Extended Abstract: Precise RLAIF: Improving Instruction
Following with Sentence-Level AI Feedback (Default Project)

Motivation State-of-the-art models currently use Reinforcement Learning with Human Feedback
(RLHF) as it enables optimization on "complex, sequence-level objectives that are not easily differen-
tiable and therefore ill-suited for traditional supervised fine-tuning (SFT)" (Lee et al., 2024). However,
there is a gap in the literature on assigning scores to individual sentences within a multi-sentence
LLM response sequence for task optimization due to the challenges in that procuring this data from
humans would entail. Recent research has highlighted the potential of Reinforcement Learning with
Al Feedback to replace the human in choosing between two responses for model training (Lee et al.,
2024; Dong & Ma, 2025) but these have been limited to sequence-level objectives only. We explore a
method to implement granular, sentence-level feedback in the DPO pipeline.

Method The first step in the Reinforcement Learning pipeline is to fine-tune the model on high-
quality data from the task through supervised fine-tuning (SFT). In our pipeline, we use SFT to
finetune the model using 460k prompt-completion pairs from the Smoltalk dataset after a pre-
processing step to generate the correct tokens, labels, and mask. Then we finetune the model with a
Direct Preference Optimization objective over the Ultrafeedback dataset. Finally, to achieve sentence-
level scoring, we use an LLM to generate a "worse" (less relevant) version of a single line according
to a set of "constitutional principles" for generation. The "Precise RLAIF" step is to finetune the
model with the DPO objective with this newly generated dataset.

Implementation We benchmark our improvements in the model training pipeline using two
approaches. First, we assess the model win-rate with an (1) automated pipeline that uses Nemotron
70 B. to select the winning completion among two candidate responses conditioned on a test prompt,
and (2) human evaluation by asking five anonymous Stanford students to select five responses each
for a total of 25 datapoints. Second, we assess the extent to which model degradation / forgetting
occurs by benchmarking the model’s performance on three unrelated tasks: english-french translation
with Flores-101 dataset, measured by the BLEU metric; 8th grade school multi-step math problems
with GSMS8K dataset; and coding tasks on the python MBPP dataset. The resulting scores were then
used to compute both average degradation and distributional drift across examples.

Results We find that Precise RLAIF achieves a promising increase in perforamcne against DPO,
with a win-rate against the Qwen 2.5 0.5B. baseline going from 68.5% to 75.2 % evaluated by
Nemotron 70B. Additionally, when compared with the SFT baseline and evaluated by humans, the
Precise RLAIF achieves a 66.4% win-rate, compared to 55 % from DPO. These results are especially
promising because (i) it outlines a useful pipeline to generate granular sentence-level feedback that
was previously unfeasible to collect at scale from human data, and (ii) its performance is subject to
scaling laws: as the model used to generate degradations gets better, the increases in performance
from this pipeline should increase as well.

Discussion On the generalizability of our results, we also observe evidence of small model degra-
dation from a performance drift across unrelated tasks with a 6 % shift in coding capabilities and
1.7 % on translation tasks, with a distributional shift to the left of the mean and shows a broad
tail degradation, which implies the model underperforms across unrelated tasks and also on some
examples that the baseline handled well.

Conclusion This paper introduces "Precise RLAIF" for granular, sentence-level scoring for task
optimization on instruction following. We find that Precise RLAIF achieves a promising increase in
performance against DPO and SFT. Further research is warranted to develop this method further.
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Abstract

