time regimes. First, we characterize collisions, sampling
N answers at temperature 0.6 and quantifying how often distinct answers "collide" (i.e., map to
the same canonical form). To do this, we write a novel lightweight equivalentizer that normalizes
expressions’ parentheses, operator order, and whitespace. Second, we implement self-consistency,
selecting the largest collision group as our final answer. We compare self-consistency to two other
approaches: (1) a ground-truth verifier, which symbolically evaluates each sample and selects the first
correct one, representing an upper bound on test-time performance, and (2) Stream of Search, for
which we finetune SFT Qwen on solver trace sequences (state -> action -> next state) as in Gandhi
et al. (2024). Being self-verifying but lacking access to ground truth, Stream of Search is a nice
middle ground for comparison. Fourth, to test if self-consistency’s strength comes from diversity in
reasoning paths, we explicitly upweight answers stemming from more diverse reasoning paths. We
resolve ties by using Bge-M3 embeddings to choose the most dispersed collision group of reasoning
traces. We also implement diversity-incentivizing BEAM search to generate most diverse reasoning
paths.

Finally, for the default project requirement, we implement RLOO on our SFT Qwen model.

Implementation & Results Evaluating on Countdown, we find performance improvements from
test-time compute. With a single-sample baseline, our plaintext (SFT Qwen) model outputs the
correct answer 34% of the time; by N = 10, a ground-truth verifier achieves 63% accuracy, while
self-consistency reaches 46%, recovering almost half the possible test-time improvement (i.e., half the
gap between single-sample and N = 10 ground-truth verifier performance). At one sample, Stream
of Search underperforms the plaintext model, achieving 29% accuracy; but at N = 2 it surpasses
self-consistency’s performance and by N = 10 it achieves 52% accuracy. Diversity-incentivizing
BEAM search degrades performance, but the Bge-M3 embeddings are very successful, correctly
breaking ties 80% of the time as opposed to 50% with a random baseline. Surprisingly, improvement
for all three test-time methods plateaus around N = 7. If the model cannot answer a problem
correctly on the first try, it has a more than half chance of failing even given 9 further attempts.

Discussion & Conclusion Our results show that self-consistency remains useful even in high-
dimensional output spaces, recovering half the possible test-time improvement with a suitable
equivalentizer. Given that explicitly prioritizing diverse reasoning paths leads to better tie-breaking,
our results suggest that diversity of reasoning traces plays an important role in the self-consistency
effect, though further experiments are needed. Self-consistency on the plaintext model does underper-
form many-shot Stream of Search. Indeed, Stream of Search applied to our Qwen model essentially
gains self-verification abilities, never once committing an arithmetic mistake, in stark contrast to the
original paper on the smaller GPT-Neo model. Gandhi et al. (2024)



Refining and Expanding the Self-Consistency Strategy

Charlotte Nicks
Departments of Mathematics, Electrical Engineering

Stanford University
cnicks13@stanford.edu

Teddy Ganea
Departments of Mathematics, Classics

Stanford University
tganea@stanford.edu

Eli Myers
Department of Mathematics

Stanford University
epmeyers@stanford.edu

Abstract

We investigate the mechanisms and efficacy of the self-consistency approach -
sampling N reasoning chains and voting on the most frequent answer - in the
high-output-dimensional Countdown arithmetic task. Prior literature conjectures
self-consistency’s success stems from a diversity bonus (diverse, convergent
reasoning paths signal correctness), but a likelihood bonus (more likely, com-
mon paths are simply higher quality) could also explain gains. To investigate
whether self-consistency can handle high-dimensional output spaces, and to dis-
entangle these effects, we finetune a Qwen-2.5-500M-Base model finetuned on
the WarmStart dataset, then compare three test-time strategies: self-consistency;
a ground-truth verifier that, picking the first symbolically correct sample, repre-
sents the upper bound of test-time compute capabilities; and a Stream-of-Search
approach, where we finetune Qwen on solver traces in a structured, tree-based
search approach to Countdown. Single-sample SFT achieves 34% accuracy; self-
consistency rises to 46% at N = 10, recovering half the possible improvement
from test-time compute; and Stream-of-Search peaks at 52%. We further introduce
two diversity interventions - semantic tie-breaking for self-consistency via Bge-M3
embeddings and a diversity-incentivizing BEAM search - finding that the former
boosts accuracy, correctly breaking ties in 80% of cases, suggesting the diversity
bonus at play. All methods plateau by N = 7, highlighting diminishing returns on
test-time compute. Our results confirm that self-consistency remains effective for
high-dimensional output spaces, that diversity in reasoning paths aids performance,
and that learned search strategies can outperform majority voting.

