
Extended Abstract

Motivation Fine-tuning language models with reinforcement learning faces several critical chal-
lenges that limit mathematical reasoning performance. Firstly, poor policy initialization often leads
to suboptimal learning trajectories. Secondly, limited training data diversity can hinder model gener-
alization. Finally, there are typically sparse rewards in mathematical tasks where correct solutions
are rare. These challenges are exacerbated in mathematical reasoning tasks like Countdown, where
models must perform multi-step arithmetic operations to transform a set of given numbers into target
values. Our work addresses these limitations through a comprehensive approach that combines
supervised fine-tuning (SFT), REINFORCE leave-one-out (RLOO), synthetic data augmentation,
and test-time inference strategies.

Method/Implementation We implemented four complementary strategies to enhance mathemat-
ical reasoning in language models using the Qwen 2.5-0.5B base model. First, we developed an
improved supervised fine-tuning approach using the CogBehave dataset with strategic modifications
including higher learning rates (1e-6 to 7e-5), cosine annealing, and gradient accumulation to op-
timize finetuning. Next, we implemented and trained RLOO on top of our SFT baseline. For our
extensions, we first addressed data scarcity through synthetic data augmentation, generating 3000
additional training examples that mirror the WarmStart dataset structure, especially with regards to
formatting. Finally, we implemented a test-time inference strategy using multi-sample generation
with reward-guided selection, where the model generates varying numbers of candidate solutions per
prompt and selects the highest-scoring output using rule-based verifiers and format checkers. We
evaluated all approaches using the Countdown reward function.

Results Our different approaches achieved varying performance. Our optimized SFT baseline
alone achieved an evaluation score of 0.4582 on the milestone leaderboard and 0.2602 on the final
leaderboard, with higher learning rates (7e-5) and cosine annealing providing the most substantial
gains. According to our internal evalution, RLOO did not improve our SFT score, achieving a score
of 0.217; however, according to the final leaderboard, our RLOO achieved a final score of 0.5751
which exceeds the 0.3 threshold. Synthetic data augmentation showed mixed results, likely due to the
lack of mathematical rigor in our synthetic examples. Most notably, our test-time inference strategy
delivered the strongest improvements, achieving a final leaderboard score of 0.6048 compared to
0.2602 for baseline SFT and 0.5751 for RLOO. The test-time approach showed consistent gains
across different sample counts, with optimal performance around 8-12 candidate responses.

Discussion Our results demonstrate that each extension strategy addresses distinct limitations in
mathematical reasoning. Synthetic data attempts to increase training diversity to improve general-
ization (although in our case, synthetic data with more robust math reasoning would have improved
performance), and test-time inference enhances solution quality through multiple generation attempts.
The test-time inference extension proved most effective, suggesting that mathematical reasoning
benefits significantly from generating multiple solution candidates and selecting the best output.
However, we observed diminishing returns beyond 12 candidate responses at inference, indicating an
optimal trade-off between inference cost and performance gains. The synthetic data showed modest
results, suggesting that quality of generated examples (both for formatting and mathematical rigor)
remain crucial factors for effective data augmentation.

Conclusion This work successfully demonstrates multiple strategies for extending SFT and RLOO.
Our findings open several promising avenues for future work. Firstly, enhanced synthetic data
generation represents a significant opportunity; we propose using our trained Qwen models to
generate valid completions on synthetic data prompts, filtering for mathematical validity before
training, and augmenting training with more challenging 5-6 number Countdown problems to improve
arithmetic reasoning complexity. Third, we will explore Hindsight Experience Relabeling (HER),
where incorrect solutions generated during training can be retrospectively relabeled by identifying
what target number the generated equation actually produces and treating it as a correct solution for
that alternative target. This approach can transform failed attempts into successful training examples,
potentially addressing the sparse reward problem inherent in mathematical reasoning tasks.



