Extended Abstract

Motivation Preference-based learning has emerged as a powerful alternative to supervised fine-
tuning for aligning language models with human intent, particularly for open-ended and subjective
tasks. However, models trained with preference data often produce outputs of inconsistent quality,
especially when evaluated on challenging benchmarks such as UltraFeedback, which rely on relative
preferences without access to a ground truth reward signal. These challenges are amplified in
smaller-scale models like Qwen2.5-0.5B, which lack the capacity of larger LLMs and may struggle to
internalize alignment objectives. This project investigates whether a hybrid approach, in combining
preference optimization at training time with sampling and reranking at inference, can lead to more
robust and consistent instruction-following behavior, even in resource-constrained settings.

Method We fine-tune the Qwen2.5-0.5B base model using two distinct alignment strategies. First,
we apply supervised fine-tuning (SFT) on the SmolTalk dataset to establish a baseline instruction-
following model. To further align the model with human preferences, we apply Direct Preference
Optimization (DPO) on top of the SFT-tuned model. DPO, which contains pairwise human prefer-
ences across diverse prompts and completions, is initialized from the SFT checkpoint, allowing it to
leverage the strong instruction-following foundation established through supervised fine-tuning. To
further boost performance at inference, we introduce a Best-of-N reranking strategy that samples
multiple candidate responses per prompt and selects the highest-scoring one using the Nemotron-70B
reward model. We vary the sampling temperature to study the trade-off between output diversity and
alignment fidelity, analyzing how test-time decoding interacts with preference-optimized training.

Implementation The SFT model was trained using a batch size of 2, gradient accumulation of 8,
and a learning rate of 5 x 10> on 8000 instruction-response pairs from the SmolTalk dataset. For
DPO, we used the full UltraFeedback dataset, training with a batch size of 4, gradient accumulation
of 8, and a learning rate of 1 x 10~6. The DPO model used the SFT model as its reference policy. For
the Best-of-N extension, we generated N = 4 completions per prompt using top-k sampling, then
reranked them with the Nemotron-70B reward model. We experimented with temperatures of 0.25,
0.6, and 1.0 to analyze the effect of sampling entropy on final quality. Evaluation included reward
accuracy, reward margins, preference-based loss, and win rates from reward model comparisons.

Results Quantitative results demonstrate that DPO significantly outperforms SFT, achieving a win
rate of 0.6200 over the SFT model. When combined with Best-of-N reranking at temperature 0.6,
the win rate improved to 0.9350, showcasing the complementary value of decoding-time selection.
Additional experiments with alternative temperatures (0.25 and 1.0) revealed robustness across
sampling configurations. Submissions to the UltraFeedback class leaderboard corroborated these
gains: the DPO model achieved a score of 0.1150, while the reranked variant reached 0.2000, both
exceeding the official 0.1 benchmark threshold. Qualitative analysis further confirmed that DPO
reduced repetition and hallucination, and reranking improved coherence, instruction adherence, and
factual reliability across tasks.

Discussion Our findings show that preference-based optimization and test-time reranking are highly
complementary. DPO effectively aligns model behavior with human preferences during training,
while Best-of-N sampling enables dynamic selection of higher-quality outputs at inference. Together,
they help mitigate typical small model limitations such as verbosity, hallucination, and misalignment.
However, limitations remain. The need to generate and evaluate multiple completions increases
inference cost, which may be a concern in latency-sensitive applications. In addition, reliance on
reward models introduces concerns around their accuracy, calibration, and domain generalization.
The binary framing of preferences in DPO also oversimplifies complex quality judgments, motivating
future work in richer feedback modeling.

Conclusion This project demonstrates that combining Direct Preference Optimization with reward-
based reranking at inference significantly improves instruction-following performance in smaller
language models. Our results highlight the importance of integrating both training-time preference
alignment and decoding-time generation control. These complementary strategies offer a scalable
pathway toward more helpful, coherent, and reliable language model outputs, particularly in low-
resource or compact-model scenarios.
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Abstract

We investigate the effectiveness of combining preference-based training and test-
time inference/reranking as an extension to improve instruction-following in com-
pact language models. Using the Qwen2.5-0.5B as a base model, we compare
supervised fine-tuning (SFT) on the SmolTalk dataset with Direct Preference Opti-
mization (DPO) built on top of the SFT model using the UltraFeedback dataset.
As an extension, we introduce a test-time reranking strategy that samples multiple
completions per prompt and selects the best one using the Nemotron-70B reward
model. Our results show that DPO largely outperforms SFT (win rate 0.6200),
and that reranking further boosts performance (up to 0.9350 at temperature 0.6).
This work highlights the complementary strengths of preference alignment during
training and reward-guided selection at inference, offering a practical pathway to
improving output quality in low-resource LLMs.

1 Introduction

Training reward-aligned language models remains a central challenge in the development of reliable
Al systems, particularly in settings where reward signals are noisy, sparse, or unavailable at inference
time. This difficulty is especially pronounced in preference-based learning methods such as Direct
Preference Optimization (DPO), where models are trained to prefer responses ranked higher in
pairwise human comparisons rather than optimizing for a known reward function. While such
approaches have shown promise in improving alignment and response quality, output variability and
unstable instruction-following behavior remain persistent issues, especially for smaller models and
open-ended prompts.