State-of-the-art models currently use Reinforcement Learning with Human Feed-
back (RLHF) as it enables optimization on "complex, sequence-level objectives
that are not easily differentiable and therefore ill-suited for traditional supervised
fine-tuning (SFT)" (Lee et al., 2024). This paper introduces "Precise RLAIF" for
granular, sentence-level scoring for task optimization on instruction following. We
find that Precise RLAIF achieves a promising increase in perforamcne against
DPO, with a win-rate against the Qwen 2.5 0.5B. baseline going from 68.5% to
75.2 % evaluated by Nemotron 70B. Additionally, when compared with the SFT
baseline and evaluated by humans, the Precise RLAIF achieves a 66.4% win-rate,
compared to 55 % from DPO. These results are especially promising because (i)
it outlines a useful pipeline to generate granular sentence-level feedback that was
previously unfeasible to collect at scale from human data, and (ii) its performance
is subject to scaling laws: as the model used to generate degradations gets better,
the increases in performance from this pipeline should increase as well. However,
we also observe evidence of model degradation from a performance drift across
unrelated tasks with a 6% shift in coding capabilities and 1.7% on translation
tasks.

1 Introduction

State-of-the-art models currently use Reinforcement Learning with Human Feedback (RLHF) as
it enables optimization on "complex, sequence-level objectives that are not easily differentiable
and therefore ill-suited for traditional supervised fine-tuning (SFT)" (Lee et al., 2024). However,
there is a gap in the literature on assigning scores to individual sentences within a multi-sentence
LLM response sequence for task optimization due to the challenges in that procuring this data from
humans would entail. Recent research has highlighted the potential of Reinforcement Learning
with Al Feedback to replace the human in choosing between two responses for model training (Lee
et al., 2024; Dong 1& Ma, 2025) but these have been limited to sequence-level objectives only.
This project will pursue the "Synthetic Data Augmentation" extension (2.1) by seeking to improve
LLM’s instruction following abilities by leveraging RLAIF for granular feedback on responses at
the sentence level. We explore the potential use of RLHF for granular, sentence-level scoring for
task optimization (instruction following) and compare it to the performance of RLHF using Direct
Preference Optimization, potentially opening the door for improved performance in RLAIF through
data collection that was previously unattainable. The research question is: how does sentence-level
RLAIF compare to sequence-level DPO and SFT as a finetuning strategy on instruction-following
tasks?
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2 Related Work

This work builds upon the literature on Reinforcement Learning from Human Feedback (Stiennon et
al., 2020; Ouyang et al., 2022) by closely resembling its learning stages, the Constitutional Al design
of a "supervisor model" (Bai et al., 2022), and the direct RLAIF approach described in

Canonical Reinforcement Learning from Al Feedback In 2022, Bai et al. at Anthropic introduced
RL from AI Feedback in the paper "Constitutional AL." RLAIF is a promising alternative to RLHF
that trains the reward model (RM) on preferences generated by an off-the-shelf LLM, eliminating
the need for human feedback labelling. Bai et al. use canonical RLAIF to train an AT assistant with
the task of reducing harmful content in model outputs. Particularly, the steps in the Constitutional
Al process involve designing an "Al critic" that makes decisions based on a small set of principles
drawn from a constitution outlined by the researchers. The model is evaluated using ELO scores for
helpfulness and Harmlessness.

Two limitations are directly relevant to our work: (1) although the constitution is a minimal set of
natural language instructions, Bai et al. find that the particular design of the constitution highly
impacts model performance across experiments; to address this, this project will design and test
multiple instruction sets across experiments (2) the approach relied heavily on "induced reasoning
through Chain-of-Thought" prompting, and finds that CoT samples have a varying impact on models
depending on their size; to address this, our experimental design includes CoT experiments on a
model of fixed size. Additionally, one issue identified by a previous Bai et al. paper (2022) — yet
unadressed by canonical RLAIF —is that training a reward model may render it "stale" as the policy is
trained (in the RL step) as the generated trajectories become increasingly out-of-distribution from
the dataset the RM was trained on, leading to suboptimal performance. An alternative would be
to conduct iterative RLAIF — periodically training a new RM on the latest policy—but this would
approach would be too time and resource consuming.