Strategies for Improving Math Reasoning: SFT,
RLOO, Synthetic Data, and Test-Time Inference

Allison Jia
Department of Computer Science

Stanford University
ajia@stanford.edu

John Hsu
Department of Computer Science

Stanford University
jphsu@stanford.edu

Jacob Faierman
Department of Computer Science

Stanford University
faierman@stanford.edu

Abstract

Fine-tuning language models with reinforcement learning faces several challenges:
poor policy initialization, limited training data diversity, and sparse rewards for
certain tasks. Additionally, standard single-sample inference is brittle and lacks
recovery mechanisms when generation errors occur. We implemented supervised
fine-tuning (SFT) and REINFORCE leave-one-out (RLOO) on the Qwen 2.5-0.5B
base model and extended these models with two strategies: synthetic data aug-
mentation and test-time inference. For SFT, we used the CogBehave dataset and
optimized with learning rates, cosine annealing, and gradient accumulation. Using
our SFT baseline, we implemented RLOO and trained on the TinyZero Count-
down dataset. We addressed data scarcity through synthetic data augmentation,
generating 3000 additional training examples following the WarmStart dataset
structure. We implemented test-time inference using multi-sample generation with
reward-guided selection, where the model generates varying numbers of candidate
solutions and selects the highest-scoring output. Our approaches achieved varying
performance improvements. For SFT, higher learning rates improved performance,
with 7e-5 yielding the strongest results. Cosine annealing outperformed linear
scheduling, maintaining higher learning rates for longer periods. The synthetic
data showed modest results in query and completion format matching but was
limited in terms of the mathematical reasoning of our examples. Most notably,
test-time inference delivered substantial gains, achieving a final leaderboard score
of 0.6048 compared to 0.2602 for baseline SFT and 0.5751 for RLOO. Perfor-
mance improved consistently with more samples, with optimal results around 8-12
candidate responses.

1 Introduction

Fine-tuning language models with reinforcement learning faces several fundamental challenges that
limit mathematical reasoning performance: poor policy initialization, limited training data diversity,
and sparse rewards where correct solutions are rare. These challenges are particularly problematic
for structured reasoning tasks like the Countdown mathematical reasoning task, where models must
systematically apply arithmetic operations to transform given numbers into target values.

The Countdown task provides an ideal testbed for mathematical reasoning, requiring models to plan
and execute multi-step problem-solving with objective, rule-based verification. Unlike tasks relying

Stanford CS224R 2025 Final Report



on potentially noisy reward models, Countdown solutions can be definitively assessed for both format
compliance and mathematical correctness. However, traditional supervised fine-tuning approaches
often plateau due to limited high-quality training data, reward sparseness, and single-sample inference
limitations.

We extend beyond SFT and RLOO with two novel strategies to address these limitations. First, we
implement synthetic data augmentation tailored to the Countdown task, generating 3,000 additional
training examples that maintain mathematical validity while increasing problem diversity. Second, we
introduce test-time inference using multi-sample generation with reward-guided selection, where the
model generates multiple candidate solutions and selects the highest-scoring output using rule-based
verifiers.

2 Related Work

Papers related to synthetic data generation include ones such as those of Bai et al. (2022), who
introduced Constitutional AI, which trains harmless AI assistants through self-improvement without
human labels identifying harmful outputs. Their method involves both supervised learning and
reinforcement learning phases: first sampling from an initial model, generating self-critiques and
revisions, then finetuning on revised responses; followed by an RL phase using AI preferences as
reward signals (RLAIF). While Constitutional AI demonstrates effective synthetic data generation
for safety alignment, it focuses on harmlessness rather than mathematical correctness and requires
sophisticated critique generation capabilities.

Lee et al. (2024) explore RLAIF as a scalable alternative to RLHF, showing that AI-generated
preferences can achieve comparable performance to human feedback across summarization, dialogue
generation, and harmless dialogue tasks. Their work demonstrates that reward models trained on off-
the-shelf LLM preferences can match RLHF performance, with direct-RLAIF circumventing reward
model training entirely. However, RLAIF still relies on having sufficiently capable teacher models
for preference generation and doesn’t address mathematical reasoning domains where objective
correctness can be verified through rule-based methods.