These challenges are exacerbated when using benchmarks like UltraFeedback, which provide only
relative preference labels without a ground-truth reward function. This makes it difficult to both
train and evaluate models reliably, particularly in low-resource situations. Even with fine-tuning, the
quality of generated responses may vary widely. This shows the need for strategies that enhance
robustness beyond training alone.

In this project, we focus on the task of Instruction Following and explore multiple approaches to
improve performance: supervised fine-tuning (SFT), preference-based learning via DPO, and a
test-time reranking strategy. The central hypothesis we examine is whether generation quality can be
improved by deferring part of the decision-making process to test time through Best-of-N reranking,
wherein multiple completions are sampled and the highest-scoring one is selected according to a
strong reward model. Specifically, we use the Nemotron-70B reward model to evaluate and rerank
outputs from the Qwen2.5-0.5B base model and its SFT and DPO variants. This setup allows us
to assess both the training-time benefits of DPO and the inference-time gains of sampling-based
reranking, especially under resource-constrained conditions.
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2 Related Work

Instruction-following and alignment in language models have received increasing attention in recent
years as researchers seek to make large language models more helpful, truthful, and safe. A foun-
dational approach in this area is Supervised Fine-Tuning (SFT) on instruction-tuning datasets, as
demonstrated in models like InstructGPT (Ouyang et al., [2022)) and FLAN (Wei et al.| |[2022)). While
effective, SFT often falls short of capturing nuanced human preferences, particularly for subjective or
open-ended tasks.

To address this, preference-based methods have emerged as a more fine-grained alternative. Rein-
forcement Learning from Human Feedback (RLHF), most notably implemented via Proximal Policy
Optimization (PPO) in InstructGPT, enables models to learn from pairwise comparisons instead of
fixed targets. However, RLHF is complex and computationally expensive, often requiring careful
tuning of reward models and training stability mechanisms (Bai et al., |2022} |Christiano et al., 2023]).

Direct Preference Optimization (DPO) (Rafailov et al.| 2024} offers a simpler and more stable
alternative by directly optimizing for preference logits using a contrastive loss between preferred and
dispreferred responses. This has been shown to yield comparable or better alignment performance
than PPO-based methods, with much lower computational overhead. DPO has been particularly
effective in instruction-following and dialog tasks, making it a compelling choice for low-resource or
smaller model scenarios.

Recent work has further extended DPO with methods such as fDPO for filtering noisy preferences
(Morimura et al.l2024) and ODPO for preference weighting (Amini et al.,|2024)). These efforts aim
to better handle real-world preference distributions and training noise. In addition, reward model
calibration has emerged as an important area of concern, with techniques such as Cal-DPO (Xiao
et al.| [2024)) and DICE (Chen et al.| [2025) improving reward quality and stability, especially for
downstream tasks.

Our work extends DPO by incorporating a test-time reranking strategy inspired by approaches such
as Best-of-N sampling (Jinnai et al., 2025; Ichihara et al.}[2025; |Gui et al., [2024; [Sessa et al.|, 2024),
which generate multiple completions and select the most aligned response using an external reward
model. This idea builds on the insight that sampling-based decoding can significantly affect model
outputs, even after alignment training.

Recent works such as UltraFeedback (Cui et al,|2024) have proposed evaluating language models
using large reward models instead of human annotators, enabling more scalable preference bench-
marking. We adopt this evaluation setup using Nemotron-70B as a reward model to assess the
alignment and fluency of our DPO and DPO in combination with reranking models. This method
aligns with the growing shift toward automatic preference evaluation at scale, which leverages
alignment-focused reward models.

Finally, while alignment research often centers on large models, recent works highlight the unique
challenges and opportunities in applying alignment techniques to smaller models. Our study con-
tributes to this direction by demonstrating how decoding control and reward reranking can compensate
for the limited capacity of compact architectures. Together, our method draws from this evolving
ecosystem of SFT, DPO, reward modeling, and decoding strategies to explore whether smaller LLMs
can still achieve strong alignment through a combination of efficient training and inference-time
control.

3 Method

Our approach to improving instruction-following performance involves three components: Supervised
Fine-Tuning (SFT), Direct Preference Optimization (DPO), and test-time reranking using Best-of-N
sampling. We fine-tune the Qwen2.5-0.5B base model using two distinct alignment strategies. First,
we apply supervised fine-tuning on the SmolTalk dataset to establish a baseline instruction-following
model. Next, we build on this foundation by applying Direct Preference Optimization using the
UltraFeedback dataset, initializing DPO from the pretrained SFT model. This hierarchical setup
allows DPO to refine instruction-following behavior by explicitly modeling human preferences over
the outputs of an already instruction-tuned model. Below, we describe each component in detail,
including model architectures, loss functions, and decoding strategies.



