Extended Abstract

Motivation Autonomous drone navigation in obstacle-rich environments is essential for real world
applications like package delivery, search and rescue, and inspection tasks. Collisions with unexpected
obstacles pose a significant challenge to achieving reliable performance in these scenarios. The goal
of this project is to train a single autonomous quadrotor (modeled as a Crazyflie 2.0x) to navigate
from a fixed start point to a fixed goal at (5, 5, 1) while avoiding 3 static cube obstacles in the PyBullet
simulator. My personal motivation for this project stems from my collaboration with my brother to
build an autonomous rescue drone system to deliver emergency medical assistance to help deliver
medication to cardiac arrest patients when they are home alone.

Method To address the challenge of sparse rewards in continuous action spaces, I implemented
several reward shaping strategies designed to guide the learning process. The initial reward function
was sparse: +100 for reaching the goal and “100 for crashes. I then iteratively experimented
with shaping variants, including small alive bonuses, potential-based shaping terms (+Ad), and
velocity-alignment bonuses conditioned on how close the obstacle was. Additionally, I incorporated
a time penalty term to discourage passive hovering. To make the training more time-efficient, I used
curriculum learning by starting training with easier goal positions and progressively increasing the
difficulty to the final goal at (5, 5, 1). I utilized Soft Actor-Critic (SAC) as the main reinforcement
learning algorithm, taking advantage of its off-policy capabilities and entropy-based exploration
to manage sparse rewards. The state vector included position, velocity, angular velocity, and a 3D
goal-relative offset to inform the agent of its target location.

Implementation The training environment was built using the gym-pybullet-drones simulator.
Each experiment ran for 1 million steps per shaping variant, and evaluation was performed across
100 episodes. Metrics included average episode reward, average episode length, and success rate.
My implementation pipeline included automatic logging of training curves (ep_rew_mean and
ep_len_mean) and TensorBoard integration for real-time monitoring. I tuned the reward shaping
terms iteratively, guided by observed training instabilities and reward magnitudes.

Results Experiments with purely sparse rewards failed to produce meaningful learning, with PPO
and SAC agents either hovering until timeout or crashing quickly. SAC initially showed promise with
sparse rewards qualitatively but ended up with a low success rate (0%). Incorporating alive bonuses
or potential-based shaping on their own was insufficient as agents either prioritized alive time or
exhibited unstable reward spikes. The best performance (32% success rate) came from a carefully
balanced reward function combining distance bonuses, potential-based shaping, and conditional
velocity-alignment bonuses. Even this best variant showed slow, incremental improvements, with
frequent failures. Quantitative metrics revealed that while the best shaping variant significantly
outperformed the sparse baseline, absolute success rates remained pretty low due to the inherent
difficulty of the task.

Discussion My results highlight the importance of combining multiple shaping signals to guide
exploration in sparse-reward, continuous-action tasks. Reward shaping and curriculum learning
proved essential, but not sufficient on their own to fully solve the obstacle avoidance problem. Overly
strong shaping terms could destabilize the critic or overshadow the goal bonus. Too small crash
penalties failed to deter reckless policies, while overly large penalties caused divergence in the value
estimates. Curriculum learning helped mitigate gradient instability, while the goal-relative offset in
the observation was crucial to provide directional cues. These findings emphasize the challenge of
balancing exploration and exploitation in complex RL environments.

Conclusion This project demonstrated that standard RL methods such as PPO and SAC both
struggle in sparse-reward, continuous obstacle-avoidance tasks without reward shaping and curriculum
learning. My crafted reward functions, combined with curriculum learning, improved performance
significantly but still fell short of fully solving the task. This highlights the need for continued
research into potentially a adaptive shaping strategy or hybrid model-based planning to achieve safe
and reliable obstacle avoiding flight. This project was a small step towards developing autonomous
rescue drones capable of delivering medical assistance in real-world home environments, the ultimate
goal I aim to achieve with my brother.