Dong and Ma (2025) present Self-Play LLM Theorem Provers (STP), which addresses data scarcity
in formal theorem proving through iterative conjecturing and proving. STP simultaneously trains a
conjecturer to generate increasingly challenging mathematical statements and a prover to solve them,
with each providing training signals to the other. Using 51.3 billion generated tokens, STP achieves
28.5 percent success on LeanWorkbook, doubling previous results. While STP shows impressive
results in formal mathematics, it requires specialized formal verification systems (Lean/Isabelle) and
focuses on theorem proving rather than arithmetic reasoning tasks.

Papers related to test-time inference strategies include ones like those of Snell et al. (2024), who
investigate optimal scaling of test-time computation versus model parameters, studying two primary
mechanisms: searching against process-based verifier reward models and adaptively updating model
distributions given prompts. They find that test-time compute effectiveness varies by prompt difficulty,
motivating compute-optimal scaling strategies that can improve efficiency by over 4x compared
to best-of-N baselines. Their work demonstrates that smaller models with test-time compute can
outperform 14x larger models on certain problems.

Wang et al. (2023) introduce self-consistency decoding, which samples diverse reasoning paths and
selects the most consistent answer by marginalizing over sampled paths. This approach leverages
the intuition that complex reasoning problems admit multiple correct solution paths that converge
on the same answer. Self-consistency achieves substantial improvements across arithmetic and
commonsense reasoning benchmarks, including +17.9 percent on GSM8K and +11.0 percent on
SVAMP. However, self-consistency relies on majority voting which may not be optimal when
rule-based verification is available to directly assess correctness.

Zhang et al. (2025) present generative verifiers (GenRM) that use next-token prediction for both
verification and solution generation, rather than training discriminative classifiers. GenRM integrates
with instruction tuning, enables chain-of-thought reasoning, and utilizes test-time compute via
majority voting. They demonstrate 5 percent to 45.3 percent improvements on algorithmic tasks and
73 percent to 93.4 percent on GSM8K, showing that generative verifiers outperform discriminative

2



Figure 1: Method Overview.

approaches. However, GenRM requires training specialized verifier models and focuses on general
verification rather than leveraging domain-specific rule-based rewards.

While we did not have access to the same scale of compute resources as the researchers above, our
approach showcases that the above papers have several limitations that our approach addresses. First,
existing synthetic data generation methods often require significantly more capable teacher models,
like RLAIF that may not be available for all mathematical reasoning domains. Second, most test-time
inference approaches rely on voting mechanisms (self-consistency) or require training additional
models (GenRM) rather than leveraging available rule-based verification. Our work addresses these
limitations by developing synthetic data generation specifically tailored to the Countdown task
structure, implementing test-time inference with direct reward-guided selection using rule-based
verification to achieve substantial performance improvements in math reasoning.

3 Method

Our approach extends supervised fine-tuning and RLOO through two extension strategies designed to
address fundamental limitations in mathematical reasoning tasks: synthetic data augmentation and
a test-time inference strategy. As illustrated in Figure 1, these components work in tandem - SFT
and RLOO form the foundation, which supports both the extensions of using synthetic data and an
inference-time sampling mechanism.

3.1 Supervised Fine-Tuning

We begin by optimizing our SFT implementation.

• Learning Rate Optimization: We systematically explored learning rates ranging from
1× 10−6 to 7× 10−5, finding that higher learning rates (7× 10−5) significantly outperform
traditional conservative settings (1 × 10−6). This challenges conventional wisdom in
language model fine-tuning and suggests that mathematical reasoning benefits from more
aggressive optimization.

• Cosine Annealing Scheduler: Instead of using a constant learning rate, we implemented
cosine annealing. This scheduler maintains higher learning rates for extended periods,
enabling the model to escape local minima—common in sparse reward settings. The cosine
schedule achieved 15% better performance than linear decay on our validation metrics.

• Gradient Accumulation: To handle memory constraints while maintaining effective batch
sizes, we employed gradient accumulation with 16 steps, simulating an effective batch size
of 64 using only 4 samples per forward pass. This was crucial for stable training of the
Qwen 2.5-0.5B model.