3.1 Supervised Fine-Tuning (SFT)

We begin with a pretrained base model (Qwen2.5-0.5B) and fine-tune it using supervised learning
on instruction-response pairs. The SFT objective is to maximize the likelihood of human-written
responses given a prompt, defined by the loss below:
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where the supervised learning objective is optimized over queries x and completions y drawn from
an expert distribution.

3.2 Direct Preference Optimization (DPQO)

To align the model more closely with human preferences, we apply Direct Preference Optimization
(DPO) using a dataset of preference pairs (z, Y., y1), where y,, is the preferred response over y; for
prompt . DPO eliminates the need for reinforcement learning by directly optimizing a contrastive
loss between the logits of the chosen and rejected responses. The objective is:
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and here, 7y is the policy that is being optimized and 7.t is the reference policy. Implicitly, the reward
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And the reward accuracy for DPO is the proportion of preference pairs in the dataset for which
r(x, yw, Y1) > 0. These two values can be used to measure the extent of DPO’s learning of human
preferences.

margin for a preference pair (z, Y., y;) is defined as r(z,yy,y;) = Blog (w)

3.3 Test-Time Reranking with Best-of-N Sampling

To further improve generation quality, we implement a decoding-time strategy where the model
generates NV candidate responses per prompt using top-k sampling with temperature. These candidates
are then scored using an external reward model (Nemotron-70B) and a response among the highest-
scoring ones is selected. This approach decouples generation and selection, leveraging diversity in
outputs while enforcing alignment through reward-based selection.

Formally:
j=arg max R(y;,x) 3)

where R(y;,x) is the reward model score for a candidate response y; given prompt .

By combining preference-based learning with decoding-time optimization, our method seeks to
produce outputs that are not only instruction-following but also aligned with downstream preferences.

4 Experimental Setup

4.1 Datasets

Our experiments use two datasets: SmolTalk and UltraFeedback. The SmolTalk dataset is used for
supervised fine-tuning (SFT). For preference training with Direct Preference Optimization (DPO),
we use the full UltraFeedback dataset, which contains pairwise human preference comparisons over a
diverse range of instructions and completions.



4.2 Training Configurations

We initialize our models with the Qwen2.5-0.5B architecture and fine-tune using the SmolTalk
dataset. SFT is performed with a batch size of 2 and a gradient accumulation step of 8 to simulate an
effective batch size of 16. We use a learning rate of 5 x 1075 and a max token length of 512. Due to
computational constraints, we only trained SFT on a random subset with 8000 pairs from smolTalk
for 1 epoch. This model is also used as the reference model for subsequent DPO training.

For DPO training, we use the full UltraFeedback preference dataset. The training is conducted with a
batch size of 4 and gradient accumulation of 8, giving an effective batch size of 32. We use a smaller
learning rate of 1 x 107 to ensure stable optimization. The DPO temperature hyperparameter /3 is
set at 0.1 and the max token length is set to 1024. And we trained DPO for 1 epoch. Reward margin
and reward accuracy metrics are logged during training to monitor model progression and preference
alignment.

To enhance model performance at inference time, we adopt a Best-of-N sampling strategy as a
test-time extension. Specifically, for each input prompt, we generate N = 4 completions using
top-k sampling and rerank them using the Nemotron-70B reward model. A response among the
highest-scoring ones is selected as the final output. Our primary configuration uses a temperature
of 0.6, but we also experimented with lower temperatures of 0.25 and 0.1 to examine the trade-offs
between diversity and precision.

4.3 Evaluation

For evaluation, we compute win rates using the LLaMA-3.1-Nemotron-70B reward model to score
pairwise outputs. We report both reward margins and reward accuracy metrics for DPO. In addition
to quantitative analysis, we perform qualitative inspection on a held-out set of UltraFeedback prompts
to assess fluency, instruction-following, and factual consistency across model variants.

5 Results

We present both quantitative and qualitative evaluations to assess the effectiveness of Direct Preference
Optimization (DPO) and its enhancement via top-N decoding. The quantitative results leverage an
automated reward model to benchmark comparative response quality, while the qualitative analysis
provides deeper insight into the kinds of improvements and failure modes exhibited by each variant.
Together, these evaluations offer a comprehensive view of model behavior across instructional, factual,
and generative tasks.
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Figure 1: SFT training loss curve on the SmolTalk dataset.

Figure [I]and Figure[2]show the training loss curves for the SFT and DPO stages, respectively. The
SFT model exhibits smooth convergence on the SmolTalk dataset, confirming stable learning under
the supervised objective.
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Figure 2: DPO training step loss with exponential smoothing (factor 0.95).

The DPO model, trained on the UltraFeedback dataset, demonstrates effective optimization with
a smoothed training loss curve (smoothing factor of 0.95). Evaluation metrics show promising
alignment performance: the chosen response reward reaches 0.1878 while the rejected response
receives a much lower reward of —0.3919 (more negative is better), yielding a reward margin of
0.5798. The corresponding evaluation loss is 0.563, with a reward accuracy of 0.6923. These results
suggest successful preference alignment during training and support the efficacy of DPO even under
resource-constrained conditions.

