
Extended Abstract

Motivation Laboratory automation is thoroughly impacting biological research, transforming how
experiments are conducted and accelerating scientific discovery (Huang et al, 2023). Our focus is on
the pipette: the most utilized tool in biological research. Yet, current laboratory automation systems
rely on rigid, preprogrammed parameters, demanding significant time and technical expertise. We
address this limitation by developing an PPO RL system that learns optimal pipetting behaviors
through trial-and-error and adapts to various pipetting tasks without manual reprogramming. This
is the first application of PPO to pipetting. PPO’s clipped-objective update provides stable, high
precision control, but on policy training was previously infeasible due to the difficult of and cost of
fluid simulation. The result show a proof of concept that self calibrating, reinforcement learning
pipelines can replace hand tuned scripts and lower the barrier to lab automation hardware.

Method We develop a custom Gymnasium environment modeling pipetting in a 10×10×3
workspace. Liquid droplets are represented as spheres with realistic physics constraints. The
pipette aspirates liquid when within 0.5 units of a droplet, height below 1.0, and plunger depth above
0.3. Dispensing occurs at target wells when height is below 1.5 and plunger depth is below 0.7.
The action space is 4D continuous with values in [-1,1]. Actions control X, Y, Z movement with
0.2 scaling plus plunger depth. The observation space is a 14D vector containing pipette location
and direction (4D), droplet positions (9D), and task progress (1D). We implement PPO actor-critic
algorithm with full batch training. We sweep five PPO parameters: learning rate, training iterations,
steps per epoch, entropy coefficient, and clip ratio as well as two task specific variables: target
position and radius to add environmental variations and complexity to increase task difficulty.

Implementation We use PyTorch and Gymnasium for implementation. Our main architecture
consists of a shared feature extractor. This feeds separate actor and critic networks. Each network
has two 256-unit hidden layers with ReLU activations. The actor outputs continuous actions via
tanh activation. The critic estimates state values. Training employs full-batch PPO with experience
collection over varying steps per epoch. We implement standard PPO loss functions including policy
loss, value loss, and entropy regularization.

Results Our agent successfully completed its goal of aspirating and dispensing 3 droplets, and learns
and adapts to changes in its environment and tighter environmental constraints. In our optimization,
our learning rate sweep, a higher value of 1e-3 achieved the highest episode success rate at 94.1
percent versus our baseline 80.2 percent, while extreme values such as 1e-5 resulted in zero success.
Increasing the number of PPO training iterations per epoch from 20 to 30 improved success from
80.2 percent to 99.8 percent. Batch size analysis revealed that 1,000 steps per epoch was optimal,
achieving 93.1 percent success, while smaller and larger batch sizes significantly underperformed.
An entropy coefficient of 0.005 led to 90.5 percent success, compared to 51.1 percent with no entropy
and 80.9 percent with a high coefficient of 0.2. A clip ratio of 0.1 outperformed other values with
89.9 percent success, while both 0.05 and 0.5 resulted in failure. In the environment difficulty and
variation experiments, agents generalized well to different target well positions with success rates
ranging from 88 to 99 percent. Reducing the target radius from 1.0 to 0.25 led to a drop from 88 to 79
percent success. The combined optimal configuration achieved a 99 percent success rate, representing
a 24 point improvement over the baseline.

Discussion These results confirm that PPO can reliably learn pipetting behavior when properly
tuned. Learning rate and training iterations had the greatest impact on performance, followed by
batch size. Moderate entropy encouraged effective exploration, while extreme values degraded
performance. Likewise, balanced clip ratios stabilized policy updates, with both overly strict and
overly loose settings resulting in failure. The agent also generalized well to different target locations.
While our simplified droplet model enabled fast, stable training, it omits key fluid properties such as
viscosity, surface tension, and evaporation. These limitations reflect constraints in existing simulation
environments, which lack scalable support for complex liquid dynamics. Future work will incorporate
more realistic fluid mechanics, scale up the number of droplets, and explore curriculum learning to
handle multi-step laboratory protocols. This will expand the applicability of reinforcement learning
in lab automation beyond single-step pipetting tasks.



Conclusion This work presents the first successful application of PPO reinforcement learning to
automated pipetting tasks. Through systematic hyperparameter optimization, we achieved up to 99
percent success rates in simplified liquid handling simulation. Our key contributions include develop-
ment of a computationally tractable pipetting simulation environment. While our approach represents
significant simplification of real-world challenges, it establishes foundation for accessible learning
based laboratory automation. The hope is that this eventually will replace rigid, preprogrammed
systems.
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Abstract

Laboratory automation is advancing biology but is still held back by pipetting
systems that need manual setup and rigid control. We show that Proximal Policy
Optimization (PPO), a type of reinforcement learning, can train a system to pipette
accurately through trial and error. We built a custom simulation environment
where the agent learns to handle droplets in a 3D workspace using simplified
suction and dispensing physics, with 14 inputs and 4 continuous action outputs.
We trained it with a PPO actor-critic model, tuning five key training settings and
two environment variables. The agent reached up to 99% accuracy, 24 points better
than the baseline. Learning rate and number of training steps were most important,
while entropy and clipping helped with stability. Though our model simplifies real
fluid behavior, it allows fast training shows that reinforcement learning can help
make lab automation more flexible and adaptive.