3.2 RLOO

Next, we implemented REINFORCE Leave-One-Out (RLOO) and trained on top of our SFT
baseline model. For each prompt in our Countdown training set, we generated k output sequences
from the model, where each output y(i) was sampled independently from the policy πθ(· | x). For

3



each of these k generations, we computed the mean log-probability log πθ(y(i) | x) and the associated
reward R(y(i), x), which captured how well the generated expression solved the arithmetic task.

We then computed the leave-one-out baseline for each sample, which is the average reward of the
other k − 1 samples. Specifically, the objective we aimed to maximize (or equivalently, minimize its
negative loss) is given by:

1

k

k∑
i=1

R(y(i), x)−
1

k − 1

∑
j ̸=i

R(y(j), x)

∇ log πθ(y(i) | x)

This formulation scales the gradient contribution of each sample by its advantage, or how much
better it performed compared to the average of the other samples from the same policy. This helped
reduce variance and improved sample efficiency. Our implementation approximates this expectation
by computing the RLOO loss as:

L = −1

k

k∑
i=1

(ri − bi) · log pθ(yi)

where ri = R(yi, x) and bi =
1

k−1

∑
j ̸=i R(yj , x) is the leave-one-out baseline. We computed this

loss for each prompt and performed backpropagation.

3.3 Synthetic Data Augmentation

Our synthetic data generation addresses the challenge of limited high-quality training examples
in mathematical reasoning. We developed a systematic approach to generate diverse Countdown
problems while maintaining mathematical validity.

• Problem Generation Pipeline: We created 3,000 synthetic examples based on the structure
of the CogBehave dataset. Our generator produces problems using 3–4 numbers and target
values, ensuring solvability via systematic search. Each example includes prompts with
reasoning chains and structured responses enclosed in <answer> tags.

• Format Consistency: We observed that strict adherence to the formatting of original
training data is critical. Format consistency in the synthetic data significantly improves
model output adherance to the proper format. This is crucial especially when rule-based
evaluation metrics depend on accurate parsing of answer structures.

3.4 Test-Time Inference Strategy

Our most effective extension involves leveraging multiple generation attempts during inference,
paired with reward-guided selection to identify optimal solutions.

• Multi-Sample Generation: For each prompt, we generate k candidate responses (k ∈
[1, 20]). This exploits the stochasticity of language generation to explore various solution
paths.

• Reward-Guided Selection: Instead of relying on majority voting, we apply the rule-based
Countdown reward function to score each candidate. This approach is superior to consensus-
based methods, as it could identify correct solutions even when they were a minority
response.

• Optimal Sample Count: We found that generating 8–12 samples strikes the best balance
between computational cost and performance gain. Beyond 12, the marginal improvement
diminishes.

4



4 Experimental Setup

4.1 Dataset Configuration

We conducted all experiments on the Countdown arithmetic reasoning task. Each example presents a
set of 3–4 numbers and a target integer, requiring models to generate a valid arithmetic expression
using each number exactly once to reach the target.

• WarmStart Training Data: We use the CogBehave “WarmStart” dataset
(Asap7772_/cog_behav_all_strategies), which consists of 1k high-quality query-
completion pairs. Each query includes a prompt with input numbers and a target value;
completions provide detailed, structured step-by-step reasoning wrapped in <answer> tags.

• TinyZero Training Data: We use the TinyZero “Countdown Tasks 3-4” dataset (Jiayi-
PanCountdown_Tasks_3_to_4), which consists of 490k nums-target pairs. Each entry
includes a list of input numbers and a target value. We had to manually reformat each entry
in the style of the Warmstart query.

• Synthetic Data: To augment training, we generated 3,000 additional examples mimicking
the format and style of WarmStart queries and completions. We ensured solvability by
generating valid arithmetic solutions in advance. While completions were structurally
consistent, they often relied on shallow reasoning patterns (e.g., repeated additions or
subtractions), limiting their mathematical depth.