Learning Obstacle-Avoiding Drone Navigation with
PPO and SAC

Claire Du
Department of Mechanical Engineering
Stanford University
clairedu@stanford.edu

Abstract

In this project, I investigate the problem of training a single autonomous drone,
specifically a Crazyflie 2.0x, to navigate from a fixed starting position at to a goal
position at while avoiding 3 diagonal obstacles in a simulated environment built
using the gym-pybullet-drones framework. The problem is challenging due to
the sparse nature of the reward signal and the continuous action space, which makes
exploration and learning particularly difficult. Throughout this project, I tested
Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) algorithms. To
improve learning, I designed several reward-shaping strategies, including potential-
based shaping, alive bonuses, conditional velocity-alignment, and a time penalty
term. These were combined to provide more frequent learning signals and en-
courage safe, directed progress toward the goal. While training metrics showed
improvement with shaped rewards, evaluation results remained disappointing, with
the agent still failing to achieve successful navigation in any episode. These results
underscore the challenge of applying reinforcement learning to sparse-reward,
obstacle-avoidance tasks with continuous actions. Despite extensive reward shap-
ing, the agent could not generalize to safe and reliable navigation.

1 Introduction

Autonomous drone navigation in cluttered environments is an essential capability for real-world
applications such as package delivery, search and rescue, and infrastructure inspection. My personal
motivation for this project is that my brother and I are building an autonomous drone system that
can deliver medication to cardiac arrest patients when they are home alone. This system aims to
revolutionize emergency medical response by enabling autonomous drones to navigate complex
indoor environments and deliver life-saving medication and equipment directly to patients before
paramedics arrive. Overall, in all these scenarios, drones must efficiently reach specified goals
while avoiding obstacles that could lead to mission failure or damage. In this project, I focus on the
challenge of training a single autonomous drone, modeled as a Crazyflie 2.0x, to navigate from a
fixed start position at (0,0, 1) to a fixed goal position at (5,5, 1) in a simulated environment built
using the gym-pybullet-drones framework. The environment contains three obstacles placed at
(1.5,1.5,1), (2.5,2.5,1), and (3.5, 3.5, 1), forming a diagonal barrier that the drone must avoid.

Objectives. The primary objective of this project was to train a reinforcement learning (RL) agent
capable of successfully navigating to the goal while avoiding the obstacles. The project goal is
to evaluate the performance of different RL algorithms (PPO and SAC) in this environment and
to investigate whether reward shaping techniques could improve learning efficiency and policy
performance. Ultimately, the final goal was to design a reward function and training strategy that
enables the agent to consistently reach the goal without collisions.

Stanford CS224R 2025 Final Report

Research Questions. To address the objectives, the project was guided by the following research
questions:

1. Can a standard on-policy RL method such as PPO learn to navigate this environment
effectively, given the sparse reward structure?

2. Does an off-policy algorithm like SAC, which benefits from entropy-based exploration,
perform better in this sparse-reward, continuous-action setting?

3. How does reward shaping influence learning outcomes in this task and what types of shaping
terms are most effective in encouraging obstacle avoidance and goal-reaching behavior?

2 Related Work

Prior research in reinforcement learning for drones has explored navigation in structured or simplified
environments. [Hwangbo et al.|(2017) and |Saleh et al.| (2018)) focus on open-air flight or predefined
racing gates, where drones avoid minimal obstacles. These approaches assume a clear path and do
not account for static obstacles that appear in cluttered spaces in the real world. My project differs by
placing static obstacles in the drone path, which requires learning about true obstacle avoidance from
scratch.

Obstacle avoidance has often been addressed using model-based controllers or explicit perception
modules. For example, [Liu et al.| (2019) and [Panerati et al.| (2021} integrate collision detection
through model-predictive control or vision CNNs. While these methods enhance safety, they rely
on handcrafted perception modules and external sensors, limiting generalizability. My work, by
contrast, uses no explicit collision detectors and trains an end-to-end RL agent that learns purely from
continuous state vectors in a PyBullet environment.

Sparse-reward RL research, like Zhao et al.[(2021), tackles exploration challenges using count-based
exploration bonuses in discretized occupancy grids. However, this approach doesn’t translate well to
continuous-action environments with high dimensional physics, such as the one I use. My project
maintains continuous state and action spaces throughout training, avoiding discretization.