1 Introduction

Laboratory automation has accelerated biological research. It has completely transformed how
experiments are conducted and accelerated scientific discovery (Huang et al, 2023). Automation
has increased throughput, reduced human error, and enabled more complex experiments. Our focus
in this project is automating the pipette. The pipette is the most used tool in bioscience research.
Every day, researchers perform millions of pipetting operations. These happen across pharmaceutical
development, diagnostic testing, and basic biological research. This widespread use makes the
pipette an important priority for advancing lab automation.

Current laboratory automation systems have fundamental limitations. They lack adaptability
and accessibility, which restricts their widespread adoption. Existing commercial platforms like
Opentrons, Hamilton, and Tecan provide well-developed frameworks. However, they require
substantial programming expertise for implementation and customization. These systems work
only with pre-programmed parameters. Users must manually specify these parameters for each
experimental protocol. Even minor protocol changes create problems. Switching between different
microplate formats or accommodating new labware requires time-consuming recalibration. This
creates significant barriers to adoption. The problem is especially severe for smaller laboratories
without dedicated bioinformatics or automation engineering expertise.

The critical gap in these systems is their reliance on static programming rather than adaptive
learning. These platforms excel at executing predetermined sequences. However, they cannot
learn or adjust their behavior in real-time based on environmental feedback. They cannot
adjust operational parameters like tip positioning, aspiration speeds, or approach angles. They
cannot adapt to environmental conditions or labware variations. Instead, they require extensive
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reagent-specific programming. They need constant human oversight whenever conditions deviate
from pre-programmed specifications.

We address this limitation by developing a comprehensive reinforcement learning framework and
seeking to optimize it’s parameters for maximum performance. Our system enables robotic systems
to learn complex pipetting behaviors autonomously through environmental interaction. Rather than
hand coding every motion, our agent learns through trial-and-error. The agent learns to optimize
aspiration and dispensing sequences. It learns pipette positioning strategies and plunger control
policies through interaction with realistic laboratory environments.

Our research questions consist of: Can PPO successfully learn aspiration and dispensing behav-
iors from trial-and-error interaction within a realistic pipetting simulation and be optimized with
hyperparameters?

We hypothesize that an on-policy reinforcement learning framework using Proximal Policy Optimiza-
tion (PPO) can be optimized and learn accurate and adaptable pipetting behaviors in a simulated
environment, allowing for more flexible and efficient automation than traditional rule-based or
off-policy RL methods.

Our project serves as an important proof of concept for applying reinforcement learning to laboratory
protocol automation to establish the foundation for future self-improving robotic systems. These
systems can complete entire protocols simply by being able to pipette. This technology has immediate
applications across multiple domains. It applies to high-throughput screening, clinical diagnostic
testing, and pharmaceutical research protocols. In these areas, pipetting precision significantly
impacts experimental outcomes and scientific reproducibility.

2 Related Works

The field of robotics has developed significant and truly revolutionary capabilities for manipulation
tasks through reinforcement learning. Researchers, including our very own Professor Finn, at UC
Berkeley made substantial contributions on deep reinforcement learning for hand-eye coordination in
grasping tasks (Levine et al, 2016). Their approach integrated visual perception with motor control,
allowing robots to learn grasping behaviors through extensive trial-and-error interactions with objects.
Building on this foundation, researchers at Google brain developed QT-Opt, a vision-based system
designed to adapt to novel objects. Their approach utilized a distributed reinforcement learning
framework with massive amounts of data and off-policy training to achieve grasping capabilities in
robotic systems (Kalashnikov et al, 2018)

However, these approaches focus primarily on rigid object interaction nowhere near simulating the
complex systems, transport, and coordination involved in pipetting. Successful pipetting requires
several coordinated actions that differ fundamentally from object manipulation. First, the pipette tip
must be positioned accurately above liquid droplets. The plunger must then be retracted to generate
suction for aspiration. Once droplets are aspirated, they must be transported together without falling.
At the target location, the plunger extends in a controlled sequence to dispense each sample. This
process demands very precise spatial navigation between multiple liquid targets while continuously
managing the plunger’s mechanical state.