5.1 Quantitative Evaluation

To evaluate overall model quality, we performed quantitative comparisons using the LLaMA-3.1-
Nemotron-70B reward model, which scores pairwise generations by estimating human preference
alignment. This automated evaluation helps benchmark improvements across various training and
decoding strategies. Results are reported as win-rates, such that it measures the proportion of times
the first model’s response is preferred over the second.

Model A Model B Win Rate (A over B)
SFT Qwen2.5 Baseline 0.9450
SFT + Top-N Qwen2.5 Baseline 0.9700
DPO SFT 0.6200
DPO + Top-N (' = 0.25) SFT 0.9300
DPO + Top-N (T'=0.6)  SFT 0.9350
DPO + Top-N (I' =1.0)  SFT 0.8750

Table 1: Pairwise Win Rates from Nemotron-70B Reward Model Evaluation

First, comparing supervised fine-tuning (SFT) outputs to a Qwen2.5 baseline, we find that both the
original and reranked (top-N) versions of SFT responses perform strongly. The base SFT model
achieved a score of 0.9450, while SFT with top-N reranking further improved to 0.9700, indicating
that top-N sampling contributes to a measurable boost in quality even without any preference
optimization.

Direct Preference Optimization (DPO) showed promising results as well. When comparing DPO
outputs to SFT outputs directly, the DPO model achieved a win rate of 0.6200, meaning it was
preferred 62 percent of the time over SFT, which is a decent improvement. This suggests that DPO
training alone meaningfully improves response quality over standard supervised fine-tuning.

Moreover, combining DPO with top-N sampling and temperature tuning yielded further gains. DPO
with top-N decoding at temperature = 0.6 scored 0.9350 against SFT, while variations at temperature
= 0.25 and temperature = 1.0 achieved 0.9300 and 0.8750, respectively. These results show that
top-N decoding consistently enhances DPO outputs, and moderate temperature values such as 0.6



offer a strong trade-off between diversity and reliability. This finding is consistent with the results in
Rafailov et al.[(2024). Due to computational constraints, we did not ablate for higher values of V.

In addition to our offline evaluations, we submitted both the DPO and DPO combined with top-N
models to the class leaderboard for the UltraFeedback benchmark. The base DPO model achieved a
score of 0.1150, while the test-time reranking extension with Best-of-N sampling reached a score
of 0.2000. Both models exceed the minimum required threshold of 0.1, demonstrating the practical
effectiveness of preference optimization and reranking techniques under the official evaluation
protocol. These results further validate the alignment between our controlled experimental findings
and real-world benchmark performance.

Overall, the quantitative evaluation confirms that DPO with top-N decoding surpasses SFT, both in
head-to-head comparisons and in alignment with reward model preferences. While DPO on its own
already offers a notable improvement over SFT, the combination with top-N sampling and careful
temperature tuning diminishes the remaining quality gap. These findings underscore the importance
of not only preference-aligned training but also well-calibrated decoding strategies in maximizing
model quality. The alignment between these quantitative scores and the qualitative improvements
observed in structure, fluency, and factual correctness further validates top-N DPO as a robust and
scalable approach to fine-tuning high-quality language models.

5.2 Qualitative Analysis

To complement quantitative evaluations of model performance, we conducted a qualitative analysis
of two output files, one using the DPO approach and the other using an extension with a test-time
reranking approach on top of DPO. These outputs contain model-generated responses to a shared
set of held-out prompts. This comparison focuses on aspects such as fluency, factual accuracy,
instruction-following behavior, and coherence. While both files reflect models trained with direct
preference optimization, the Top-N version incorporates reranking and sampling improvements.
Our goal is to assess how these differences manifest in real-world tasks, from creative writing and
multilingual reasoning to coding and factual question-answering. Below, we present representative
examples and observations that highlight key distinctions in output quality.

The generated responses with DPO contain lengthy, occasionally repetitive texts, and tend to over-
explain and hallucinate technical details. For instance, in the response to the prompt “How is
augmented reality being used to enhance museum experiences and engage visitors with interactive
exhibits?”, the model repeats the idea of “AR being used to create 360-degree views” and “AR helping
visitors explore 3D models” in multiple paragraphs, using phrasing such as: “...AR can be used
to create immersive, 360-degree views of artifacts...” and “...explore a piece of art in a 3D model,
manipulate the digital version, and see how it would look in real life...” This repetition dilutes the
clarity and makes the response feel padded rather than informative. Furthermore, hallucinations
are present in technical answers. This issue is present in questions such as those related to using
Python scripts to complete tasks in Blender. Similarly, the chocolate cake enhancement prompt
results in a bizarre output where “pineapple” is repeated dozens of times. As such, some of the
responses it generates are based on inaccurate claims. Overall, while generated responses based only
on DPO contain some completed texts with decent content, they tend to involve excessive repetition,
inaccurate claims, and some mismatches between instructions and responses.

