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Abstract

This project explores the use of deep reinforcement learning (RL) to train agents
capable of playing the rhythm-based game osu/catch. Unlike traditional RL bench-
marks such as Atari or MuJoCo, osu/catch presents a hybrid challenge: agents
must combine spatial control with fine-grained temporal precision. Actions must
align with musically-timed fruit spawns under tight latency constraints, making
this environment ideal for studying RL performance in high-frequency, real-time
domains.

We developed a custom Gym-style environment that parses .osu beatmap files
and simulates the game at 60 frames per second. Instead of raw visual input,
agents receive a four-dimensional structured observation vector: time-to-fruit,
relative distance, catcher velocity, and an urgency flag. The action space includes
five discrete actions—none, left, right, left_dash, and right_dash—which
affect the catcher’s motion. Rewards are shaped using a Gaussian centered on the
fruit’s position, modulated by urgency and penalties for unnecessary movement,
jitter, and mistimed dashes. Reward shaping parameters were tuned manually for
stability and responsiveness.

We trained two deep RL agents: an actor-critic model and a simplified Rainbow
DQN. The actor-critic agent uses advantage-based updates and entropy regular-
ization to balance exploration and exploitation. Rainbow incorporates dueling
networks, NoisyLinear layers, and Double Q-learning to improve value estimation
and policy robustness. Both agents were trained on four beatmaps of increasing
difficulty and evaluated on two unseen maps (one easy, one hard). Each was trained
for 1000 episodes, with hyperparameters selected independently to ensure fairness.

Rainbow DQN achieved an average reward of 2,538 on held-out maps, compared
to 2,118 for actor-critic. While performance was similar on easier maps, Rainbow
significantly outperformed on harder ones requiring precise timing and quick
decisions. Replay visualizations confirmed that Rainbow learned more deliberate
behaviors—dashing earlier, minimizing jitter, and centering under fruit—while
actor-critic often hesitated or overreacted. These differences were most evident on
difficult maps, where small execution errors led to larger penalties.

Our findings suggest that value-based RL methods with architectural enhancements
are well-suited for rhythm-based tasks requiring high temporal resolution and coor-
dination. This work opens opportunities to explore sequence models (e.g., Decision
Transformers), extend the environment to support droplets and hyperdashes, and
incorporate visual input for more human-like gameplay. More broadly, it shows
how simple RL setups can generalize to structured, temporally-sensitive domains.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Brief Abstract

We apply deep reinforcement learning to train agents to play osu/catch, a rhythm-based game
requiring both spatial accuracy and precise timing. Using a custom Gym-style environment with
structured state inputs, we compare a baseline actor-critic agent to a simplified Rainbow DQN
incorporating dueling networks, NoisyLinear layers, and Double Q-learning. Both agents are trained
on four beatmaps of increasing difficulty and evaluated on two held-out maps. Rainbow DQN
outperforms actor-critic, particularly on harder maps, achieving an average reward of 2,538 versus
2,118. Our results highlight the suitability of value-based methods with architectural enhancements
for rhythm-sensitive control tasks.

1 Introduction

Rhythm games present a unique challenge for reinforcement learning (RL): they combine real-time
control, precise spatial alignment, and temporally synchronized actions. Among them, osu!catch
offers a particularly interesting testbed due to its simple action space yet demanding timing and
coordination requirements. In this game, players must move a character horizontally to catch falling
objects ("fruits") in sync with music, requiring both rhythmic understanding and swift decision-
making.

While deep RL has shown strong performance in classic control problems and visually rich games,
its application to rhythm-based domains remains relatively underexplored. This project investigates
whether modern RL algorithms can effectively learn to play osu!catch using structured, non-visual
input. Specifically, we develop a custom Gym-style environment that models the game dynamics and
train two types of agents: a lightweight actor-critic model and a more expressive Rainbow DQN.

By evaluating performance across beatmaps of varying difficulty, we aim to understand how archi-
tectural choices and input representations affect learning outcomes. Our results provide insights
into which RL techniques are best suited for environments that demand fine-grained, music-aligned
control.