Advanced laboratory automation systems have emerged to streamline experimental workflows.
For example, Burger’s mobile robotic chemist and King’s autonomous scientist demonstrate
capabilities in experiment planning and execution in the lab automation space (Burger et al., 2020;
King et al., 2009). Yet, their underlying motion behaviors, including pipetting remain hard coded,
lack the flexibility to adapt in real time to novel liquid configurations or environments. More
directly related to pipetting, researchers at Carnegie Mellon applied actor-critic reinforcement
learning using the IMPALA algorithm to automate liquid handling across complex 20×20
well plates (Ferdosi et al., 2023). This marked the first RL-based approach to pipetting, but it
relies on massive off-policy data collection and large-scale infrastructure, making it impractical
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for real time implementation in typical lab settings where compute and hardware resources are limited.

In contrast, Proximal Policy Optimization (PPO) has emerged as a widely used, stable policy gradient
method for continuous control tasks (Schulman et al., 2017). PPO’s clipped objective stabilizes
training and prevents destabilizing updates, making it well-suited for robotics domains that demand
fine-grained precision and robustness. Its sample efficiency and smooth control capabilities make
it an ideal fit for pipetting, which requires reliable sequencing of aspiration and dispensing across
variable targets. Additionally, researchers at Yale developed "spherical hands" that maintain object
size invariant manipulation by aligning joint axes to a common point, enabling consistent control
across object geometries (Ma et al., 2016). We drew inspiration from this system in designing our
ball fluid pipetting simulation environment.

Our approach is completely novel. We present the first proof of concept for autonomous pipetting
using on-policy reinforcement learning. As discussed above, previous methods have either depended
on off-policy techniques like IMPALA or hard-coded motion sequences, both of which demand
substantial computational resources and massive parallel data collection. We create a novel reinforce-
ment learning framework that uses Proximal Policy Optimization (PPO) to learn pipetting behaviors
through direct trial and error interaction, allowing for resource efficiency, flexiblity, and adaptive
control. We hope our system will serve as a proof of concept of RL in lab automation and serve on a
promising path for complex and complete biological lab robotic automation in the future.

3 Method

3.1 Environment and Simulation

We develop a custom Gymnasium environment to model pipetting in a 10× 10× 3 unit workspace.
Liquid droplets are represented as rigid spheres with simple collision and position tracking. The
pipette is modeled as a cylinder whose end-effector position (x, y, z) and plunger depth p are fully
controllable. Aspiration is triggered when the tip is within 0.5 units of a droplet, z < 1.0, and p > 0.3.
Dispensing occurs when the tip is above the target well, z < 1.5, and p < 0.7. These thresholds
approximate realistic laboratory tolerances based on empirical observations.

We used this design because representing droplets as spheres and using simple geometric thresholds
greatly reduces computational overhead while preserving the core challenges of precise alignment,
suction timing, and fluid transport. This balance enables rapid iteration on policy and hyperparameters
without sacrificing task fidelity.

3.2 Action and Observation Spaces

Action space: A 4-dimensional continuous vector in [−1, 1]4. The first three dimensions command
incremental movements in x, y, z (scaled by 0.2 units/step). The fourth dimension controls plunger
depth.

Observation space: A 14-dimensional vector

s = [x, y, z, p, x1, y1, z1, x2, y2, z2, x3, y3, z3, f ],

where (x, y, z, p) is the pipette location and plunger depth, (xi, yi, zi) are the three droplet coordinates,
and f ∈ {0, 1} flags whether all droplets have been aspirated.

Our action space gives continuous control in [−1, 1] allows fine-grained, smooth adjustments in both
spatial movement and plunger actuation. Discrete actions would force coarse steps, impeding the
precision required to avoid air bubbles or spillage.

Our observation space including full pipette positioning, droplet positions, and a task-progress flag
provides complete situational awareness to our agent. The flag simplifies mode switching between
aspirating and dispensing, ensuring the policy can segment behavior without inferring task stage from
raw coordinates alone.
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3.3 Reward Function

We define the step reward as:

Rt = w1 ∆aspirationt+w2 ∆dispensingt+w3 1complete+w4 guidancet−w5 collisiont−w6 jerkt

with weights: w1 = 10, w2 = 20, w3 = 50, w4 = 1, w5 = 5, w6 = 0.5.

Our Rationale for each Term in the Reward Function:

• Incremental aspiration and dispensing terms (w1, w2) provide dense learning signals, helping
the agent make progress without relying on sparse rewards.

• Completion bonus (w3) strongly encourages the agent to finish all required aspiration and
dispensing actions.

• Guidance rewards (w4) offer small directional incentives toward targets or sources, improv-
ing learning speed in early episodes.

• Collision penalties (w5) discourage the agent from hitting well boundaries, protecting both
physical integrity and task success.

• Jerk penalties (w6) promote smooth pipette motion, which helps prevent liquid turbulence
or spillage.

3.4 Learning Algorithm: PPO

We implement Proximal Policy Optimization (PPO) in an actor-critic framework. The advantage is
estimated via Generalized Advantage Estimation (GAE):

Ât =

∞∑
l=0

(γλ)l
[
rt+l + γV (st+l+1)− V (st+l)

]
,

with γ = 0.99, λ = 0.95. The clipped surrogate objective is

LCLIP(θ) = Et

[
min

(
rt(θ) Ât, clip(rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
,

where rt(θ) = πθ(at|st)/πθold(at|st) and ϵ = 0.2. The critic minimizes

LVF(ϕ) = Et

[
(Vϕ(st)− R̂t)

2
]
,

with R̂t = Ât + V (st).