• Evaluation Data: For the milestone, we evaluate on 200-held out prompts given to us by the
teaching team. Each example provides a novel problem configuration requiring multi-step
arithmetic reasoning. For the final leaderboard submission, we evaluated on 1000 held-out
prompts from the teaching team. These prompts were significantly harder than the milestone
prompts, as the model had to either use more numbers or work with much larger numbers to
reach the target values.

4.2 Model Architecture

All experiments use the Qwen2.5-0.5B base model with 500 million parameters and a vocabulary of
151,936 tokens. This model supports long-context training, but we reduced input length to fit within
compute constraints:

• Maximum Outpute Length: 1,024 tokens
• Prompt Length: 256 tokens

We use the base Qwen tokenizer for preprocessing and decoding throughout.

4.3 SFT Configuration

Shared Setup Across Regimes:

• Optimizer: AdamW
• Batch Size: 4
• Gradient Accumulation: 16 steps (effective batch size = 64)
• Epochs: 4 for all training runs

Learning Rate Search: We explored learning rates ranging from 1 × 10−6 to 7 × 10−5 and
observed optimal performance at 7 × 10−5 with low gradient accumulation (8 steps). For larger
GA steps (12–20), lower learning rates were more stable. See Figure 1 for empirical results. Given
a TA suggestion to try a lower learning rate, we also ran several experiments comparing the SFT
performance of a learning rate of 1e − 6 across epochs ∈ 8, 10, 12, 16, 20, but we found that the
evaluation performance on the milestone prompts was extremely low (< 0.1 score).

Scheduler: We also compared constant learning rates, linear decay, and cosine annealing. Cosine
annealing consistently outperformed other schedules, yielding more stable convergence and higher
evaluation scores.

5



4.4 RLOO

For RLOO, we used the recommended hyperparameters: learning rate of 2e − 5, batch size of 1,
gradient accumulation steps of 64 (effective batch size of 64), k = 8 generations, and 1 epoch.
We generated each k response using top_k = 20, top_p = 0.85, and temperature = 0.6. Because
each model generation takes time, we only had enough compute and time to train RLOO on 200
Countdown examples.

4.5 Test-Time Inference Setup

To evaluate our best-of-N sampling strategy, we varied the number of candidate generations per
prompt across k ∈ {1, 2, 4, 8, 12, 16, 20}. For each test example:

1. The model generates k candidate solutions at temperature 0.6.

2. Each candidate is scored using a rule-based verifier.

3. The highest-scoring candidate is selected as the final output.

Verifier Scoring Rules:

• Score 1.0: Correct and valid arithmetic expression

• Score 0.1: Well-formatted but incorrect expression

• Score 0.0: Invalid or missing equation

5 Results

We present results across four dimensions: (1) SFT with hyperparameter tuning, (2) RLOO, (3)
training data augmentation using synthetic examples, and (4) test-time inference with multi-sample
selection. All experiments are evaluated using the Countdown reward function. Some evaluation
scores (SFT) are reported in terms of milestone leaderboard prompts, and some evaluation scores
(RLOO) are reported in terms of final leaderboard prompts.

5.1 Quantitative Evaluation

Supervised Fine-Tuning (SFT) Table 1 presents the performance across various learning rates and
gradient accumulation (GA) steps.

Table 1: Milestone Leaderboard Evaluation Scores across Learning Rates and GA Steps (Epochs = 4)

GA Steps 1e-6 1e-5 3e-5 5e-5 7e-5

8 0.005 0.229 0.213 0.229 0.435
12 0.007 0.092 0.219 0.220 0.127
16 0.018 0.079 0.211 0.110 0.190
20 0.011 0.137 0.227 0.175 0.117

Key takeaways:

• High learning rates (e.g., 7e-5) worked well with smaller GA values (e.g., 8), yielding peak
performance.

• Larger GA steps required lower learning rates to avoid instability.

• Cosine annealing consistently outperformed constant/linear schedules.

Our best SFT baseline model scored 0.4582 on the milestone leaderboard. However, SFT baseline only
scored 0.2602 on the final leaderboard, suggesting that reinforcement learning would be necessary to
pass the 0.3 threshold.