1 Introduction

Large language models (LLMs) at test time typically generate a single response, but recent work has
shown that investing extra compute by sampling multiple reasoning paths can substantially boost
performance. Snell et al. (2024) In particular, the self-consistency strategy - sampling N reasoning
paths and answers, then selecting the most common final answer - yields strong gains on many
tasks. Wang et al. (2023) However, its underlying mechanisms remain unexplored. The authors
conjecture this is effective because when diverse sets of reasoning paths converge on the same answer,
this indicates the answer is more likely to be correct, especially in quantitative domains. Wang
et al. (2023) However, self-consistency could also be improving performance because it upweights
likely-to-appear reasoning traces, which, being of higher probability in the model, might also be of
higher quality. We term the former effect a diversity bonus and the latter a likelihood bonus.

Stanford CS224R 2025 Final Report



Simultaneously, its efficacy has not been assessed in settings with high-dimensional outputs, like the
Countdown task, where answers are arithmetic expressions combining 4 numbers and 4 arithmetic
operations, whose equivalences are nontrivial to determine, and where there is a combinatorial
explosion in the number of unique answers possible. With so many answers possible, even with
careful equivalentization, it is unclear prima facie that our model will produce sufficient "collisions"
(i.e., repeat answers from reasoning traces) to yield any performance boost from the self-consistency
strategy.

In this paper, we address three questions: (1) Does self-consistency improve performance in Count-
down’s high-dimensional answer space? (2) Which component - likelihood or diversity - drives its
gains? (3) How does self-consistency compare to alternative test-time strategies, like a ground-truth
verifier or stream-of-search?

We first finetune Qwen-2.5-500M-Base on the WarmStart dataset, which imparts knowledge of the
Countdown task, correct answer formatting, and a toolkit of reasoning strategies to think through the
problem before generating a final answer. Using this SFT Qwen model, trained to think in English
plaintext before outputting its answer, we implement three test-time regimes: (1) self-consistency; (2)
a ground-truth verifier approach, which symbolically evaluates each sample and selects the first correct
one, and (3) Stream of Search, for which we finetune SFT Qwen on solver trace sequences (state ->
action -> next state) as in Gandhi et al. (2024). We experiment with N ranging from 1 to 10. The
ground-truth verifier represents an upper bound on test-time performance, since it only fails if none of
the N model generations yield a correct answer. Meanwhile, Stream of Search is a nice middle ground
for comparison to self-consistency, being self-verifying but lacking access to ground truth. (Indeed,
our Stream-of-Search model never made an arithmetic mistake in all the generations we sampled, a
difference from the 15% arithmetic mistakes of the original Stream-of-Search paper, which used a
smaller model. Gandhi et al. (2024) This in effect made our Stream-of-Search self-verifying, because
search paths either terminated successfully, or the model ran out of context length.)

Having tackled questions (1) and (3), we address (2) by augmenting the role of diversity in reasoning
paths, reasoning that if the diversity bonus plays a key role in self-consistency’s performance, then
strengthening it should further improve performance. We do so in two ways. We implement a
diversity-incentivizing BEAM search to elicit more diverse reasoning paths from our SFT Qwen
model. We also build upon the self-consistency algorithm to explicitly upweight diversity of reasoning
paths in selecting answers; specifically, we break ties by embedding reasoning traces using the bge-M3
model and selecting the answer for which the reasoning traces are more dissimilar.

2 Related Work

Countdown and Stream-of-Search. Our setting is the Countdown task, a generalization of the
24 Game, where four numbers are combined using arithmetic operations to reach a target number.
Gandhi et al. (2024) Countdown is challenging due to its combinatorial complexity, requiring careful
planning, search, and backtracking. Stream-of-search (SoS) represents search processes as serialized
strings and fine tunes models on search trajectories to autonomously navigate search trajectories.
Using SoS, other authors have achieved 36% accuracy on the Countdown using GPT-Neo 250M.
Gandhi et al. (2024)

Self-Consistency. The self-consistency strategy samples multiple chains of thought and selects the
most frequent answer, improving accuracy by significant margins accross different tasks. The most
extreme improvements are on arithmetic tasks, while multiple choice and yes-or-no tasks undergo
smaller improvements. Wang et al. (2023)

Self-consistency was tested on tasks that have a much smaller solution space than the Countdown
task (as the arithmetic tasks tend to have answers that are small, integer numbers). Additionally,
self-consistency was initially designed for freeform reasoning, while SoS search trajectories are highly
formal steps of tokenized reasoning. Gandhi et al. (2024) Wang et al. (2023) So, the investigation of
self-consistency’s performance in this new setting is a novel contribution.