We chose to utilize PPO because its clipped updates constrain policy changes to a trusted region,
preventing abrupt shifts that could cause the pipette to miss droplets or spill liquid. Compared to TRPO
(which requires expensive second-order computations) or off-policy methods like DDPG/SAC (which
can suffer from value bias), PPO offers stable, sample-efficient learning with minimal algorithmic
complexity—ideal for precision laboratory tasks.

Both actor and critic are 2-layer MLPs with 256 units each and ReLU activations. We chose 256×256
as a trade-off: large enough to represent complex pipetting strategies, but small enough to train
efficiently on 200 k frames. We set the clipping parameter ϵ = 0.2, entropy coefficient 0.01, and GAE
λ = 0.95 based on standard continuous-control defaults shown to work well in robotics domains.

For baseline, we used a learning rate of 3 × 10−4, batch size 64, and perform 10 PPO epochs per
data collection. These settings balance stability and sample efficiency, matching widely adopted PPO
baselines.

We define an episode as successful if the agent transfers all three droplets to their target wells before
reaching the 200-step limit. The episode_success metric is computed as the fraction of evaluation
episodes in which this full transfer occurs.

4 Experimental Setup

To thoroughly evaluate the performance of our PPO-based reinforcement learning approach for
automated pipetting, we designed an experimental framework that systematically tests various hyper-
parameters and environment configurations. Our goal was to understand how different algorithmic
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choices affect the agent’s ability to learn precise liquid handling skills while ensuring our findings
would generalize beyond the specific training conditions.

Our experiment occured in our simulated pipetting environment where the objective of the agent
was to learn to aspirate 3 droplets from a source locations and dispense them into target wells. Each
episode allows a maximum of 200 steps, with the agent receiving rewards based on successful
aspiration and dispensing actions. The environment uses a 10x10 unit workspace with wells having a
radius of 1.0 unit and depth of 2.0 units at baseline.

Baselines and Metrics We compare our optimized agent against two baselines:

1. Default PPO: our initial PPO configuration before hyperparameter tuning (learning rate
3 × 10−4, 20 update iterations, 2000 steps/epoch, entropy coefficient = 0.01, clip ratio =
0.2) with source at (2,2) and target at (8,8).

2. Negative control: the target well placed outside the workspace, which yields a 0% success
rate.

Our primary metric is success rate, defined as the percentage of episodes in which all three droplets
are transferred to their target well within 200 steps. Secondary metrics include the average episode
reward and average episode length.

Success Criterion An episode is considered successful if all three droplets reach their designated
target wells before the 200-step limit. We report success rate over 5 held-out evaluation episodes
using fixed random seeds.

We organized our experiments into six main categories, each targeting a specific aspect of the PPO
algorithm or environment configuration:

4.1 Learning Rate Testing:

We tested six different learning rates ranging from very conservative (1∗10−5) to aggressive (3∗10−3)
values. Our baseline used 3 ∗ 10−4, which is commonly recommended for PPO implementations.
The extreme values (1 ∗ 10−5) and (3 ∗ 10−3) were included to observe potential underfitting and
overfitting behaviors respectively.

4.2 Training Iteration Experiments:

These experiments varied the number of policy update iterations performed after each data collection
phase. We tested values from 5 iterations up to 50 iterations, with our baseline at 20 iterations. Lower
values reduce training time but may lead to insufficient learning, while higher values risk overfitting
to collected data.

4.3 Steps Per Epoch Experiments:

We examined how the amount of experience collected before each training update affects learning
stability and sample efficiency. Our tests ranged from 500 to 8,000 steps per epoch, with 2,000 as our
baseline. This parameter directly impacts the trade-off between learning stability and computational
efficiency.

4.4 Entropy Coefficient Experiments:

To control the exploration-exploitation balance, we tested three entropy coefficient values: 0.0 (no
exploration bonus), 0.005 (low exploration), and 0.020 (high exploration). This helps determine the
optimal level of randomness needed for effective policy learning in our pipetting task.

4.5 Clipping Ratio Experiments:

The PPO clipping mechanism prevents destructively large policy updates. We tested conservative
clipping (0.05, 0.10), standard clipping (0.20 baseline), and aggressive clipping (0.30, 0.50) to
understand the sensitivity of our pipetting task to this crucial PPO hyperparameter.
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Figure 1: Learning Rate Sweep

4.6 Environment Testing:

Beyond hyperparameter tuning, we conducted additional experiments to ensure our algorithm was
actually learning pipetting behaviors rather than exploiting environment-specific quirks. We modified
the well radius in some experiments, testing smaller targets (0.25 and 0.5 units) to increase task
difficulty and verify that the agent could adapt to more precise requirements. To verify that our
agent learns genuine pipetting skills rather than memorizing specific locations, we trained models
with target wells positioned at different coordinates: (8,12), (10,8), and (5,10). This tests the spatial
generalization capabilities of our learned policies.