On the other hand, the top-N model follows a tighter narrative arc and avoids unnecessary repetition
that appears in multiple paragraphs of the DPO only output. In particular, instruction-following
behavior is more reliable in the top-N method, such as in a cause-effect task in Spanish, the model
correctly answers the prompt. On factual precision, although the top-N outputs give more coherent and
logical responses, it is still not perfect. For instance, it repeats the same hallucinated explanation. But
such errors are rarer compared to the base DPO responses, where hallucinated claims, repeated text,
and logic gaps are common. There is still some occasional overgeneralization and some redundancy
in its generations. However, the top-N approach does offer more structured, concise, and coherent
answers with fewer hallucinations and better task completion. While both methods share similar base
content, the top-N variant clearly reflects more robust decoding or ranking logic, likely reflecting
better use of sampling and reranking techniques.

Overall, the top-N DPO variant consistently demonstrates improved alignment with user intent,
stronger factual grounding, and cleaner execution across a range of tasks. It generates responses that



are not only more concise but also more contextually appropriate and logically coherent, suggesting
a better calibration of language generation under task constraints. While it does not eliminate all
errors, particularly with respect to subtle factual inaccuracies or occasional verbosity, it represents a
clear qualitative step forward compared to the base DPO outputs. This complements our quantitative
findings and reinforces the value of combining preference optimization with decoding strategies for
high-quality generation.

6 Discussion

Our findings demonstrate that Direct Preference Optimization consistently improves the quality
and alignment of language model outputs over standard supervised fine-tuning, even when used in
isolation. Across all configurations, DPO outperformed SFT in head-to-head comparisons using a
reward model proxy, highlighting its effectiveness at aligning model behavior with human preferences.
Furthermore, combining DPO with top-N decoding strategies yielded additional gains. In particular,
DPO with top-N decoding at moderate temperatures achieved win rates exceeding SFT baselines.
These improvements are also supported by qualitative analysis, which shows that top-N DPO re-
sponses are more concise, structured, and instruction-following, with noticeably fewer hallucinations
and logical inconsistencies compared to base DPO generations. Samples of our generated responses
can be found in the Implementation Details section of our appendix.

Another key insight from this work is that training-time preference alignment and inference-time
decoding strategies act synergistically. While DPO steers the model toward more aligned outputs
during training, top-N decoding helps better realize these improvements by encouraging diverse,
high-quality completions at inference. This highlights the importance of not only optimizing learning
objectives but also carefully tuning generation strategies to fully leverage the benefits of preference-
based training.

Despite these promising results, several limitations remain. First, while the reward model used
for evaluation (LLaMA-3.1-Nemotron-70B) serves as a scalable and consistent proxy for human
preferences, it may not capture the full nuance of subjective or creative tasks. Human evaluation
remains essential for validating alignment in more open-ended settings. Second, our qualitative
analysis, while informative, is based on a limited prompt set and manual review; more rigorous
user studies would be needed to assess generalization across domains. Third, although top-N
decoding improves reliability and controllability, it introduces additional inference cost due to the
need to sample and rank multiple outputs per prompt. This may present practical challenges for
deployment in latency-sensitive applications. Moreover, even the best-performing configurations
exhibit limitations, including factual inaccuracies, shallow reasoning, and limited ability to handle
multi-step or compositional tasks. Finally, our experiments focus on a single base model (Qwen2.5
0.5B) and one reward model evaluator. Further work is needed to assess how well these conclusions
generalize across different architectures, training scales, and preference optimization paradigms.

Another important set of limitations stems from model size, dataset characteristics, and training
constraints. While the use of the Qwen 0.5B model enables faster experimentation and lower resource
requirements, its relatively small parameter count may limit its capacity to internalize complex
preference structures, especially when compared to the larger models typically used in DPO studies.
Furthermore, although the UltraFeedback dataset provides a large and diverse set of comparisons, it
is built on crowd-sourced preference data, which may introduce annotator biases or inconsistencies in
quality judgments. On the implementation side, computational constraints restricted us to smaller
batch sizes, fewer training epochs, and a reduced training set, all of which may prevent the model from
fully converging on optimal preference-aligned behavior. The binary nature of preference pairs used
in DPO training also introduces simplification, such that it reduces a spectrum of response quality to
a discrete choice, which may fail to capture finer-grained distinctions. Finally, our evaluation metrics
focus primarily on pairwise preference win rates and do not directly assess important properties such
as output diversity, calibration, or whether the model retains its general-purpose capabilities after
DPO training. Addressing these limitations is essential for understanding the full trade-offs and
potential of preference optimization methods in broader deployment scenarios.

Overall, our results substantiate the effectiveness of DPO over SFT and demonstrate that decoding
strategies, like top-N sampling, play an important role in extracting the full benefits of preference-
aligned training. These findings suggest a practical and scalable direction for improving the usability



of instruction-tuned language models. However, future work is needed to extend these insights to
broader settings and evaluate their robustness in real-world applications.