2 Related Works

As deep reinforcement learning gained traction following the success of DQN (Mnih et al.| (2013)),
researchers introduced architectural refinements to address sample inefficiency, exploration, and
stability. One major advancement is Rainbow DQN (Hessel et al.|(2017)), which integrates several
extensions—such as dueling network architectures, prioritized experience replay, double Q-learning,
and noisy linear layers—to significantly enhance learning performance across Atari benchmarks.
Inspired by this, we explored Rainbow DQN as a stronger alternative to our initial actor-critic
baseline, particularly because of its potential for more stable and deliberate control in high-frequency
decision-making settings like rhythm games.

Actor-critic methods such as A2C and PPO (Schulman et al.| (2017)) are known for their lower
variance and on-policy learning stability. Our original approach used an advantage-based actor-critic
model with entropy regularization for smoother policies. However, we noticed that the agent’s
behavior often became overly reactive—an issue noted in prior work (Henderson et al.[(2017)), where
actor-critic methods may underperform when rewards are sparse or delayed.

Unlike most deep RL applications that rely heavily on visual input (e.g., Atari, Dota 2, StarCraft
II), our environment instead uses structured, low-dimensional state vectors derived from beatmaps.
This decision was motivated by prior work in state abstraction , which shows that removing visual
noise can improve sample efficiency and help isolate model differences. While there is limited work
specifically on RL for rhythm games, our setup mirrors environments where timing and trajectory
precision are critical, such as robotic manipulation or continuous control tasks in MuJoCo.

Overall, our work builds on the success of actor-critic and Rainbow DQN methods, but adapts them
to a novel and underexplored setting. By focusing on structured input and rhythm-aligned feedback,
we aim to shed light on how RL methods generalize to environments requiring temporal coordination
and reactive control.



3 Methods

3.1 Environment and Observations

We implemented a custom Gym-style environment that simulates osu/catch dynamics by parsing .osu
: : 1000 1 second

beaqnap files. At each timestep ¢ (corresponding to 1 frame, or 16 ms (T 0% * 55 frames)> the agent

receives a structured observation vector:

* dty: normalized time until the next fruit spawns

* dxy: relative horizontal distance between the catcher and the upcoming fruit
* v;: current horizontal velocity of the catcher

* wu,: binary urgency flag indicating imminent fruit spawn (u; = 1 if dt; < €)

The action space consists of 5 discrete actions: none, left, right, left_dash, and right_dash.
Actions influence the position and velocity of the catcher.

The reward at time ¢ is composed of several components, each targeting a specific behavior observed
during training. These components were empirically selected and tuned based on preliminary
experiments to balance catch accuracy, movement efficiency, and training stability.

* Base reward: Encourages alignment between the catcher and the incoming fruit. If the
catcher is within a small radius , = 15, a flat reward of 1 is applied (reduced slightly if the
agent is moving unnecessarily). Otherwise, a Gaussian reward is used to smoothly decay
with distance:
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1-0.02 -I[Azy > 0], if|dz| <7y
Rbase = ( (dz)? ) .
exp | —54 ), otherwise

where Ax; = |z, — x4—1| is the magnitude of movement since the previous step.

» Urgency scaling: Modulates the base reward based on how soon the fruit will fall. As dt;
approaches 0, urgency increases, boosting the reward:

dt
Rurgency = exp (_256)

This encourages the agent to focus more strongly on imminent fruits.
* Directional bonus: Rewards the agent for reducing its distance to the fruit and penalizes
movement away from nearby fruits:
+0.07, if reducing distance to fruit
bair = ¢ —0.02, if increasing distance and |dz;| < 100
0, otherwise
This provides a simple heuristic to promote momentum in the correct direction.

* Movement penalty: Penalizes excessive horizontal movement, especially when the fruit is
nearby. The penalty scales with velocity and proximity:
A(Et

Prove = —0.2 T8 (14 0.5 - scale(dz;))

This helps reduce jitter and prevents the agent from constantly overshooting or oscillating.