Each experiment was run with consistent random seeds to ensure reproducibility, and all training
sessions used identical evaluation protocols. Every model was evaluated using the same set of test
scenarios to enable fair comparison across different hyperparameter configurations. Training progress
was monitored through success rates, episode rewards, and convergence stability metrics, with results
logged using TensorBoard.

5 Results

Our hyperparameter study revealed significant insights into the optimal configuration for PPO-based
pipetting automation. The results demonstrate that careful tuning of algorithmic parameters can
dramatically improve task performance. These findings confirm that PPO can reliably learn pipetting
behavior when appropriately tuned, with learning rate and training iterations having the strongest
influence on final performance.

5.1 Learning Rate Analysis

The learning rate experiments showed a clear U-relationship between learning speed and final
performance, as summarized in Table 1 and in Figure 1. Very small learning rates (1×10-5) prevented
any meaningful learning, achieving only 0% success. Moderate learning rates performed well,
with 1×10-4 achieving 90.69% success and our baseline 3×10-4 reaching 80.18%. Surprisingly, the
aggressive learning rate of 1×10-3 achieved the highest success rate at 94.08%, suggesting that faster
learning can be beneficial for this task when balanced properly. However, the most aggressive rate
(3×10-3) completely failed, likely due to destructive policy updates that prevented stable learning.

These results indicate that pipetting tasks benefit from moderately fast learning, possibly because
the precise motor control required needs rapid adaptation to environmental feedback. The narrow
window between optimal and destructive learning rates emphasizes the importance of careful tuning
in robotic control applications and highlights the sensitivity of reinforcement learning algorithms to
this fundamental hyperparameter.
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Table 1: Learning Rate Experimental Results

Learning Rate Success Rate (%)
1×10-5 0
1×10-4 90.69
3×10-4 80.18
5×10-4 4.89
1×10-3 94.08
3×10-3 0

Figure 2: Training Iterations Sweep

5.2 Training Iterations Impact

The training iterations sweep revealed that more intensive training generally leads to better perfor-
mance, as shown in Table 2 and Figure 2. Starting from 49.83% success with only 5 iterations,
performance steadily improved as we increased training intensity. The peak performance of 99.78%
was achieved with 30 iterations, representing nearly perfect task execution. Interestingly, 50 iterations
showed slightly lower performance (98.61%), suggesting potential overfitting when training becomes
too intensive.

Table 2: Training Iterations Experimental Results

Training Iterations Success Rate (%)
5 49.83

10 68.73
15 80.64
20 80.18
30 99.78
50 98.61

This pattern suggests that pipetting skills require substantial practice to develop but can be overtrained.
The optimal range of 20-30 iterations provides sufficient learning without the risk of overfitting to
specific training examples, which is deeply important for real-world deployment where conditions
may vary. This finding aligns with general principles of machine learning where excessive training
can lead to reduced generalization capability and overfitting.

5.3 Data Collection Efficiency

The steps per epoch experiments revealed an unexpected relationship between data collection and
performance, as detailed in Table 3 and Figure 3. Rather than more data being better, we found that
1,000 steps per epoch achieved the highest success rate at 93.1%. Performance actually decreased
as we collected more data per training cycle, with 8,000 steps yielding only 43.37% success.
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Figure 3: Steps Per Epoch Sweep

Table 3: Steps Per Epoch Experimental Results

Steps Per Epoch Success Rate (%)
500 0

1000 93.1
2000 80.18
4000 74.46
8000 43.37

This result suggests that in more detailed motor control tasks like pipetting, fresher data may be more
valuable than larger datasets. Smaller batch sizes might allow the algorithm to adapt more quickly
to its improving policy, while larger batches could contain outdated experiences that interfere with
learning.

5.4 Exploration Strategy Optimization

The entropy coefficient experiments examined how much randomness helps learning, with results
presented in Table 4 and Fig 4. Complete elimination of exploration (entropy = 0.0) resulted in poor
performance (51.09%), showing that some exploration is necessary. Low exploration (entropy =

Figure 4: Entropy Coefficient Sweep
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Figure 5: Clip Ratio Sweep

0.005) achieved the best results at 90.52%, while our baseline moderate exploration (0.01) reached
86.09%. High exploration (0.02) decreased performance to 80.88%.

Table 4: Entropy Coefficient Experimental Results

Entropy Coefficient Success Rate (%)
0.0 51.09

0.005 90.52
0.01 (baseline) 86.09

0.02 80.88

These results suggest that pipetting requires balancing between exploration and exploitation. Too little
exploration prevents discovery of effective strategies, while too much exploration can interfere with
late-stage control. Moderate entropy levels improved success by encouraging sufficient exploration,
while extreme values led to under- or over-randomized policies. The optimal low-exploration strategy
allows the agent to focus on precise movements while still discovering better techniques.