Encouraging Diversity. Self-consistency seeks to obtain diverse reasoning pathways via high
temperature and top-k sampling. We explore more sophisticated methods of encouraging diversity,
since we want to elicit specifically diverse, good reasoning paths (changing temperature and top-k
may compromise quality of reasoning paths).

2



3 Methods and Experiments

3.1 Supervised Finetuning

In supervised finetuning, three methodological approaches enabled us to achieve high performance,
cumulatively taking our score from 0.06 to nearly 0.4. First was response parsing. We found that our
model tended to fill all the available space in its context window with gibberish even after solving
the problem, leading to its final answer being of lower quality. Taking the final answer after its first
reasoning trace (demarcated by special <think> tags) improved score to 0.19. Second, we found that
aggressive gradient accumulation greatly improved performance. Thirdly, after experimenting with
many learning rate schedulers, we found that a consistently high (3 ∗ 10−5) and unchanging learning
rate was key to maximizing model score. Note that the scores discussed in this section are not answer
accuracy; following the scoring scheme in Gandhi et. al., we also assign a score of 0.1 to incorrect,
but correctly-formatted, responses. Gandhi et al. (2025)

3.2 RLOO

For our RLOO implementation, we struggled with memory as we were only able to store one set of
logprobs at a time (we were using a 40G A100). However, by performing a backpropagation step
after each generation’s logprob calculation, we were able to effectively mean over the generations
without holding them all in memory at one time. We used 16 gradient accumulation steps and a
k = 8.

3.3 Best of N Suitability

When we began our extension, we wanted to understand whether or not we could actually implement
best of N sampling in the Countdown task. This algorithm relies on selecting the most popular
answer out of a set of model generations. However, in the Countdown task, many different textual
outputs can be considered equivalent. For example, we would want (6 + 3) + 9 to be counted as the
same as (9 + 3) + 6. To do this, we first wrote an equivalence checker, which determined if two
equations belonged to the same equivalence class. We did this by checking whether, if the numbers
were replaced with python variables, the expressions were the same. We grouped answers in this way
and sampled with temperature at 0.6.

3.3.1 Experiment 1

In our first experiment, we examined the size of the collisions (equivalence classes) that resulted from
a growing N . We also measured the average and maximum group sizes. We did so by computing N
samples (we used N from 1 to 10) on 100 different prompts.

3.3.2 Experiment 2

In our second experiment, we investigated how frequently there were any collisions as well as how
frequently there were tied collisions. We did so by computing N samples (we used N from 1 to 10)
on 100 different prompts.

3.4 Comparing Test-Time Compute Strategies

3.4.1 Stream of Search

We fine-tuned the base QWEN model on a stream-of-search database, following the methodology
presented in Gandhi et al. (2024). We used random breadth first and depth first search trajectories as
the training data. The main difference between our approach and the one in the paper was the fact
that the paper trained a model from scratch and we fine-tuned a model that already had quite a bit of
pretraining, so our training took many fewer examples and much less time and compute to complete.

We wanted to try combining the best of N algorithm with stream of search. However, as it turned out,
in the vast majority of cases, stream of search’s failure mode was not identifying the answer before
running out of time (as the max length was capped) rather than producing an incorrect answer. Thus,
were were nearly no collisions.

3



As a side note, if it were possible to get stream of search to produce incorrect answers, possibly
by increasing the difficulty of moving between nodes, the it would be much easier to evaluate how
similar two reasoning paths were (since computing the alignment of states gives a clear metric for
how similar two search paths were).

However, stream of search still presented an interesting test-time compute strategy. We try running
the stream of search algorithm N times. We select the first generation that actually leads to an output,
and we extract the equation from the search trajectory. While we considered also running a single
stream of search with the entire test time compute budget, we found that it was very common for
the model to get stuck in an incomprehensible search loop. Running separate generations seemed to
provide necessary diversification.

Because we extract and format the solution, it does not make sense to give credit for formatting. Thus,
in this paper, we report only the percentage of times where the correct solution is identified rather
than the average reward.

3.4.2 Verifier Selection

In this section, we implemented a verifier to check using our ground truth understanding (the numbers
and the target) whether a solution was valid. We sampled N solutions from the model, and we
selected the first solution where the verifier was able to confirm the solution’s correctness. If it finds
none, it selects a properly-formatted solution to at least score formatting points (on the leaderboard –
this does not matter in the results we report here since we report accuracy rather than reward).

3.4.3 Best of N Selection

In this section, we wanted to understand how we can select a good sample without the ground truth
verifier, since there are many applications for which this is not available. We sample N solutions,
group them into equivalency classes as described above (or discard them if they do not contain a vaild
equation), and select a random solution from the largest equivalence class, breaking ties randomly.