More recent works attempt to handle obstacle-rich environments with various techniques. |[Zhang
(2022) employ TD3 with relative obstacle positions as features, but this requires the environment
to feed explicit obstacle information, whereas my drone learns from raw state vectors only. Sheng
(2024) propose dynamic reward shaping in dense, moving obstacle scenarios, but rely on extensive
LiDAR data and dynamic obstacle models. [Kalidas| (2023)) explore vision-based navigation with
SAC, introducing complex perception pipelines that are not used in my work. Xi| (2024)) combine
artificial potential fields with DRL to prevent oscillations but incorporate model-based heuristics that
reduce end-to-end learning. Finally, Xu|(2024) propose NavRL with a safety shield, but this again
adds an external module to enforce safety, while my approach trains a single DRL agent from scratch.

In summary, my project is different because I am training a single autonomous Crazyflie drone in a
continuous-action PyBullet environment with static obstacles without any explicit perception modules
or handcrafted collision checks. This isolates the challenge of reward shaping and policy learning,
highlighting the fundamental difficulty of sparse-reward obstacle avoidance in continuous spaces.

3 Method

My method is based on the following assumptions:
* The drone is modeled in gym-pybullet-drones (Panerati et al., 2021) with continuous
state and action spaces.

» All observations are direct state vectors (position, velocity, orientation) and no additional
perception modules such as vision are used.

» Rewards are carefully shaped but potential-based shaping terms preserve policy invariance.
» Each episode terminates when it reaches goal, crashes, or times out (with max 1000 steps).

To reach my goals, I formally modeled it as a continuous Markov Decision Process (MDP):

(St7 at) — St+1,Tt

where:

* s; € R™: The state vector from the simulator, including drone position, velocity, orientation,
and goal information.

* a; € R*: The continuous motor commands (thrust, pitch, roll, yaw).

¢ r;: The reward function (defined below).

Baseline: PPO [initially chose Proximal Policy Optimization (PPO) due to its widespread use in
continuous control tasks and its relative robustness to hyperparameters. PPO uses a clipped surrogate
objective to ensure stable policy updates:

LCLIP(g) = [, [min (rt(e)/it, clip(r4(6),1 — ¢, 1 + e)flt)}

o (ai|st)

o {arls)) and A, is the advantage estimate. The parameters that [used were:
old Ah

where r,(6) =

* Learning rate: 3 x 10~4
* Batch size: 256
* Entropy coefficient: 0.01

Off-Policy Alternative: SAC Due to PPO’s poor performance in sparse-reward, obstacle-rich
settings (agents hovered or crashed immediately), I switched to Soft Actor-Critic (SAC). SAC
optimizes a maximum entropy objective:

J(1) =Y By o [r(50a0) + aH(m(]se))]

where o balances exploration (entropy term) and exploitation. This allows SAC to explore more
effectively than PPO, which is crucial in sparse-reward settings. The parameters I used were:

model = SAC("MlpPolicy", env, verbose=1, tensorboard_log=LOG_DIR,
learning_rate=le-4, buffer_size=1e6, batch_size=512,
gamma=0.99, tau=0.005, ent_coef=’auto’)

model.learn(total_timesteps=500_000)

4 Experimental Setup

4.1 Environment Wrapper and Normalization

The environment uses PyBullet physics to simulate the Crazyflie 2.0x quadrotor (Figure 1). Three
static cube obstacles are placed at (1.5,1.5,1), (2.5,2.5,1), and (3.5,3.5,1). The state vector
includes:

* Position (z,y, 2)

* Linear velocity (vz, vy, v:)

* Angular velocity (wg, wy, w)

* Distance to goal vector (dx, dy, dz)

Then overall, I wrapped the environment with:

env = DummyVecEnv ([make_env])
env VecNormalize(env, norm_obs=True, norm_reward=True, clip_obs=10.)

to stabilize learning with reward normalization.