5.5 Clip Ratio Stability

The clipping ratio experiments showed that moderate constraints on policy updates works best
for pipetting tasks, as summarized in Table5 and Figure 5. Very conservative clipping (0.05)
failed completely, while slightly relaxed clipping (0.10) achieved 89.86% success. Our baseline
moderate clipping (0.20) performed well at 86.40%, and more aggressive clipping showed declining
performance.

Table 5: Clip Ratio Experimental Results

Clip Ratio Success Rate (%)
0.05 0
0.10 89.86

0.20 (baseline) 86.40
0.30 85.45
0.50 0

This pattern indicates that pipetting skills require steady but not overly cautious policy improvements.
Appropriate clip ratios helped maintain stable updates, with both overly conservative and overly
permissive values resulting in failure. Too much constraint prevents necessary learning, while too
little constraint may lead to instability in the precise control required for liquid handling. This
reinforces our choice of PPO as our algorithm- which values steady and stable progress.
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Figure 6: Target Position Changing Results

5.6 Spatial Generalization Capabilities

The target position experiments provided crucial validation that our agent learns genuine pipetting
skills rather than memorizing specific locations, with results shown in Table 6 and Figure 6. Perfor-
mance remained high across different target positions: 88% for (8,8), 99.48% for (10,8), and 97%
for (5,10). The one failure case (8,12) achieved 0% success because this position was outside the
environment boundaries, confirming that our agent appropriately fails when given impossible tasks.

Table 6: Target Position Experimental Results

Target Position Success Rate (%)
8, 8 (new baseline) 88

5, 10 97
10, 8 99.48

8, 12 (out of bounds) 0

These results demonstrate spatial generalization, indicating that the learned policies capture funda-
mental pipetting behaviors rather than location-specific movements. This is essential for real-world
applications where target locations will vary and adaptability is crucial for practical deployment.

5.7 Precision Requirements

The radius experiments tested the agent’s ability to handle different precision requirements, as detailed
in Table 7 and Figure 7. Performance decreased as targets became smaller and more demanding:
82% success with 0.5-unit radius wells, 79.3% with 0.25-unit radius, compared to 88% with standard
1.0-unit wells.

Table 7: Target Radius Experimental Results

Radius Success Rate (%)
0.25 79.3
0.5 82

1.0 (new baseline) 88

While performance declined with increased precision demands, the agent maintained reasonable
success rates even with very small targets. This suggests that the learned policies can adapt to
different precision requirements, though additional training might be needed for extremely demanding
applications.

10



Figure 7: Target Radius Decrement Experiment Results

Figure 8: Pipette environment visual

5.8 Qualitative Analysis

We analyzed the agent’s learned behavior through detailed examination of state trajectories and action
patterns. The agent’s internal state was tracked using two boolean arrays: aspirated_droplets
and droplets_in_target, which provided insight into task progression and failure modes. We
also modeled our simulated environment, which is shown in Figure 8.

The trained agent exhibited sophisticated movement patterns that emerged naturally from the reward
structure. During the approach phase, the agent developed a characteristic spiral descent, maintaining
altitude at approximately 2.5 units until positioned directly above the source well. This conservative
strategy minimized collision risk while ensuring accurate positioning.
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Most notably, the agent learned to aspirate droplets sequentially rather than simultaneously. A typical
successful episode showed the following progression in the aspirated_droplets array:

Step 45: [False, False, False]
Step 52: [True, False, False]
Step 58: [True, True, False]
Step 64: [True, True, True]

This sequential pattern emerged despite equal reward weighting for all aspirations, suggesting the
agent discovered that individual targeting improved reliability. The agent consistently followed a
clockwise pattern around the source well, minimizing travel distance between droplets.

During transport, the agent maintained pretty good stability. Successful episodes showed the plunger
depth locked at 0.85 (well above the 0.3 release threshold) throughout the entire transfer phase. The
agent followed smooth arc trajectories rather than direct point-to-point paths, likely influenced by the
jerk penalty.

The dispensing phase revealed unexpected sophistication. Rather than simultaneous release, the agent
developed a staged dispensing strategy:

Step 143: [False, False, False] # Plunger: 0.85
Step 148: [True, False, False] # Plunger: 0.68
Step 151: [True, True, False] # Plunger: 0.52
Step 155: [True, True, True] # Plunger: 0.25

This behavior emerged without explicit reward shaping for sequential dispensing, indicating the agent
discovered this approach improved success rates.

In terms of failure, analysis of failed episodes revealed three dominant patterns:

Incomplete Aspiration (40% of failures): The agent would successfully aspirate two droplets but fail
to collect the third. These episodes typically ended with aspirated_droplets = [True, True,
False] persisting until timeout. Video analysis showed this occurred when initial droplets were
positioned on opposite sides of the well, making the third droplet difficult to reach without disturbing
already-collected samples.