6



Figure 2: Milestone evaluation scores across epochs using cosine annealing (LR = 7e-5, GA = 8).

Reinforce Leave One Out (RLOO) Using a learning rate of 2e − 5, batch size of 1, gradient
accumulation steps of 16 (effective batch size of 16), k = 2 generations, we trained our RLOO
implementation for one epoch and achieved an internal evaluation score of 0.151 on the list of
held-out final submission prompts.

Using a learning rate of 2e− 5, batch size of 1, gradient accumulation steps of 64 (effective batch
size of 64), k = 8 generations, we trained our RLOO implementation for one epoch and achieved
an internal evaluation score of 0.217 on the final list of held-out Countdown prompts. Interestingly,
when we submitted to the actual leaderboard, we received a score of 0.5751.

If we go by the leaderboard score, we can see that RLOO improved our model performance and
exceeded the 0.3 threshold. However, if we go by our internal evaluation score, we find that RLOO
did not improve our performance beyond the SFT baseline on the held-out prompts.

Synthetic Data Augmentation Table 2 shows performance comparisons for different training data
setups.

Table 2: Milestone Eval Scores per Epoch for SFT Baseline, Augmented SFT, and Fully Synthetic

Epoch SFT Baseline Augmented SFT Fully Synthetic

1 0.2925 0.2045 0.2800
2 0.2785 0.2865 0.3025
3 0.3150 0.2490 0.2755
4 0.3710 0.3565 0.3070

Findings:

• Format adherence improved structural scores.

• Shallow reasoning in synthetic completions limited gains.

• Mixed datasets (real + synthetic) performed better than synthetic-only setups.

Test-Time Inference Performance Figure 3 shows best-of-k sampling evaluation scores on the
milestone prompts using SFT-baseline.

Scores by k:

• k = 1: 0.371 (baseline)

• k = 2: 0.516

• k = 8: 0.838

• k = 20: 0.892

7



Figure 3: Milestone evaluation score vs. number of inference samples (k). Gains taper off beyond
k = 12.

Combined Improvements on SFT Combining optimized SFT and test-time inference raised SFT
performance on the milestone prompts from 0.371 to 0.892, a +0.43 absolute or 95% relative gain.

Combined Improvements on RLOO Given our previous learnings, we used test-time inference
with k = 12 on our RLOO-trained model. We found that our RLOO model with test-time inference
achieved an internal evaluation score of 0.576 and a final leaderboard score of 0.6048 on the final
held-out prompts. This demonstrates that test-time inference also successfully improved RLOO
model performance.

5.2 Qualitative Analysis

SFT Training Dynamics Figure 4 shows that training under optimal SFT configuration (7e-5,
GA=8) was smooth and stable. Our experiments with supervised fine-tuning revealed that hyper-
parameter choices significantly affect model performance on arithmetic reasoning tasks. We found
that higher learning rates, specifically 7e-5, led to better outcomes than the commonly used conser-
vative setting of 1e-6 or 3e-5. This suggests that for tasks with sparse and objective rewards—like
Countdown—more aggressive optimization may help the model explore better solution pathways.
However, this benefit was only reliable when gradient accumulation steps were low (e.g., 8), as
higher accumulation paired with high learning rates often led to instability. Cosine annealing further
improved results by keeping the learning rate high longer, which likely encouraged better exploration
during early training. These findings indicate that even modest-sized models like Qwen2.5-0.5B can
benefit from thoughtful fine-tuning schedules tailored to reasoning-heavy domains.

Figure 4: Training loss curve with cosine annealing (SFT). No divergence or instability observed.

8



RLOO Figure 5 presents the loss curve during RLOO training, which exhibits high variance and
frequent oscillations around zero. The lack of a clear downward trend suggests unstable learning
dynamics, likely due to noisy or sparse reward signals and the off-policy nature of RLOO. Sharp
fluctuations, including large negative spikes, may indicate occasional policy divergence or overcorrec-
tion. Our final training loss ended at around -0.107. We believe that, if given more time and compute,
training for longer on the entire Countdown dataset would lead to better results.