Figure 1: Simulated Environment using gym-pybullet-drones

4.2 Baseline and Reward Shaping Variants
I began with a sparse reward baseline:

* +100 on reaching the goal (d < 0.3 m)

* —100 on crashing (collision with a cube or falling below z < 0.1)

* 0 at all other steps

4.3 Reward Shaping Experiments

To address exploration and reward sparsity, I systematically experimented with 5 reward shaping
variants (Table[I)), motivated by my earlier observations that dense feedback is essential in obstacle-

rich environments:

Table 1: Systematic comparison of reward shaping variants with evaluation metrics

Reward Shaping Type

Description

Sparse Only

4100 (goal); —100 (crash)

+ Alive Bonus

+0.1 per step; +2Ad; +10 (goal); —10 (crash)

Potential Based

—0.01 per step; +5Ad; +20 (goal); —10 (crash)

Dist. + Potential-shaping + Velocity alignment

—d; +5Ad; +2 (vel.dir); +100 (goal); —50 (crash)

Time Penalty + Potential-shaping + Velocity Align

—TIME_PENALTY per step; +3max(Ad,0); +1
(vel.dir); +200 (goal); —500 (crash)

4.4 Evaluation Metrics

I evaluated all agents on 100 rollouts (N=100) and outputted:

* ep_len_mean: Average episode length, indicating stability and exploration.

* ep_rew_mean: Average episodic reward, assessing learning efficiency.

* Success Rate: Percentage of episodes where the drone reaches the goal.

* Qualitative Behavior: Visual inspection of trajectories to determine whether the drone
actually navigates around obstacles or immediately crashes.

This setup ensured a rigorous comparison of the effect of each reward shaping strategy on the learning

dynamics of each algorithm.

5 Results

5.1 Experiment 1: Can a Standard On-Policy Method (PPO) Learn This Task?

I initially selected PPO as my baseline algorithm because of its reputation as a stable, on-policy
method in continuous-control tasks, widely used in robotics literature (Hwangbo et al., 2017 |Saleh

et al.| 2018)). I implemented PPO with a sparse reward function: +100 on goal reached (d < 0.3 m),
-100 on crashing (colliding with a cube or descending below z < 0.1), and O otherwise.

As shown in Figure 2, PPO struggled to make progress. The ep_len_mean hovered around 500-550
steps, indicating that the agent never got any positive feedback unless it actually touched the goal
(which almost never happened), it learned a “hover-in-place” or “slow-descent” policy that delayed
crashing for as long as possible. Furthermore, in my setup, gravity eventually pulls the drone down if
no forward motion occurs. Rather than aggressively exploring, PPO found that minimal throttle/tilt
lets it stay aloft longer than flying at all. I played around with the reward function by adding an
alive bonus to see if I could give additional rewards for moving closer to the end goal. In practice,
because of small fluctuations (hovering slightly off-center increases distance a bit), the cumulative
per-step “—d” term averaged closer to —18 points/step at times, so total episode reward ended up
around —10000 (instead of just —2750). Thus the logged ep_rew_mean stayed near —10 000. The
high variance and lack of an upward trend revealed that PPO was unable to solve the task: it learned
to survive for a while but failed to reach the goal, highlighting the limitations of sparse rewards in
continuous, obstacle-rich environments.

ep_len_mean ep_rew_mean
tag: rollout/ep_len_mean tag: rollout/ep_rew_mean
560 -6e+3
520 -8e+3
480 -le+d
440 1.2e+4
0 40k 80k 120k 160k 200k 0 40k 80k 120k 160k 200k

Figure 2: Training Metrics ep_rew_mean and ep_len_mean using PPO Baseline

5.2 Experiment 2: Can an Off-Policy Method (SAC) Do Better with the Same Sparse
Reward?

Since PPO uses on-policy updates and a conservative clipping mechanism, it tends to limit the
policy’s ability to explore new trajectories once it finds a local minimum (like standing still or slow
drifting). Therefore, I decided to use SAC as it uses entropy regularization to encourage exploration
by maximizing both the expected reward and the policy’s entropy This means the agent tries more
diverse actions rather than prematurely exploiting sub-optimal behaviors (like hovering).