Transport Loss (35% of failures): Characterized by mid-episode regression in the aspiration array:

Step 85: [True, True, True] # Successful aspiration
Step 92: [True, True, True] # Normal transport
Step 98: [True, True, False] # Droplet lost
Step 103: [True, False, False] # Cascade failure

These failures correlated with rapid direction changes, suggesting the 0.5 weight on jerk penalty was
insufficient for preventing aggressive maneuvers.

Dispensing Misalignment (25% of failures): The agent would successfully transport all droplets but
fail during dispensing. Final states showed patterns like droplets_in_target = [True, True,
False], indicating the agent drifted outside the target well radius before completing the sequence.

Tracking array evolution across training episodes revealed clear skill development phases:

Episodes Avg. Aspirated Avg. Dispensed
1-1000 0.8 0.2
1000-5000 2.4 1.8
5000-10000 2.9 2.7
Final 1000 2.95 2.91

Table 8: Learning progression showing gradual mastery of task phases

These behavioral patterns provide valuable insights for designing more sophisticated laboratory
automation systems, suggesting that complex manipulation strategies can emerge from relatively
simple reward structures when properly configured.
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6 Discussion

Our hypothesis was correct. Utimately, we were able to development an on-policy reinforcement
learning framework using Proximal Policy Optimization (PPO) that can in fact learn accurate and
adaptable pipetting behaviors in a simulated environment. Our hyperparameter analysis demonstrates
that PPO can be greatly optimized. It can reliably learn complex pipetting behaviors when properly
configured, but success depends critically on operating within narrow parameter ranges. Looking
across our chosen parameters of learning rates, training iterations, batch sizes, entropy coefficients,
and clipping ratios shows a clear ranking of parameter importance and provides practical guidance
for deploying reinforcement learning in precision motor control tasks.

Learning rate and training iterations emerged as the most influential factors, with dramatic perfor-
mance variations indicating their control over task completion. These parameters directly determine
whether the agent can acquire the precise motor skills necessary for successful pipetting. Batch size
showed the third-strongest impact, with smaller batches unexpectedly outperforming larger ones,
challenging conventional assumptions about data efficiency in reinforcement learning.

Mid-level coefficients for entropy encouraged effective exploration while still ensuring that results
remained precise. Extreme values in either direction heavily decreased performance. This finding
highlights the necessity to balance exploration and exploitation in precision tasks. Balanced clipping
ratios also stabilized policy updates and enabled consistent learning, while both overly strict settings
(preventing necessary adjustments) and overly loose settings (allowing destructive policy changes)
resulted in an inability to show any results.

The narrow optimization windows observed across multiple hyperparameters suggest that reinforce-
ment learning for precise motor control operates differently versus many other RL applications.
Unlike tasks where approximate solutions may be acceptable, pipetting requires exact positioning
and timing, creating sharp performance cliffs around optimal parameter settings. This sensitivity has
profound implications for practical deployment, indicating that automated hyperparameter tuning
strategies will be essential for reliable implementation in laboratory environments.

6.1 Data Efficiency and Exploration-Exploitation Balance

Smaller batch sizes unexpectedly outperformed larger ones, suggesting that data freshness matters
more than quantity in motor skill acquisition. As the agent’s policy improves, older experiences can
interfere with learning patterns that may require more accuracy.

Lower entropy coefficients worked better in task completion, which contrasts with many RL ap-
plications, where aggressive exploration benefits performance. This highlights the need to balance
exploration with the deterministic precision required for accurate liquid handling based off of the
environment used. However, higher entropy may work better in more complex environments and less
calibrated hyperparameters.

6.2 Policy Generalization

The spatial generalization demonstrated across different target positions and radii provides evidence
that agents learn genuine pipetting skills rather than memorizing specific movement sequences.
Consistent high performance across varied spatial configurations suggests that learned policies
capture fundamental principles of liquid handling rather than task-specific tricks. The policy’s
accurate reactions to out of bounds positions also demonstrate policy safety, which is crucial to
developing safe laboratory apparatuses.

The radius experiments show an expected downward trend in task completion while also maintaining
reasonable success rates, even with significantly smaller targets. This ability to scale indicates that
agents are able to adapt to the varied accuracy demands, showing the agent’s capability of learning
and adapting to new environmental constraints.

6.3 Clipping & Algorithmic Stability

The clipping ratio experiments provide valuable insights into stability requirements for policy opti-
mization in motor control tasks. Complete failure with very conservative clipping (0.05) suggests that
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lower flexibility around our policy can prevent additional complex motor skills understanding, while
failing at highly permissive settings (0.50) indicates that unrestricted policy changes can destroy
previously learned motor patterns. Optimal performance at moderate clipping levels reflects the need
for stable but meaningful policy evolution in precision tasks, where consistency in refining precise
motor control patterns is essential.