« Jitter penalty: Applies a small penalty when the agent changes actions too frequently,
particularly when the fruit is close:

Piger = —0.02 - T[as # a¢—1] - (1 + scale(dxy))
This discourages indecisiveness and enforces smoother sequences of actions.
* Dash penalty: Penalizes dashing when it is not needed. The penalty increases when dashing
near the fruit, where short-range adjustments would suffice:
—0.05 - sigmoid(dz;), if dashing
Pgash = { —0.2, if dashing and |dz| < 10
0, otherwise



The final reward is the sum of these terms:

Ty = Rbase : Rurgency + bdir + Pmove + ]Djitter + Pdash

This formulation prioritizes being correctly positioned at the right time, while penalizing erratic
or excessive motion. In early experiments, these components—especially the urgency and jitter
penalties—were helpful in reducing twitchy or overly reactive behavior, though the model still
produces more jittery results than human players.

3.2 Actor-Critic Agent

Our baseline is an advantage-based actor-critic model, following the Advantage Actor-Critic (A2C)
framework (Mnih et al. (2016)). The policy my(a|s) and value function Vj(s) share a common
encoder network consisting of two hidden layers with 64 ReLU units each.

The actor loss encourages actions that lead to higher-than-expected returns, based on the advantage
Gt — Vy(se):

Lactor = — 1Og 7"-G(Clt | St) : (Gt - V¢(St))
where G is the total discounted return from time ¢ onward:

T
k
Gy = g Y Ttk
k=0

The critic loss minimizes the squared error between the predicted value and the observed return:
2
Leitic = (G — Vis(s1))

To encourage exploration and avoid premature convergence to deterministic policies, we include an
entropy regularization term:

Lentropy = - ZWQ(G | St) IOg 779(@ | St)

The entropy weight was fixed at 8 = 0.01 throughout; while we did not conduct detailed experiments,
this value appeared sufficient to maintain exploration across maps.

The total loss is then given by:
Elotal = Eactor + Lcritic - B : Eentropy

This formulation balances learning an accurate value function, reinforcing advantageous actions, and
maintaining policy stochasticity for better exploration.

3.3 Rainbow DQN Agent

We implemented a simplified Rainbow DQN agent using three key improvements from the original
formulation Hessel et al.| (2017): dueling networks, NoisyLinear layers, and Double Q-learning.
These enhancements improve exploration, learning stability, and credit assignment in value-based
reinforcement learning—particularly important in rhythm-based environments like osu/catch, which
feature sparse rewards and rapid transitions between states.

Our environment naturally lends itself to discrete action-value methods. Each timestep presents a
well-defined, low-dimensional state (time to fruit, relative distance, velocity, urgency), and actions
are discrete: move left, right, dash, or remain still. Q-learning is well-suited here, as the agent can
associate expected returns with state-action pairs, and learn optimal movement strategies through
value iteration, even in the absence of an explicit model.

* Dueling Networks: The Q-network is split into two streams after an initial shared feature

extractor: one for estimating the state value V' (s) and another for estimating the action-
specific advantages A(s, a). These are combined using:

Q(s,0) = V(s) + <A(s,a) _ ﬁ ZA(s,a’)>



In our environment, this separation is especially beneficial: many frames offer little dif-
ference in value between actions (e.g., when no fruit is imminent), while other moments
require highly differentiated responses (e.g., initiating a dash). The dueling architecture
helps focus learning on the state’s overall urgency versus the specific movement needed.

* Noisy Layers: We replace standard linear layers in the value and advantage streams with
NoisyLinear layers (Fortunato et al.| (2017)), which inject learned, parameterized noise into
the weights during training. This allows the agent to perform directed exploration based
on its uncertainty, rather than relying on undirected e-greedy strategies. In the context of
the game, this enables more efficient discovery of when to initiate dashes or hold position,
especially during early training when the action landscape is uncertain.

* Double Q-Learning: To mitigate overestimation bias in Q-learning, we decouple the action
selection and evaluation steps. The next action is selected using the online network, but its
value is evaluated using the target network:

Q(S, a) —r+ 7Qlarget (5,7 arg H}IE}X Qonline(5/7 a/))

In our environment, fruits appear and disappear quickly, and timing misalignments can
lead to sharply different rewards. Reducing bias in Q-value estimates ensures that rare but
high-reward sequences (e.g., perfect dashes to distant fruit) are not prematurely ignored.

Taken together, these modifications enable our Rainbow DQN agent to efficiently explore, prioritize
urgent state-action decisions, and maintain stability during training in the game’s environment.