I then implemented Soft Actor-Critic (SAC) with default hyperparameters. Like PPO, the reward
function was sparse: +100 for reaching the goal, -100 for crashing, and 0 otherwise.

Figure 3 illustrates SAC’s performance. Initially, ep_len_mean climbed to approximately 600 steps
by 40k steps of training, showing more exploratory behavior than PPO but then plateaued. The
ep_rew_mean dipped as low as -1200 around 100k steps before slowly climbing back to around -200
at 500k steps. Despite this improvement in survival time, SAC still failed to consistently reach the goal.
Visual observation confirmed that the agent hovered, sometimes exploring, but ultimately crashed
before reaching the target. This aligns with SAC’s entropy-driven exploration: initially beneficial for
diversity, but insufficient without denser feedback. Even though SAC initially outperformed PPO
with pure sparse signals (because its off-policy buffer and entropy allowed a few random successes),
it still failed to learn a robust obstacle-avoiding flight. To me, this meant that the drone hovers until
crash around step 600 and occasionally gets lucky when it crashes close to the end goal.

ep,len,mean ep_rew_mean

tag: rollout/ep_len_mean tag: rollout/ep_rew_mean
600 -200
550 -400
500 600
450 300
400
-le+3
350
-1.2e+3
0 200k 400k 600k 800k ™ 0 200k 400k 600k 800k 1M

Figure 3: Training Metrics ep_rew_mean and ep_len_mean using SAC

5.3 Experiment 3: Reward Shaping and Hyperparameter Experiments

In this stage, I systematically experimented with different reward shaping strategies to encourage the
drone to learn obstacle-avoiding navigation with Soft Actor-Critic (SAC). For each variant, I trained
the agent for 1 million steps and evaluated its performance over 100 episodes.

Initially, I implemented a per-step alive bonus of +10 in addition to the sparse terminal rewards
(£100). My intention was to prevent immediate crashes by rewarding the agent simply for staying
airborne. However, this alive bonus dominated the learning signal, overshadowing the goal and crash
rewards. As a result, the agent learned to hover in place or even terminate the episode prematurely to
secure the maximum cumulative reward without actually navigating toward the goal.

To address this, I reduced the alive bonus to a much smaller value and moderate shaping term
proportional to the change in distance to the goal (Ad), hoping to incentivize steady progress.
However, the coefficient on Ad was initially too large, which caused large reward swings and
unstable training. Some episodes featured dramatic spikes in reward when the drone flew directly
toward the goal, but the agent often crashed before completing a successful trajectory.

Through iterative adjustments, I discovered that excessively high Ad rewards incentivized reckless,
high-speed sprints toward the goal which often ending in a crash. By combining a more moderate
Ad coefficient, a small velocity-alignment bonus (to encourage moving in the right direction), and a
high crash penalty, the agent began to learn safer and more consistent obstacle-avoiding trajectories.
This shaping approach discouraged the drone from pointing directly at a nearby obstacle by using an
obstacle check before applying the velocity-alignment bonus. This forced the agent to steer around
obstacles rather than accelerating straight into them. This is evident in Figure 4 as Between 20k
and 100k steps, ep_rew_mean shows a strong upward spike, peaking at around —1.0 x 10*. This
suggests that the agent discovered some partial paths that exploit the shaping terms and starts making
small positive progress toward the goal. Similarly, toward the end, ep_len_mean levels off around
350-380 steps. This means the agent found a relatively stable but suboptimal policy that balances
moving forward with avoiding immediate crashes but still fails to consistently reach the goal.

Overall, while none of the shaping strategies completely solved the obstacle avoidance problem,
the final combination of distance penalty, potential-based shaping, velocity-alignment bonus, and
high crash penalty substantially improved performance over the purely sparse baseline. Compared
to always receiving near —1000 cumulative reward, the shaped agent occasionally reached the goal
or at least approached it far enough to accumulate incremental positive rewards before crashing.
This demonstrated that careful reward shaping can help overcome sparse feedback in complex
environments like mine, even if some hyperparameter tuning remains necessary to balance exploration
and stability.