6.1 Future Work

Future work could explore several directions to improve the effectiveness of DPO training, particularly
in the context of smaller language models. One promising avenue is the development of hybrid
approaches that integrate DPO with other preference learning methods such as Proximal Policy
Optimization (PPO) or rejection sampling. These techniques could help mitigate some of the
limitations that arise when applying DPO to smaller models with limited representational capacity.

Another area of interest is the design of adaptive KL regularization strategies that dynamically adjust
the penalty term based on the training dynamics. Such mechanisms could help maintain a more stable
balance between optimizing for preferences and preserving the pretrained knowledge of the base
model—an especially important consideration when working with less robust architectures.

Improving training efficiency is also a key goal. Investigating few-shot or low-resource preference
learning techniques could reduce the computational burden of training, making it more feasible to
deploy preference-aligned models in settings with limited resources. Alongside this, studying the
impact of different preference data curation strategies—such as filtering, clustering, or curriculum
learning—could reveal methods for maximizing performance using smaller, more targeted datasets.

Finally, future research could focus on developing model architectures or pretraining objectives that
better support preference learning in compact models. This includes exploring parameter-efficient
fine-tuning methods such as LoRA or adapter-based techniques specifically tailored to DPO or similar
objectives. By enhancing the adaptability of smaller models to preference-based training, these
efforts could broaden access to alignment techniques and enable more sustainable deployment of
preference-tuned language models.

7 Conclusion

In this work, we explored instruction-following performance across supervised fine-tuning, Direct
Preference Optimization, and extending it to a test-time reranking strategy using Best-of-N sampling.
Our results show that DPO consistently outperforms standard supervised fine-tuning in both quantita-
tive and qualitative evaluations, and that further gains can be achieved through test-time reranking
with a strong reward model. These findings highlight the complementary roles of training-time
preference optimization and inference-time generation control. While limitations remain in terms
of model capacity, data efficiency, and evaluation coverage, our study suggests that even smaller
language models can benefit substantially from preference-based learning when paired with effective
decoding strategies. Together, these insights contribute to more reliable, aligned, and controllable
generation for instruction-following tasks.

8 Team Contributions

* Renee Qin: Implemented SFT training loop, developed DPO model pipeline, incorporated
Best-of-N reranking experiments with varying sampling temperatures, led reward model
evaluation and generated performance visualizations.

* Nicole Garcia: Implemented dataset preprocessing for SFT and DPO, implemented and
iterated upon DPO training and response generation loop, improved reward margin analysis,
and managed model checkpoints, tokenizer setup, and EC2 training environment.

Changes from Proposal While our initial proposal focused on extending the RLOO algorithm by
using replay buffers to enable multiple gradient updates from each collected sample, we ultimately
pivoted to improving DPO with test-time reranking. We made this shift because we believed it
offered a more compelling opportunity to explore how the strengths of different models—specifically
preference-aligned training and reward-based selection could be combined to improve instruction-
following behavior in compact LLMs.
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A Additional Experiments

Effect of Temperature on Top-N Reranking. To explore the trade-off between diversity and reward
quality, we evaluated our DPO+Top-N decoding strategy across different sampling temperatures:
T =0.25,T7 = 0.6, and T = 1.0. We found that T = 0.6 achieved the best win rate (0.9350
vs. SFT), balancing diversity and alignment. Lower temperatures like 0.25 yielded slightly lower
win rates (0.9300), possibly due to reduced generation diversity. Higher temperatures such as 1.0
decreased performance (0.8750), likely from increased incoherence.

Reward Margin Monitoring During Training. Throughout DPO training, we tracked reward
margins between chosen and rejected responses using the Nemotron-70B model. We observed steady
margin improvement early in training, with diminishing returns beyond a certain step threshold. This
suggests the importance of early-stage preference alignment and diminishing benefits from extended
training on the same data distribution.

Ablation: SFT with Top-N Only. We also evaluated SFT paired with Top-N sampling (without
DPO). While SFT+Top-N improved over SFT alone (win rate of 0.9700 vs. 0.9450 against base),
it underperformed DPO+Top-N. This reinforces that preference-optimized training and test-time
reranking are complementary.

B Implementation Details

All models were trained and evaluated using the Qwen2.5-0.5B architecture. Training was conducted
either on an AWS EC2 g4dn.xlarge instance or an AWS EC2 instance with A100 GPU, using PyTorch
and Hugging Face Transformers. We used mixed-precision training where applicable to optimize
memory usage.

SFT Training. The SFT model was trained on the SmolTalk dataset for 1 epoch with a batch size
of 2, gradient accumulation of 8, and a learning rate of 5 x 10~°. Tokenization was handled with
Qwen’s chat template, using right-padding and truncation at 512 tokens.

DPO Training. The DPO model was initialized from the SFT checkpoint and trained on the
UltraFeedback dataset using a batch size of 4, gradient accumulation of 8, and a learning rate of
1 x 1076, The DPO implementation included prompt token masking (max length at 1024) and reward
margin logging.