3.4.4 Experiment 3

We compared the accuracy that can be obtained by using each of the above methods, scaling N from
1 to 10.

3.5 Diversity Boosting

3.5.1 Experiment 4

In order to better understand the underlying drivers of the best of N algorithm’s effectiveness, we
wanted to see whether boosting diversity in sample generations could help improve the algorithm.
The logic behind this was that if more diverse reasoning paths agree on an answer, it is perhaps better
evidence for that answer than two similar reasoning paths giving the same answer.

We tried using a beam search sampling strategy to get our samples. We used 10 beams with a diversity
penalty of 1 using HuggingFace sampling. This allowed us to produce a more diverse set of outputs.

3.5.2 Experiment 5

After experiment 4, we determined that it would be better to leave model sampling alone to ensure
that we were still getting the highest possible generation quality.

However, it is still possible to give a bonus to diversity by selecting equivalence classes that have the
greatest amount of diversity within their samples (rather than just the largest number of samples).
This required that we come up with a way to measure how similar samples were, which we did by
using a bgem3 embedding to get a vector representing the model’s output. Then, we took the sine
dissimilarity between pairs of these embeddings to quantify how different the embeddings were from
one another (this was because in the embedding space, direction matters more than magnitude). We
summed the pairwise difference measurements in each group, and we selected the group that had the
most diversity within it.

4



4 Results and Discussion

4.1 Best of N Suitability

4.1.1 Experiment 1

We found that with N = 10, we were able to get large groups of collisions (Figure 1). Note that by
collision, we mean two generations that give equivalent answers.

Figure 1: Group count and size growth as the number of generations N increases.

4.1.2 Experiment 2

Additionally, we found that at N = 10 there was a nontrivial number of ties, indicating that there
were collisions between wrong answers as well (Figure 2). This means that selecting the largest
group won’t be infallible, making for an interesting environment to explore methods of selecting the
correct group.

Figure 2: Nontrivial collisions are the norm after N = 4. Ties between collision groups become
common around N = 9.

4.2 Comparing Test-Time Compute Strategies

4.2.1 Experiment 3

A comparison of the three test-time compute methods can be found in Figure 4. As one might expect,
the verifier-based strategy performed best. The number of samples needed on average before stream
of search actually found a solution (whether or not it was correct – though in the huge majority of
cases, found solutions were correct, and we were only able to find one or two counterexamples across
all experimentation) can be found in Figure 3.

5



Figure 3: Distribution of the number of samples with max length of 1024 required before stream of
search converges on an answer.

Stream of search performed better than best of N , however, this was also expected given that stream
of search has undergone specialized fine tuning for a specific, well-tested method of solving this
task. Best of N was actually able to recover about half of the verifier-based improvement (which
represents the upper bound of performance for an algorithm selecting one of N samples from the
base fine-tuned model). Overall, we were impressed by the strength of the best of N algorithm given
its lack of ground truth knowledge or specialized fine tuning.

Figure 4: Accuracies of the three test-time compute methods over time.

6



4.3 Diversity Boosting

4.3.1 Experiment 4

When performing BEAM sampling, we found that overall, the model’s generation quality was very
poor due to the greedy algorithm. So, despite the increased diversity, the fact that the outputs were
actually worse seemed to be too big of an issue to overcome. Ultimately, we decided not to proceed
down this path and instead focused on the more promising embedding-based approach. However,
we would be interested in trying to figure out how to sample stochastically while incorporating a
diversity incentive in sampling to see if this would help.

4.3.2 Experiment 5

Diversity boosting in this fashion worked quite well, especially for tie-breaking. Indeed, while random
tie-breaking selected the correct answer 50% of the time, tie-breaking by preferring the contending
cluster with most sine-dissimilar reasoning traces achieved a 80% performance. Given how few ties
there were, however, it is unclear to us whether this result is significant. Notably, this particular
formulation did not change results much beyond tie-breaking; in our sampling, answers with less,
but more diverse on average, reasoning traces never surpassed answers with more reasoning traces
on this metric, probably because we were taking the sum over sine dissimilarities, the number of
which increases quadratically with collision cluster size. More sophisticated mathematical formulae
for upweighting diversity (perhaps the sum divided by the number of reasoning traces in a collision
cluster) would yield even further performance improvements.