Direct RLAIF On 2024, Lee et al. address some lingering limitations of RALIF in "RLAIF vs.
RLHF" and introduce direct RLAIF (d-RLAIF). In contrast to RLAIF, this alternative directly uses
an off-the-shelf LLM to provide feedback as the reward signal in the RL step of RLHF. Therefore,
the LLM is prompted to "rate the quality of a generation between 1 and 10" (Lee et al., 2024, p. 4).
given a researcher prompt. Then, the likelihood of each score token is computed, normalized to a
probability distribution, and a weighted score is computed and, again, normalized to the range [-1, 1].
The RL step (using REINFORCE) is then conducted in a similar manner to canonical RLAIF but
using the direct score instead of a RM score. Lee et al. find that human evaluators strongly prefer
the RLAIF and RLHF models over the SFT baseline for the summarization and helpful dialogue
generation tasks, and that RLAIF is equally preferred to RLHF (71 % and 73 %, respectively).

This work highlights the importance of the labeler model size, in line with other scaling behaviors
observed by Kaplan et al., 2020. That is, increasing the model size of the labeller model (from PaLM
2 L to PaLM 2 XS) results in a 15% increase in labeller alignment. This is a promising result for
RLHEF as off-the-shelf models get larger and more capable.

However, this paper is limited as it only scores sequence-level objectives (entire responses) through
the LLM, lacking granularity. Although they highlight some trends in human testing (reduced
fluency, misleading intention), they do not systematically benchmark these features against RLHF.
Additionally, the experiments are based solely on PalLM, which lacks convincing power—the reliance
on just one model limits the persuasiveness of their results.

3 Method

3.1 Supervised Fine Tuning (SFT)

The first step in the Reinforcement Learning pipeline is to fine-tune the model on high-quality data
from the task through supervised fine-tuning (SFT). Supervised Fine-Tuning is the same next-token
prediction objective that is used in pre-training, but no loss is applied to the query tokens. The
supervised learning objective in equation (IJ) is optimized over queries x and completions y drawn
from an expert distribution. In our pipeline, we use SFT to finetune the model using 460k prompt-
completion pairs from the Smoltalk dataset after a pre-processing step to generate the correct tokens,
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3.2 Direct Preference Optimization (DPQO)

Direct Preference Optimization is an objective function that encourages a model to assign a higher
likelihood to preferred responses over dispreferred ones. Unlike RLHF, DPO avoids explicitly
computing or modeling scalar reward values with a reward function, which leads to more stable
training and simplifying the pipeline. The DPO loss is outlined in (2) where x is the prompt, v, is
the preferred response, y; is the dispreferred response, g is the policy that is being optimized, and
Tt 18 the finetuned policy from SFT.
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3.3 Precise Reinforcement Learning with AI Feedback (Precise-RLAIF)

For the extension part of the project, the novel contribution of this paper is to achieve granular
scoring (sentence-level) in RLAIF through an off-the-shelf model for improved instruction following.
Specifically, refer to Figure [2| (on the left) and assume a 5-line model response to an instruction
following task. To achieve sentence-level scoring, we use an LLM to generate a "worse" (less
relevant) version of a single line according to a set of "constitutional principles" for generation. In
theory we can generate 5! - 1 combinations of responses by picking different combinations of lines to
"worsen" and use the LLM to generate these new sequences. For this pipeline we will generate five
new pairs from each original completion, degrading a randomly selected sentence each time. This
new approach lets us attribute changes in the final quality of the sequence to individual sentences.

We then test the approach by running DPO on the newly generated dataset. The RL step minimizes
the loss in Eq. ((Z)) and should enable the model to learn the desirability of individual sentences
within a multi-level sequence.

£T(¢) = 7E($,yw,yl)~D [IOgU (7”¢($, yw) - ’l"¢(l‘, yl))} (3)

Second, we benchmark our improvements in the model training pipeline using two approaches. First,
we assess the model win-rate with an (1) automated pipeline that uses Nemotron 70 B. to select the
winning completion among two candidate responses conditioned on a test prompt, and (2) human



Figure 2: Structure of a 5-line model response (left) and one synthetically-generated pair (right).

evaluation by asking five anonymous Stanford students to select five responses each for a total of
25 datapoints. Second, we assess the extent to which model degradation / forgetting occurs by
benchmarking the model’s performance on unrelated tasks before and after the finetuning process
and analyzing the results across test prompts. The datasets used are:

* For translation, we use the Flores-101 dataset for english to french translations and evaluate
using the BLEU metric implemented using the SacreBLEU python library.