6.4 Limitations and Future Directions

All training was conducted entirely in simulation using a simplified droplet model without fluid
simulation or real-world data. The sphere-based liquid model provides computational efficiency
but lacks important fluid properties like viscosity, surface tension, and evaporation that affect real
pipetting operations. We were limited by simulation environments that didn’t support complex liquid
dynamics at our scale, thus requiring development of custom physics engines to simulate simplified
suction and liquid-like behaviors.

Initial attempts to handle variable numbers of droplets (1, 2, or 3) within a single policy failed
completely with 0% success rate. The agent consistently over-aspirated, attempting to pick up three
droplets regardless of actual count, appearing to ignore droplet count information and defaulting
to previously learned three-droplet behavior. This suggests that simply providing task variation as
additional observation was insufficient for proper task conditioning.

Future work will focus on incorporating additional liquid properties to better capture fluid dynamics,
exploring curriculum learning techniques to improve training efficiency, and developing more complex
architectural approaches such as task-specific network layers or hierarchical policies for handling
multiple related objectives. Our extremely high success rates show that a focus on increasing
environment complexity is the direct next step in determining the limits of our algorithm. The
development of more realistic simulation environments that capture complex fluid behaviors while
maintaining computational tractability represents a significant engineering challenge. Additionally,
transitioning from simulation to real-world deployment will require careful consideration of domain
adaptation techniques, sensor integration, and safety protocols. Current simulation results provide a
foundational knowledge for these developments, suggesting that RL-based approaches can master the
precise control required for laboratory automation when configured and trained properly.

6.5 Broader Impact and Project Challenges

As mentioned throughout this paper, this work has broader implications for lower-entry, cost-efficient
laboratory automation. By replacing hand-coded scripts with learning-based systems, we lower the
barrier to entry for smaller laboratories without dedicated automation engineers. However, we must
consider safety implications of autonomous liquid handling systems, particularly when handling
hazardous materials and patient samples, which are often difficult to collect.

During the project, we encountered several significant challenges. The lack of existing fluid simulation
support in standard RL environments forced us to develop custom physics approximations. Initial
attempts with MuJoCo failed because it cannot model air pressure or fluid dynamics. We also
struggled with training instability in early experiments, requiring extensive hyperparameter tuning
to achieve stable learning. The most time-consuming aspect was debugging the reward function -
early versions led to degenerate behaviors like the agent hovering indefinitely above droplets without
attempting aspiration.

7 Conclusion

This work presents the first successful application of PPO reinforcement learning to automated
pipetting tasks, achieving success rates of up to 99.78% through systematic hyperparameter optimiza-
tion. Our experimental analysis revealed that optimal performance requires operation within narrow
hyperparameter ranges, with learning rate and training iterations having the strongest influence on
final performance. The counterintuitive finding that smaller training batches outperform larger ones
challenges conventional assumptions about data efficiency in reinforcement learning.
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The strong spatial generalization capabilities demonstrated across varied target positions provide
evidence that our agents learn genuine pipetting skills. This finding is crucial for practical deployment,
as laboratory automation systems must adapt to diverse experimental configurations and protocols.

Our key contributions include development of a computationally tractable pipetting simulation
environment and systematic exploration of hyperparameter space that provides practical guidance
for precision control tasks. While our approach represents significant simplification of real-world
challenges, particularly regarding fluid dynamics, it establishes a crucial foundation for learning-based
laboratory automation.

The narrow optimization windows identified across multiple hyperparameters highlight both the
potential and challenges of deploying reinforcement learning in laboratory settings. Future work
must address the transition from simplified simulation to real-world deployment through improved
fluid modeling, sensor integration, and domain adaptation strategies.

This research establishes reinforcement learning as a viable approach for precision laboratory au-
tomation tasks and provides essential building blocks for replacing rigid, preprogrammed systems
with adaptive, learning-based automation. The success achieved in these pipetting tasks suggest that
stronger application of reinforcement learning towards laboratory automation is not only feasible but
may be transformative for labs around the world.

8 Team Contributions

• Ashley Chen: Ashley was in charge of setting up the pipette environment, hyperparameter
experiments, and worked on integrating the algorithm and the environment with Gurmen.

• Gurmenjit Bahia: Gurmen was in charge of the algorithm and reward function development,
hyperparameter experimentation, and worked with Ashley on integrating the algorithm with
the environment.

Changes from Proposal We pivoted from physical models to a completely simulated custom
physics engine, as well as cut down on the parameters we would test on (and instead focused on
tuning hyperparameters). These changes were made due to feasibility constraints around the programs
we were using, as well as challenges around scoping our initial problem. For example, MuJoCo
cannot accurately model fluid dynamics, nor can it model air pressure- two physics concepts that our
initial objective relied on. Thus, we are now modeling liquids as individual small spheres- which are
also easier to track and keep count of.
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