5 Conclusion

In summary, our experiments demonstrate that majority-vote self-consistency, when equipped with a
good equivalentizer, remains a powerful, verifier-free strategy even in the high-dimensional output
space of the Countdown task, recovering nearly half of the available test-time performance gain.
Crucially, our semantic tie-breaking intervention - selecting more diverse reasoning clusters via
Bge-M3 embeddings - suggests that a true diversity bonus underlies much of self-consistency’s
benefit. These results show that the self-consistency strategy generalizes unexpectedly well, and that
modified versions of the self-consistency strategy could continue to yield performance improvements
even in more complex, difficult-to-verify, reasoning domains. Future work on explicitly incorporating
information about the diversity of reasoning traces into a modified self-consistency approach, as well
as applying the self-consistency strategy to more complex reasoning domains, both quantitative and
not (e.g., legal work or strategy games), could yield results of note.

A key limitation of this paper is that, though the results provide the first suggestion that the diversity
bonus indeed plays a major role in the self-consistency effect as conjectured, we do not conclusively
show this. Pitting the diversity and likelihood effects more directly against each other is another
avenue of future work. Furthermore, characterization remains to be done, e.g., scrutinizing when the
largest collision clusters contain very similar reasoning traces, or very diverse traces.

Lastly, this work contains two cautionary tales about the importance of pretraining. First is that
the performance of all test-time methods plateau around N = 7 generations. For nearly two-fifths
of Countdown question, it seems that our model, even given near-unlimited sample generation
opportunities, might never land on the right answer; these problems seem to be fundamentally
unsolvable by SFT Qwen. In particular, SFT Qwen consistently struggles with multiplication of large
numbers; here, without better arithmetic pretrained, there might be a cap on test-time improvements,
even given unlimited compute. Second is our experience with Stream of Search. We’d initially
intended to apply self-consistency onto Stream of Search; but, probably due to our larger Qwen
model, Stream of Search made no arithmetic mistakes in our observations, a qualitative change from
results reported in the original paper. Gandhi et al. (2024) In other words, results from test-time
compute might no longer generalize with better, or different, pretraining regimes, an important
consideration.

7



6 Team Contributions

All work for this project up until week 9 was done in joint sessions where the three of us worked
together. This includes all programming for the milestone along with evaluators, SFT model,
dataloaders, and the first few experiments for the extension. At the beginning of week 9, Teddy
sustained a serious injury and was temporarily unable to work at a computer. However, he was
present and active during group coding sessions, workshopping ideas, debugging, and coming up
with experiments. The writing for the proposal, milestone, and final report was also completed
synchronously.

If we had to divide the work, we would say that the following individuals led the following things in
terms of the default project. However, each person participated in all activities listed below.

• Charlotte. All dataloaders. SFT model code. Proposal and milestone (along with Teddy).
• Eli. SFT model hyperparameter tuning. RLOO model code.
• Teddy. Evaluation and sampling. Writing reports.

We don’t think it is possible to break down who led what on the extension since everybody was very
involved in everything.

Changes from Proposal In the proposal, we divided each task separately, which just was not how
we ended up completing the project. Our schedules worked out such that meeting to complete all
work was feasible, and we found this style of work to be most productive and enjoyable.

References
Kanishk Gandhi, Denise Lee, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Good-

man. 2025. Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly
Effective STaRs . (2025). https://arxiv.org/pdf/2503.01307

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winston Cheng, Archit Sharma, and
Noah D. Goodman. 2024. Stream of Search (SoS): Learning to Search in Language. arXiv preprint
arXiv:2404.03683v1 (2024). https://arxiv.org/pdf/2404.03683

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling LLM Test-Time
Compute Optimally can be More Effective than Scaling Model Parameters. arXiv preprint
arXiv:2408.03314v1 (2024). https://arxiv.org/pdf/2408.03314

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves Chain of Thought Reasoning
in Language Models. arXiv preprint arXiv:2203.11171v4 (2023). https://arxiv.org/pdf/
2203.11171

8

https://arxiv.org/pdf/2503.01307
https://arxiv.org/pdf/2404.03683
https://arxiv.org/pdf/2408.03314
https://arxiv.org/pdf/2203.11171
https://arxiv.org/pdf/2203.11171

	Introduction
	Related Work
	Methods and Experiments
	Supervised Finetuning
	RLOO
	Best of N Suitability
	Experiment 1
	Experiment 2

	Comparing Test-Time Compute Strategies
	Stream of Search
	Verifier Selection
	Best of N Selection
	Experiment 3

	Diversity Boosting
	Experiment 4
	Experiment 5


	Results and Discussion
	Best of N Suitability
	Experiment 1
	Experiment 2

	Comparing Test-Time Compute Strategies
	Experiment 3

	Diversity Boosting
	Experiment 4
	Experiment 5


	Conclusion
	Team Contributions