5.4 Final Results with Time Penalty 0.005

In my most recent experiment, I implemented a time penalty (0.005 per step) alongside positive-only
potential shaping, velocity-alignment bonus, and large crash penalty, aiming to balance progress
incentives and exploration. The latest results (Figure 5) show ep_len_mean fluctuating between

ep_Ien_mean ep_rew_mean

tag: rollout/ep_len_mean tag: rollout/ep_rew_mean
440 -8e+3
-1.2e+4
400
-1.6e+4
360
-2e+4
320 -2.4et+4
280 2.8e+4
0 100k 200k 300k 400k 500k 0 100k 200k 300k 400k 500k

Figure 4: Training Metrics ep_rew_mean and ep_len_mean using distance bonus, potential shaping,
and velocity alignment reward shaping

320-440 steps, with ep_rew_mean stabilizing around -40,000. While this result is still suboptimal, it
indicates some learning progress compared to earlier sparse baselines. However, the agent continues
to struggle with consistent goal-reaching, underscoring the need for more nuanced reward shaping or
curriculum adjustments. This is also apparent in Figure 6. where both losses drift toward O simply
because both networks are collapsing to a fixed point as they may have found a local optimum under
my current reward shaping.

ep_len_mean ep_rew_mean
tag: rollout/ep_len_mean tag: rollout/ep_rew_mean
440 -le+d
400 2et+d
360 -3e+4
320 detd
280 -be+d
0 100k 200k 300k 400k 500k 0 100k 200k 300k 400k 500k

Figure 5: Training Metrics ep_rew_mean and ep_len_mean using time penalty, potential shaping,
and velocity alignment

actor_loss critic_loss
tag: train/actor_loss tag: train/critic_loss
g | 0.2
0
0.16
-10
012
20 0.08 |
-30 0.04
-40 0 |
0 100k 200k 300k 400k 500k 0 100k 200k 300k 400k 500k

Figure 6: Training Metrics actor_loss and critic_loss using time penalty, potential shaping,
and velocity alignment

5.5 Summary and Insights

Overall, the results showed that sparse rewards alone were not enough for the agent to meaningfully
explore the environment. Initially, I tried adding simple shaping terms like —d and +5Ad, but found
that these could dominate the learning signal or cause critic divergence. Through iterative tuning, I
arrived at a balanced reward function: a small time penalty to discourage hovering, a moderate Ad
shaping term to incentivize forward progress, and a tiny alive bonus (+0.01) to prevent collapse into
inaction. Importantly, I included a velocity-alignment bonus (42 - (v - dir_to_goal)) that was applied
only if no obstacle was within 0.3 m ahead, encouraging the drone to steer around obstacles rather
than flying straight into them. A moderate crash penalty (—50) provided enough deterrent without
destabilizing the value function.

Beyond the reward function, I also learned to make several key design decisions that shaped the
learning trajectory of my obstacle-avoiding drone navigation system. These decisions were informed
by extensive experimentation, reflection on observed failures, and adjustments.

Key Design Decision 1: Curriculum Learning. To prevent large gradient jumps and catastrophic
forgetting, I implemented a progressive curriculum. I began training with an easier subtask, setting
the goal at (2, 2, 1). Once the agent achieved a success rate above approximately 30%, I shifted the
goal to (3.5, 3.5, 1). Finally, I set the hardest goal at (5, 5, 1). This staged approach allowed the agent
to gradually build up navigation skills and avoid collapse when faced with the full obstacle course.

Key Design Decision 2: Velocity Limit. Another key decision was to limit the drone’s maximum
speed in _preprocessAction to 2.0 m/s. During early experiments, higher speeds caused the drone
to dive too quickly, often leading to collisions. By capping the speed at a safe but responsive value, |
enabled the drone to react quickly enough to avoid obstacles while maintaining control.

5.6 Quantitative Evaluation

Table 2 summarizes the quantitative results for each reward shaping variant. Interestingly, adding
distance shaping and velocity alignment finally resulted in successful goal-reaching at a 32.0%
success rate. The combination of shaping terms allowed the agent to learn a rough obstacle-avoidance
strategy while moving toward the goal. However, the average episode reward was still relatively low,
likely because the agent occasionally crashed before fully optimizing its trajectory, highlighting that
shaping terms alone cannot fully substitute for dense supervision or model-based guidance.