4 Experimental Setup

We implemented a custom Gym-style RL environment to simulate osu/catch using parsed .osu
beatmap files. At each 16ms timestep, the agent receives a 4D observation vector: normalized
time-to-fruit (dt), relative horizontal distance (dx), catcher velocity, and a binary urgency flag. The
action space consists of five discrete options: none, left, right, left_dash, and right_dash,
corresponding to movement and dash decisions commonly made by human players.

Rewards follow a Gaussian centered at the fruit’s z-position and are scaled by urgency to emphasize
timing-critical moments. We also apply additional penalties for excessive movement, jitter, and
mistimed dashes, which we found to be important for reducing erratic behaviors. A reward plateau
within 15 pixels of the fruit promotes positional stability once close enough to the fruit.

Both agents are trained on a fixed set of four beatmaps spanning beginner to expert difficulty levels
and evaluated on two held-out maps (one easy, one hard). Each model is trained for 1,000 episodes.
The actor-critic agent completes training in approximately 40 minutes, while Rainbow DQN—due to
the overhead of replay sampling and target network computation—requires approximately 8 hours.
Performance is evaluated based on average episode reward on the two test maps.

Training strategies differ by agent type. The actor-critic model is trained using full-episode rollouts
with return-based updates and advantage-weighted policy gradients. In contrast, Rainbow DQN
samples uniformly from a replay buffer of 10,000 transitions and performs minibatch temporal
difference updates. A target network is synchronized every 100 environment steps to stabilize
learning.

Model-specific hyperparameters (e.g., learning rate, entropy coefficient, noise standard deviation)
were selected independently for each agent based on early pilot runs and fixed throughout training to
maintain stability and enable fair comparison.

As a summary, we compare the following two agent architectures:

* Actor-Critic: An advantage-based A2C agent with a shared MLP encoder consisting of
a 64-unit ReLU layer, followed by separate policy and value heads. The model is trained
end-to-end using policy gradient loss with entropy regularization.

* Rainbow DQN: A value-based agent that incorporates dueling network heads, NoisyLinear
layers for learned exploration, and Double Q-learning updates. The network samples
transitions in minibatches and applies mean-squared error loss on the temporal difference
target.



5 Results

We trained both agents for 1,000 episodes on a set of four beatmaps spanning beginner to expert
difficulty. Evaluation was conducted on two previously unseen maps—one medium and one hard—to
assess generalization performance. Average test rewards were computed by averaging the final
smoothed reward across multiple episodes per map. Rainbow DQN achieved an average reward of
2,538, while the actor-critic model reached 2,118, indicating a clear performance advantage for the
value-based agent.
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Figure 1: Evaluation episode rewards on held-out test medium and hard beatmaps. Rainbow DQN
maintains higher performance and more consistent generalization.

Rainbow DQN exhibited strong learning dynamics throughout training. As shown in Figure [2] it
began outperforming actor-critic early in training and maintained a consistent advantage over it even
as actor-critic improved. This may be due to the use of NoisyLinear layers and experience replay,
allowing the Rainbow DQN model to explore and retain beneficial behaviors efficiently. In contrast,
the actor-critic model displayed noisier training curves with slower reward accumulation and frequent
regressions, especially during transitions to harder maps.
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Figure 2: Training rewards over 1,000 episodes. While results are relatively unstable throughout,
rainbow DQN generally outperforms actor-critic at most timesteps.

Although the Rainbow DQN model required significantly longer wall-clock training time, its per-
formance advantage persisted even when controlling for compute budget. At the 36-minute mark,
Rainbow had already surpassed the actor-critic model in reward accumulation, suggesting that its
architectural improvements lead to greater sample efficiency and faster policy refinement despite
slower per-episode throughput.

Qualitative analysis of replay visualizations supports these trends. While the Rainbow DQN agent
still exhibited noticeable jitter, its movements were comparatively smoother and less erratic than those
of the actor-critic agent. Rainbow tended to dash unnecessarily less often and demonstrated slightly
better temporal alignment when responding to fast or clustered fruit patterns. Although positional
jitter remained, it was less abrupt and more visually coherent, suggesting modest improvements in
motion stability and anticipation.