Inference and Reranking. For test-time reranking, we generated 4 completions per prompt using
top-k sampling and experimented with temperatures ranging from 0.25 to 1.0. Completions were
reranked using the Nemotron-70B reward model via the NVIDIA inference API. All inference
experiments were run on GPU with max input length of 1024 tokens and max new tokens set to 1024.

Codebase. The codebase was modularized into training, evaluation, preprocessing, and utilities,
with checkpoints logged at regular intervals. Dataset maps and preprocessing were debugged using
logging local executions for inspection purposes prior to full-scale training.

Response Generations. The following are sample prompts and responses generated by our DPO
model and DPO+Top-N model from our test set for reference purposes.

Prompt 1: How is augmented reality being used to enhance museum experiences?
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DPO Model Response

DPO+Top-N Response

Augmented reality (AR) is being used to
enhance museum experiences in numerous
ways, from immersive virtual tours to interactive
exhibits that transport visitors to new and
unexplored realms. One of the most exciting
applications is in museums, where AR can be
used to create immersive, 360-degree views of
artifacts, historical events, and cultural
significance.\n\nFor instance, museums can use
AR to create a 3D model of a piece of art or a
historical artifact, allowing visitors to explore it
in a more immersive and engaging way. This
can include virtual tours, guided tours, or even
360-degree views of the exhibit. AR can also be
used to create a sense of depth and context,
making visitors feel like they’re experiencing
the exhibit in a whole new way.\n \nAR can also
be used to create interactive exhibits that
encourage visitors to engage with the content in
a more hands-on and interactive way. For
example, a museum could create an AR
experience where visitors can explore a piece of
art in a 3D model, manipulate the digital
version, and see how it would look in real life.
This could help visitors develop skills in areas
such as art, architecture, and engineering.\n
\nAR can also be used to create a sense of social
connection and community among visitors. For
example, a museum could create an AR
experience where visitors can share their own
stories and experiences related to a particular
exhibit, fostering a sense of community and a
sense of belonging. \n\nAnother exciting
application of AR in museums is in the realm of
education and outreach. For instance, museums
can use AR to create virtual reality experiences
that transport visitors to ancient civilizations,
where they can explore the history and culture
of the past. This can help students and visitors
learn about different cultures, history, and
history of science in a more immersive and
engaging way.\n\n Overall, the potential of AR
in museums is vast and exciting, offering a new
and innovative way to engage visitors with
historical and cultural significance. By creating
immersive, interactive, and engaging
experiences, museums can not only expand their
reach and attract more visitors but also become
leaders in the field of AR and AR technology.\n

Augmented reality (AR) is transforming the
museum experience by seamlessly integrating
digital content with physical spaces, creating
immersive and engaging experiences for visitors.
Here are some ways AR is being used to
enhance museum experiences:\n \nl. Interactive
exhibits: AR allows visitors to explore exhibits
in immersive and dynamic ways by overlaying
digital information onto the real world. For
example, a museum could create an AR
experience where visitors can explore a piece of
art in a new and captivating way, or see how a
historical event unfolds in a 360-degree virtual
reality environment.\n \n2. Virtual tours: AR
can provide visitors with immersive virtual tours
of museums and historical landmarks, allowing
them to explore hidden gems and explore new
areas of interest without ever leaving their
digital devices. This technology is especially
beneficial for museums that want to expand their
reach and attract a younger demographic.\n \n3.
Collaborative experiences: AR can be used to
create collaborative experiences between
museum visitors and staff or other users. For
instance, a museum could create an AR
experience where visitors can collaborate with a
virtual assistant to explore a particular exhibit or
visit a particular exhibit from different angles.\n
\n4. Location-based experiences: AR can be
used to create location-based experiences that
take visitors to specific locations within the
museum. For example, a museum could create
an AR experience where visitors can explore a
particular exhibit in a specific location, or visit a
particular exhibit from a specific angle.\n \n5.
Reminders and notifications: AR can also be
used to provide visitors with reminders and
notifications about upcoming events, exhibitions,
and activities, making the museum experience
more engaging and interactive.\n \n6.
Educational and educational: AR can be used to
educate visitors about historical events, cultural
heritage, and other topics in a fun and
immersive way. For example, a museum could
create an AR experience that takes visitors
through a virtual museum exhibit, teaching them
about a particular historical event or topic.\n
\nOverall, AR is a powerful tool for museums
that want to make their experiences more
engaging, interactive, and immersive for their
visitors. By leveraging AR, museums can create
new revenue streams, attract a new demographic,
and stay at the forefront of technological
innovation.\n

Prompt 2: Name a scripting language that is commonly used for web development and supports

asynchronous programming.
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One popular scripting language that is
commonly used for web development and
supports asynchronous programming is
JavaScript. JavaScript is a dynamic, interpreted,
and cross-platform programming language that
can be used to create interactive and dynamic
web pages. It is widely used in web
development, including creating user interfaces,
handling user input, and running JavaScript
code in response to user actions.\n \nJavaScript
also supports asynchronous programming
through its event loop, which allows for the
execution of multiple tasks concurrently. This
enables the creation of asynchronous JavaScript
and CSS (ASGI) applications, which can handle
multiple requests concurrently without blocking
the main thread.\n \nSome popular JavaScript
frameworks and libraries that support
asynchronous programming include Node.js,
which is a JavaScript runtime environment that
allows for the execution of asynchronous code,
and React, a JavaScript library for building user
interfaces.\n \nAdditionally, JavaScript can also
be used with other programming languages,
such as Node.js and Python, to create scalable
and high-performance web applications.\n