 For math, we use the GSM8K dataset with 8th grade school multi-step math problems and
scored following a recommended automated prompt on GPT 40 from a -2 to +2 scale.

* For coding datasets, we use the MBPP dataset, consisting of function-writing tasks solvable
in 5-10 lines of Python. Models were asked to generate valid implementations given a
natural language description. Completions were evaluated by GPT-4.0 using the same scalar
helpfulness scale as the math tasks. The resulting scores were then used to compute both
average degradation and distributional drift across examples.

Finally, during the design process, we had proposed to use Mechanical Turk to set up human
evaluations with a larger sample size. However, after conversations with a teaching assistant, we
concluded that it would not be possible to set up these experiments within the allotted time for the
class. Additionally, the price of using Mechanical Turk for dataset annotation would have been higher
than the reasonable budget for the project.

4 Experimental Setup

For all experiments, we used a gbe.4xlarge instance from AWS, equipped with a single NVIDIA
A10G GPU (24 GB VRAM), 16 vCPUs, and 64 GB of RAM. This setup provided sufficient compute
for both supervised fine-tuning and preference optimization stages.

4.1 SFT

¢ Base model: Qwen2.5-0.5B.

» Dataset: Smoltalk dataset, 460k prompt-response pairs from GPT 4 for Supervised Fine
Tuning the base model to improve performance before DPO step.

* Preprocessing: Restricted conversations to length 2 and capped input tokens to 256 (input)
and 1024 (output). Applied chat format, tokenized with default loaded Qwen tokenizer,
applied left padding before the prompt and right padding after the prompt. Generated label
and mask one-hot encoding vectors.

* Training: batch size of 4 with 8 gradient accumulation steps; learning rate: le-5; optimizer:
AdamW; gradient clipping to 1.0; weight decay of 0.01; enabled floating point mixed
precision; finetuned full model.

4.2 Direct Preference Optimization

¢ Base model: SFT finetuned Qwen2.5-0.5B. Frozen model.

 Dataset: Ultrafeedback dataset, 63k entries of one prompt and four completions. Filtered
the winning and losing completions.



* Preprocessing: Restricted to one winning pair and one losing pair per prompt. Applied
chat format, tokenized with default loaded Qwen tokenizer, applied left padding before the
prompt and right padding after the prompt. Created dataset of (prompt, preferred response,
dispreferred response) tuples.

* Training: batch size of 4 with 4 gradient accumulation steps; AdamW optimizer; learning
rate le-5; weight decay of 0.01; gradient clipping to 1.0; beta of 0.2; enabled floating point
mixed precision.

4.3 Precise-RLAIF
Experimental setup similar to DPO step, with key differences outlined below:

¢ Base model: DPO finetuned Qwen2.5-0.5B. Frozen model.

» Dataset: Synthetically generated dataset, 1k entries of one prompt and five degradations
from the same completion. Reshaped to 5k entries with one degradation each.

* Training: batch size of 4 with 4 gradient accumulation steps; AdamW optimizer; learning
rate le-5; weight decay of 0.01; gradient clipping to 1.0; beta of 0.2; enabled floating point
mixed precision.

5 Results

We ran a series of experiments to compare the performance of the proposed pipeline, which we will
detail below.