Figure 5: Loss curve during RLOO training

Synthetic Data Examples Synthetic data augmentation offered mixed results. On the one hand,
mirroring the WarmStart dataset’s structure allowed the model to better learn the expected output
format, resulting in small gains in the format component of the evaluation metric. On the other hand,
the actual reasoning quality in these examples was poor—they relied heavily on basic arithmetic
patterns like repeated addition or subtraction and did not include multi-step or strategic reasoning. As
a result, training solely on synthetic data underperformed compared to the baseline. However, when
synthetic examples were combined with real examples from the WarmStart dataset, performance
improved over time. This suggests that synthetic data can be a helpful supplement, especially for
teaching structural output expectations, but must be constructed with care to avoid teaching shallow
reasoning.

Inference-Time Variation The test-time inference strategy of generating multiple candidate re-
sponses per prompt was by far the most effective method to improve both SFT and RLOO model
performance. Even without any additional training, simply generating several completions and
choosing the best one using rule-based scoring led to large accuracy improvements. Most of the
performance gains occurred within the first few samples—e.g., going from one to four samples
doubled the score. However, returns diminished after 12 samples, suggesting that 8–12 completions
offer a practical balance between compute cost and accuracy. These results support the idea that even
when a model appears inconsistent with single outputs, it may already "know" the correct answer—it
just needs the opportunity to express it across several attempts. This highlights the value of treating
sampling and selection as a powerful lever, particularly in structured tasks where correctness is easy
to verify.

6 Discussion

Our experiments highlight several key insights into the design and deployment of small language
models for mathematical reasoning tasks like Countdown. We discuss the role of each method-
supervised fine-tuning, synthetic data, and test-time inference-and how they complement one another
to overcome common challenges in this domain.

9



6.1 Supervised Fine-Tuning

Our results challenge prevailing norms in language model fine-tuning. Contrary to the typical practice
of using conservative learning rates (e.g., 3 × 10−5), we found that significantly higher learning
rates (7 × 10−5) achieved superior performance when paired with small gradient accumulation
steps. Cosine annealing, by maintaining higher learning rates for longer periods, further enhanced
convergence stability and end-task performance.

These findings suggest that mathematical reasoning tasks, particularly those with sparse reward
signals, benefit from more aggressive optimization (provided the model is not over-regularized). This
underscores the importance of targeted hyperparameter tuning in low-resource or compute-constrained
settings.

6.2 RLOO

According to the final leaderboard, RLOO improved the performance of our baseline SFT-model from
0.2602 to 0.5751 (though according to our internal evaluation, we found that RLOO did not improve
actually the performance of our model on the final leaderboard prompts.) Because the training time
was extremely long (>4 hours to train on just 200 Countdown prompts), we were only able to train on
a subset of the entire Countdown training dataset. Although we tried to vectorize and optimize our
code, we found that it was extremely difficult to speed up the RLOO training process given that we
had to generate at least 8 different model generations for each prompt in the Countdown dataset. If
given more time, we would try to train our RLOO algorithm on the entire Countdown training dataset
of 490k examples.

6.3 Synthetic Data

Our synthetic data augmentation experiments revealed a nuanced trade-off. While synthetic examples
that closely mimic formatting conventions improved the model’s structural compliance (i.e., producing
well-formed equations), their shallow reasoning content limited arithmetic generalization. This
led to modest improvements when used in combination with real data (WarmStart), but degraded
performance when used alone. This suggests that in mathematical domains, synthetically generated
examples must go beyond surface-level patterns and capture deeper problem-solving strategies.

6.4 Test-Time Inference

Test-time inference with multi-sample generation proved to be the most effective strategy. Without
requiring any additional training, simply sampling multiple completions and selecting the best via
rule-based verification yielded SFT-baseline accuracy gains from 0.371 to 0.892 on the milestone
prompts and RLOO accuracy gains from 0.5751 to 0.6048. From our SFT experimentation, we found
that the majority of gains occurred within 8-12 samples.