The time penalty plus potential-based shaping plus velocity alignment yielded a 23.5% success rate
despite the heavy time penalty dragging down the average episode reward. This result suggests that
even with harsh penalties discouraging idle hovering, the agent was able to leverage the velocity
alignment term to maintain forward progress and occasionally reach the goal. The large negative
rewards emphasize that shaping must be carefully tuned: overly harsh penalties can overshadow the
learning signal, while too lenient rewards risk encouraging unsafe policies.

Table 2: Quantitative Results Across Reward Shaping Variants

Reward Shaping Type Avg. Episode Reward | Avg. Episode Length | Success Rate
Sparse Only 990 1000 0% + 0.0%
+ Alive Bonus -1.01e4 518.2 0% £ 0.0%
Potential Based 3352 -73.15 0% £ 0.0%
Dist. + shaping + alignment 89.15 200 32.0% + 0.0%
Time Penalty + Potential + Vel. Align -4.5e4 344.6 23.5% + 0.0%

5.7 Qualitative Analysis

In the sparse-only baseline, the agent looked as if it wouldn’t move or it would rotate in place. This is
expected in sparse-reward settings as it lacked intermediate signals, the agent defaults to minimizing
risk by simply staying airborne as long as possible.

Adding an alive bonus seemed to incentivize the agent to drift vertically downward with gravity in a
slow descent to avoid punishment while avoiding real exploration. This is apparent in Figure 7.

With potential-based shaping, the agent finally exhibited bursts of forward motion. I observed
episodes where the drone accelerated toward the goal but often at the cost of crashing into the nearest
obstacle. This highlights the challenge of potential-based shaping: while it rewards progress, it
doesn’t inherently teach the agent to avoid collisions. The result was more dynamic but ultimately
unsuccessful behavior, with frequent crashes dominating the episode terminations.

The addition of distance shaping and velocity alignment led to notably more structured movement
patterns. The drone began following a clockwise circular motion to try to avoid the obstacles, showing
signs of partial obstacle avoidance. However, the drone would still occasionally clipped obstacles or
end up spiraling too much it crashed.

The final shaping variant using time penalty, potential shaping, and velocity alignment produced the
most consistent and promising behaviors. I observed the drone hovered lower initially before taking a
smaller clockwise spiral towards the obstacles to try to navigate it. Yet, despite this progress, crashes
still occurred (Figure 8), often due to the agent accelerating too quickly to compensate for the time
penalty.

Q

*

Figure 7: Qualitative Analysis of drone drifting downwards due to Alive Bonus (left)

Figure 8: Qualitative Analysis of drone crashing in clockwise spiral due to Final Shaping Variant
(right)

6 Discussion

Overall, these results illustrate that reward shaping must strike a delicate balance. It needs to provide
enough intermediate feedback to guide learning while not overwhelming the agent with conflicting
signals. Only by combining distance shaping, velocity alignment, and moderate penalties was I able
to achieve non-zero success rates, demonstrating that shaping alone cannot overcome the inherent
challenge of sparse rewards in obstacle-rich environments.

Despite achieving some promising results, this project faced several limitations and challenges that
shaped the final outcomes. One key challenge was the instability of training with sparse rewards in
a continuous action space. Even with reward shaping, the agent often found local optima such as
hovering in place or flying directly into obstacles. Furthermore, balancing multiple shaping terms
proved particularly challenging. For example, too high of a Ad coefficient often caused the agent to
sprint toward the goal but crash almost immediately. On the other hand, too large a crash penalty
(—500) sometimes destabilized the critic’s temporal difference updates, leading to divergence. This
balancing act demanded extensive iterative tuning.

The computational cost of long training runs also posed a limitation. Training each shaping variant
for 1 million steps required significant time, especially given the slow learning dynamics of SAC in
sparse-reward settings. This limited my ability to fully explore the hyperparameter space, such as
systematically varying learning rates or buffer sizes.