One popular scripting language that is
commonly used for web development and
supports asynchronous programming is
JavaScript. JavaScript is a dynamic, interpreted,
and cross-platform programming language that
can be used to create interactive and dynamic
web pages. It is widely used in web
development, including creating user interfaces,
handling user input, and running JavaScript
code in response to user actions.\n \nJavaScript
also supports asynchronous programming
through its event loop, which allows for the
execution of multiple tasks concurrently. This
enables the creation of asynchronous JavaScript
and CSS (ASGI) applications, which can handle
multiple requests concurrently without blocking
the main thread.\n \nSome popular JavaScript
frameworks and libraries that support
asynchronous programming include Node.js,
which is a JavaScript runtime environment that
allows for the execution of asynchronous code,
and React, a JavaScript library for building user
interfaces.\n \nAdditionally, JavaScript can also
be used with other programming languages,
such as Node.js and Python, to create scalable
and high-performance web applications.\n

Prompt 3: [Q]: Write a multi-choice question for the following article: Article: Lisa is a 10-year-old
girl who loves to read books. Every Saturday, she visits the local library to borrow new books. Her
favorite genre is fantasy. This Saturday, she borrowed a book about dragons and finished reading
it in just one day. Her mother was surprised and asked how she read it so quickly. Lisa smiled
and said, \"I just couldn’t put it down!\" \n****\n[A]: Question: Why did Lisa finish the book so
quickly?Options:A she didn’t like the bookB she read it with her motherC she couldn’t put it downD

she skipped many pagesAnswer:C

DPO Model Response

DPO+Top-N Response

[A]: Question: Where did Lisa borrow the book
from?Options:A the libraryB the bookstoreC the
schoolD the parkAnswer:A\n

[C]\n

Prompt 4: Create a metaphor to describe the feeling of nostalgia.
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The weight of memories, like autumn leaves on
a tree, slowly settles in, a poignant reminder of
the past. It’s a weight that feels heavier than the
weight of the world, a crushing burden that
refuses to let go. The nostalgia, a lingering ache,
gnaws at the edges of my mind, a lingering ache
that refuses to be satisfied. It’s a feeling that’s
hard to shake, a longing that’s never truly
quenched. The weight of nostalgia, a crushing
burden that refuses to let go, is a poignant
reminder of the past, a lingering ache that
refuses to be satisfied. It’s a feeling that’s hard
to shake, a longing that’s never truly quenched.
The weight of memories, a poignant reminder of
the past, a crushing burden that refuses to let go,
a lingering ache that refuses to be satisfied. It’s a
feeling that’s hard to shake, a longing that’s
never truly quenched. The weight of memories,
a poignant reminder of the past, a crushing
burden that refuses to let go, a lingering ache
that refuses to be satisfied. It’s a feeling that’s
hard to shake, a longing that’s never truly
quenched. The weight of memories, a poignant
reminder of the past, a crushing burden that
refuses to let go, a lingering ache that refuses to
be satisfied. It’s a feeling that’s hard to shake, a
longing that’s never truly quenched. The weight
of memories, a poignant reminder of the past, a
crushing burden that refuses to let go, a
lingering ache that refuses to be satisfied. It’s a
feeling that’s hard to shake, a longing that’s
never truly quenched. The weight of memories,
a poignant reminder of the past, a crushing
burden that refuses to let go, a lingering ache
that refuses to be satisfied. It’s a feeling that’s
hard to shake, a longing that’s never truly
quenched. The weight of memories, a poignant
reminder of the past, a crushing burden that
refuses to let go, a lingering ache that refuses to
be satisfied. It’s a feeling that’s hard to shake, a
longing that’s never truly quenched. The weight
of memories, a poignant reminder of the past, a
crushing burden that refuses to let go, a
lingering ache that refuses to be satisfied. It’s a
feeling that’s hard to shake, a longing that’s
never truly quenched. The weight of memories,
a poignant reminder of the past, a crushing
burden that refuses to let go, a lingering ache
that refuses to be satisfied. It’s a feeling that’s
hard to shake, a longing that’s never truly
quenched. The weight of memories, a poignant
reminder of the past, a crushing burden that
refuses to let go, a lingering ache that refuses to
be satisfied. It’s a feeling that’s hard to shake, a
longing that’s never truly quenched.

The weight of memories, like autumn leaves,
slowly unfurl, revealing a tangled tapestry of
stories and sights that have been hidden away in
the past. The ache of longing, like a longing
ache, gnaws at the mind, but the weight of those
memories is a gentle reminder, a comforting
comfort, that holds the past in place, waiting for
the day when it can be relived, cherished, and
loved.\n
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