In contrast, the actor-critic agent frequently overreacted to individual fruit positions, producing sharp,
twitchy direction changes and delayed dashes. This often led to fruit misses, particularly in difficult
sections where rapid and precise reactions were necessary.

Notably, Rainbow DQN also appeared more resilient when misaligned—it recovered from positioning
errors more gracefully, adjusting its trajectory in time to catch subsequent fruits. The actor-critic



model, by comparison, struggled to recover from early missteps and often failed to realign quickly
enough in high-density sequences.

While both agents demonstrated some generalization to unseen maps, Rainbow’s architectural en-
hancements—such as NoisyLinear exploration and stable value estimation—enabled more consistent
learning and robustness under time-critical conditions (e.g., low dt). These results highlight the value
of augmented value-based methods in rhythm-based control domains where temporal precision and
recovery matter.

Short demonstration videos for both agents on the same beatmap can be found here:

Actor-Critic:  https://drive.google.com/file/d/19noxNscVGqRr11v9TPxF4ZtEel-d_
YyE/view?usp=sharing

Rainbow DQN:https://drive.google.com/file/d/1AIN-CN7GFyr3GYO1lr5ERVKTi2Ln56b0U/
view7usp=sharing

6 Discussion

While our agents demonstrated meaningful performance gains, several limitations remain. One major
issue is residual jitter—frequent, low-magnitude back-and-forth motion—that remains noticeable
during evaluation. Although Rainbow DQN reduced the severity and frequency compared to the
actor-critic agent, it did not fully eliminate it. Future work could explore temporal smoothness
penalties or recurrent policy architectures to better regulate motion continuity.

Implementing the environment itself posed substantial engineering challenges. Correctly handling
juice streams, curve-based slider paths, and repeat logic required a combination of geometric in-
terpolation and detailed timing analysis. These mechanics are complex and largely undocumented,
particularly in how they interact with game physics and scoring behavior. As a result, we had to
implement our best guesses of how they actually act, which adds an element of uncertainty to the
accuracy of the environment.

Reward shaping and debugging presented additional obstacles. Our agents were sensitive to hyperpa-
rameter choices such as movement penalties and urgency scaling, with small changes often leading
to major behavioral shifts. Since actor-critic training typically took 30-60 minutes per run, and
debugging often relied on visual replay inspection, iterating on reward functions was slow. Identifying
root causes of failure frequently required retraining the model, generating a replay, and manually
analyzing the results in-game.

Another difficulty involved disentangling model limitations from parser inaccuracies. In some
visualizations, agents appeared to misread slider paths or miss aligned fruit despite seemingly correct
actions. It was unclear whether these were due to inadequate policy generalization or errors in how
the environment simulated the underlying mechanics.

Finally, while both models achieved competent performance, they still fall short of expert human
players. Human gameplay is characterized by anticipatory motion, rhythm awareness, and fluid,
high-precision control that current RL policies struggle to replicate. Bridging this gap may require
multimodal inputs (e.g., audio-visual cues), imitation learning from top players, or temporally-aware
models such as Transformers.

Overall, these challenges highlight promising directions for future work, both in refining the environ-
ment and advancing agent architectures for rhythm-based real-time control.

7 Conclusion

This work explores deep reinforcement learning for rhythm-based control using osu/catch, a domain
requiring precise spatial-temporal coordination. We implemented a custom environment capable of
simulating core gameplay elements and trained agents using both actor-critic and Rainbow DQN
algorithms.

Our results show that value-based methods with architectural enhancements (e.g., dueling networks,
NoisyLinear layers) outperform policy gradient methods in this high-frequency setting. Rainbow
DQN achieved higher test rewards and exhibited more deliberate behavior, particularly on difficult
maps.
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These findings validate the potential of structured RL in rhythm games and highlight the effectiveness
of architectural improvements for temporal alignment tasks. Future directions include modeling
longer-term dependencies via sequence models (e.g., Decision Transformers), incorporating raw
visual or auditory input to better reflect the visual and auditory cues humans rely on during gameplay,
and refining reward shaping to reduce jitter and improve movement smoothness.

8 Team Contributions

This project was completed individually by me. Taran Kota (tkota@stanford.edu) contributed to the
original project proposal as a group member, but did not contribute to anything else before dropping
the class.
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