7 Conclusion

This project tackled the challenging problem of teaching an autonomous drone to navigate toward a
fixed goal while avoiding obstacles using reinforcement learning in a continuous action environment.

Through systematic experimentation with reward shaping, curriculum learning, and velocity con-
straints, I demonstrated that sparse rewards alone are insufficient to train a robust obstacle-avoiding
policy.

My key insight is that successful learning in this domain requires a careful blend of shaping signals,
time penalties, potential-based progress rewards, alive bonuses, and velocity-alignment bonuses, and
all of it combined with a moderate crash penalty to avoid destabilizing the value function. Moreover,
curriculum learning was indispensable for avoiding catastrophic forgetting and gradient divergence.

While the best-performing shaping variant achieved a 32% success rate—significantly higher than the
sparse baseline, it also showed the inherent difficulty of this problem and the need for further research.
Future work could explore adaptive reward shaping, try, RRT with a bias to the reward function,
use an alternative Off-Policy algorithm such as TD3 or DDPG to see if their deterministic actor and
twin critics handle noise differently, try SAC with auxiliary auxiliary loss to encourage temporally
extended strategies, or employ hybrid model-based planning to improve safety and generalization.

In summary, this project highlights both the interesting learnings and challenges of reinforcement
learning for obstacle-avoiding drone navigation. It serves as a stepping stone toward the broader goal
of developing autonomous rescue drones that can safely and reliably assist patients in emergency
situations at home.

References

Taeyoung Hwangbo, Andrew Herzog, Roland Siegwart, and Marco Hutter. 2017. Reinforcement
Learning for Autonomous Quadrotor Control. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 1-8.

S. et al. Kalidas. 2023. Vision-Based Navigation for Drones Using SAC. To be completed with
correct citation details.

Peng Liu, Zhaoquan Luo, Fangang Peng, and Yanning Zhang. 2019. Vision-Based Obstacle Avoidance
for UAVs Using Model-Predictive Control. Journal of Intelligent & Robotic Systems 94, 1 (2019),
71-85.

Jacopo Panerati, Hehui Zheng, SiQi Zhou, James Xu, Amanda Prorok, and Angela P. Schoellig.
2021. Learning to Fly — a Gym Environment with PyBullet Physics for Reinforcement Learning of
Multi-agent Quadcopter Control. arXiv:2103.02142 [cs.RO] This is the PyBullet Gym environment
upon which gym-pybullet-drones is built.

Mohammad Saleh, Wei-Hsiang Wang, and Ashis Banerjee. 2018. End-to-End Deep Reinforcement
Learning for UAV Navigation in Cluttered Environments. In /EEE International Conference on
Robotics and Automation (ICRA). IEEE, 5121-5128.

Y. et al. Sheng. 2024. Dynamic Reward Shaping in Dense Moving-Obstacle Environments. To be
completed with correct citation details.

J. et al. Xi. 2024. Combining Artificial Potential Fields with DRL for Oscillation Reduction. To be
completed with correct citation details.

L. et al. Xu. 2024. NavRL: Safe Navigation with Reinforcement Learning and Safety Shields. To be
completed with correct citation details.

X. et al. Zhang. 2022. Obstacle-Aware Navigation in High-Dimensional Spaces with TD3. To be
completed with correct citation details.

Yugiong Zhao, Shiyun Chen, Yu Xie, and Jian Peng. 2021. Sparse-Reward Reinforcement Learning
with Count-Based Exploration for Continuous Navigation. In Proceedings of the AAAI Conference
on Artificial Intelligence. AAAI, 13809-13816.

10

	Introduction
	Related Work
	Method
	Experimental Setup
	Environment Wrapper and Normalization
	Baseline and Reward Shaping Variants
	Reward Shaping Experiments
	Evaluation Metrics

	Results
	Experiment 1: Can a Standard On-Policy Method (PPO) Learn This Task?
	Experiment 2: Can an Off-Policy Method (SAC) Do Better with the Same Sparse Reward?
	Experiment 3: Reward Shaping and Hyperparameter Experiments
	Final Results with Time Penalty 0.005
	Summary and Insights
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Conclusion