5.1 Quantitative Evaluation

Table [T shows a summary comparison of win-rates across methods. When evaluating each model
against the baseline Qwen 2.5 .5B using Nemotron 70B, our SFT finetuned model achieves a 42.1%
win-rate, DPO achieves a 68.5 % win-rate, and finally Precise-RLAIF achieves a 75.2% win-rate.
Therefore, we find that our implementation of SFT has a lower impact on the win-rate vs. the baseline
than expected; however, since this is the first step in the RL pipeline, we believe that it increases
the dataset diversity and it might still be necessary to enable downstream RL performance. This
foundational step may not outperform the base model directly, but the literature shows that it is still
crucial for enabling stable preference optimization and downstream RL stages such as DPO and
RLAIF. Additionally, Precise RLAIF achieves an improvement of 9.7 % on top of DPO against the
baseline, which validates it as a viable method to further finetune language models.

We also evaluate the model’s win-rate with five human testers, but this time using the SFT model as a
baseline since this is the frozen reference model in the DPO pipeline. We find that DPO achieves a
55% win-rate against our implementation of SFT, while Precise-RLAIF achieves a 66.4 % win-rate
with humans. These results confirm the increased preferability of completions generated with Precise
RLAIF vs. DPO. The lower win-rate compared to the Nemotron evaluation can be attributed to the
small-N sample (25 pairs across five testers) and the possible variance within each tester’s scoring
which was not normalized. Albeit encouraging, further human testing is needed to confirm these
experimental results.

Method Win-rate vs. baseline (Nemotron 70B) Win-rate Human vs. SFT
SFT 42.1% -

DPO 68.5% 55.0%

Precise RLAIF 75.2% 66.4%

Table 1: Comparison of win-rates across methods

5.2 Comparison of perturbation methods

A key stage of the proposed Precise RLAIF pipeline is the degradation strategy, which can affect
performance according to the Constitution (Bai et al., 2022) chosen to define what a "worse sentence"



Modify only one sentence in the response to make it worse
according to truthfulness [ helpfulness /
. Leave all other sentences unchanged.

Figure 3: Summary of perturbation strategies (in different colors).

means for the model. For this experiment, I generated a new perturbation dataset with each different
perturbation strategy, finetuned the SFT checkpoint, and sampled 100 prompts from the test set to
evaluate the win-rate vs. the baseline model (Qwen 2.5 0.5B).

Table 2: Win-rates vs. SFT for each perturbation strategy for task-following evaluation.

Perturbation Strategy Expected Win-rate vs. SFT

Instruction-Following 73%
Helpfulness 71%
Truthfulness 68%
All of the above 75.2% (prior result)

From table [2] we observe that the model trained on specific instruction-following degradations
achieve the highest win-rate (73 %) on our evaluation. This coincides with the intuition that a good
degradation strategy depends on the task that is being optimized for; in this case, since the Nemotron
model is evaluating based on "instruction-following," it is reasonable that this degradation strategy
outperforms the others. The second best degradation strategy heplfulness-based perturbations, which
also improve win-rate at 71 % which is comparable to instruction-following. Qualitatively, we
observe that there is a direct connection between these two signals, as a sentence that is worse at being
helpful is probably also one that does not answer the question directly (instruction-following). From
the sample perturbations in Table |3} we can observe this close relationship between the objectives as
both perturbations focus on time and provide advice that undermines the rest of the response.

Table 3: Comparison of perturbations for the same prompt across perturbation strategies.

Field Text
Prompt What are some specific strategies that one can use to practice mindful
eating?

Original Sentence  One strategy is to eat slowly and deliberately, savoring each bite and
taking small bites, pausing between bites to recognize satiety cues and
avoid overeating.

Worsened Version — One strategy is to eat quickly so you can finish your meal on time, which

(Instruction- might help with time management.

Following)

Worsened Version One strategy is to eat while standing and watching TV, as this has been
(Truthfulness) scientifically proven to enhance digestion.

Worsened Version  One strategy is to do something different with your food to finish it in
(Helpfulness) less time.