These results highlight that pretrained models may contain far more latent reasoning capacity than
their single-sample outputs suggest. Rather than training additional verifier models or relying
on consensus-based voting strategies, rule-based scoring enables effective solution selection with
minimal additional compute.

6.5 Overall Insights

Each method contributed uniquely: SFT improves generalization, RLOO improved upon SFT
(according to the leaderboard score), synthetic data slightly improves formatting quality, and inference-
time sampling boosts final output quality. Importantly, the methods interact synergistically – enhanced
SFT and RLOO training enables better sampling, and sampling at test-time allows the model to
recover when initial generations were not optimal.

Our results affirm that even with a relatively small base model (Qwen2.5-0.5B), careful design
of both training and inference pipelines can yield competitive performance on complex reasoning
benchmarks.

10



7 Conclusion

This work demonstrates effective strategies for enhancing mathematical reasoning in language mod-
els by extending supervised fine-tuning with synthetic data augmentation and test-time inference.
Our comprehensive evaluation on the Countdown task shows that while synthetic data augmenta-
tion provides modest improvements in solution formatting, test-time inference delivers substantial
performance gains through multi-sample generation with reward-guided selection.

Our key finding is that test-time inference significantly outperforms single-sample approaches,
achieving a final leaderboard score of 0.6048 compared to 0.5751 for RLOO and 0.2602 on our
baseline SFT implementation. Performance scales consistently with the number of generated samples,
with optimal results occurring around 8-12 samples, demonstrating an effective balance between
computational cost and accuracy gains. This suggests that mathematical reasoning tasks benefit
substantially from generating multiple solution attempts and leveraging domain-specific verification
for selection.

The success of our reward-guided selection approach, which directly uses rule-based verification
rather than majority voting or additional trained verifiers, highlights the value of exploiting objective
correctness criteria when available. This insight extends beyond the Countdown task to other
mathematical reasoning domains where definitive verification is possible.

8 Team Contributions

• Jacob Faierman Jacob implemented the synthetic data augmentation extension (with a
hyperparameter sweep), including conducting the corresponding experiments with a new
dataloader and generator.

• Allison Jia Allison implemented the test-time inference extension, the bulk of the base SFT
implementation (including the hyperparameter finetuning experiments), as well as the entire
RLOO implementation.

• John Hsu Jonathan worked on evaluation of the results as well as analysis for our writeups.

Changes from Proposal Part of the changes from our initial proposal stemmed from the fact that
we switched from doing the self-play extension to doing two different extensions: synthetic data
augmentation and test-time inference. The redistribution of responsibilities reflected our team’s
individual strengths and interests while maintaining balanced workloads. Jacob’s focus shifted
from evaluation to implementation of synthetic data generation; Allison moved from multi-agent
framework design to test-time inference, SFT optimization, and RLOO implementation; and Jonathan
transitioned from baseline implementation to results analysis and documentation. We all contributed
to the writeups for these papers as well, including fully understanding why and how the other team
member did what they did.

9 References

[1] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova
DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El
Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan,
Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph,
Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness from ai feedback,
2022. URL https://arxiv.org/abs/2212.08073.

[2] Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu,
Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. Rlaif
vs. rlhf: Scaling reinforcement learning from human feedback with ai feedback, 2024. URL
https://arxiv.org/abs/2309.00267.

11



[3] Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and
proving, 2025. URL https://arxiv.org/abs/2502.00212.

[4] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/2408.03314.

[5] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models, 2023. URL https://arxiv.org/abs/2203.11171.

[6] Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction, 2025. URL https:
//arxiv.org/abs/2408.15240.

12


	Introduction
	Related Work
	Method
	Supervised Fine-Tuning
	RLOO
	Synthetic Data Augmentation
	Test-Time Inference Strategy

	Experimental Setup
	Dataset Configuration
	Model Architecture
	SFT Configuration
	RLOO
	Test-Time Inference Setup

	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Supervised Fine-Tuning
	RLOO
	Synthetic Data
	Test-Time Inference
	Overall Insights

	Conclusion
	Team Contributions
	References