Finally, the worst performing degradation strategy was "truthfulness" with a small decline on the
win-rate of the model from the 68.5 % win-rate of DPO vs. the baseline. This is likely due to the less
direct connection to the evaluation signal and the fact that the test set is not a heavy QA dataset, which
makes this perturbation strategy less effective. For fact-based tasks, we believe this method has the
potential to reinforce "facts" for the model and reduce hallucinations; however, a large-scale dataset
would be needed to ensure that the test facts are close to the distribution of the train set. This is not
the case in our experiment, which explains the lower impact on the win-rate. Finally, a longer prompt
that combines all the mentioned factors into a "complete constitution" performs better (75.2 %) than
each on their own since it likely is a better proxy for human preference for generated responses than
each individual characteristic.



6 Discussion

The results presented in Section 5 show the promise of the Precise RLAIF pipeline to improve LLM
task-following win-rates through granular, sentence-level signals. To evaluate how the results would
generalize beyond this experimental setup, I evaluated the downstream effects of sentence-level DPO
fine-tuning on model capabilities. A common criticism of RL is found in the literature: "optimizing
proxy reward models can degrade true performance in RLHF (...) [specifically on] unrelated tasks"
(Hou et al., 2024). To test this, I trained the model over 6 epochs and evaluated its performance on
three unrelated tasks—translation (Flores 101 English to French), math (GSM8K math problems),
and coding (MBPP python coding prompts)—across 700 samples each. The results are summarized
in Table[dl

Table 4: Performance on general tasks before and after DPO fine-tuning.

Task Score (Before) Score (After)
Translation (SacreBLEU) 18.58 18.92
Coding (Avg. score) 1.45 1.18
Math (% correct) 8% 7%

As can be seen, the model saw a decline of 6% in its coding capabilities, and 1.7 % on translation tasks.
With respect to math, it is hard to draw conclusions since the original performance on 8th-grade math
tasks was very low (8%) initially, but even on this noisy signal, the finetuned model’s performance
declined slightly. Additionally, I plotted a per-example score delta in Figure ] to have a distributional
analysis of this performance drift on math and coding tasks. As can be seen, the distribution means
are shifted left and shows a broad tail degradation, which implies the model underperforms across
the distribution of tasks and also on some examples the baseline handled better. These findings
suggest that without regularization and careful training hyperparameter tuning, fine-grained finetuning
may trade off some general capabilities. However, since my Precise RLAIF step was done after
DPO finetuning, it may be hard to ascertain which step may have created this slight performance
degradation effect.

Task-Specific Performance Drift After DPO Fine-Tuning
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Figure 4: Performance drift across math and coding tasks.

7 Conclusion

This paper introduces "Precise RLAIF" for granular, sentence-level scoring for task optimization on
instruction following. We find that Precise RLAIF achieves a promising increase in perforamcne
against DPO, with a win-rate against the Qwen 2.5 0.5B. baseline going from 68.5% to 75.2 %
evaluated by Nemotron 70B. Additionally, when compared with the SFT baseline and evaluated by



humans, the Precise RLAIF achieves a 66.4% win-rate, compared to 55 % from DPO. These results
are especially promising because (i) it outlines a useful pipeline to generate granular sentence-level
feedback that was previously unfeasible to collect at scale from human data, and (ii) its performance
is subject to scaling laws: as the model used to generate degradations gets better, the increases in
performance from this pipeline should increase as well. However, we also observe evidence of model
degradation from a performance drift across unrelated tasks with a 6 % shift in coding capabilities and
1.7 % on translation tasks. Two limitations of this paper are (i) given time and compute limitations, it
does not run hyperparameter sweeps to optimize training further, and (ii) since the "Precise RLAIF"
step was done on top of DPO finetuning, this setup makes it challenging to ascertain which step
may have created the slight performance degradation effect. In future work, additional training runs
with other hyperparameters should be ran, and the determinant factors for unrelated task degradation
should be analyzed in further work.

8 Team Contributions

* Marcelo: Whole project.

Changes from Proposal Due to time constraints, did not implement a PPO version with direct
numerical scoring of lines to compare performance.
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