
Training an Expert Negotiator: RL-Based Fine-Tuning of LLMs
to Improve Social Negotiation Skills

Motivation Advances in large language models (LLMs) have enabled meaningful reasoning ca-
pabilities across vast logical domains, as well as human-like behavior in simulated social scenarios.
As a result, previous work has demonstrated that LLMs are also able to succeed in social reasoning
tasks, such as negotiation, though they are far from perfect experts. Training an agent that is an expert
negotiator would not only vastly improve the social reasoning skills of LLMs but also be practically
beneficial for deploying systems that are more persuasive, capable of reaching compromises, and
intelligent. In this work, we explore reinforcement-learning approaches for fine-tuning language
models to become expert negotiators.

Method We fine-tune an LLM using RL to succeed in two simple, but highly interactive and
opponent-dependent negotiation tasks, resource split and pie split. We design a reward function
that involves both a formatting reward and a game reward, or how successful each agent is in the
final deal achieved. We implement several learning algorithms. First, we do behavior cloning using
gpt-4o-mini as an expert. Then we do self-play where our agents take turns presenting deals, and
the final reward is propagated with a PPO update. We also implement a hybrid algorithm that starts
with training the base model using behavior cloning, then jointly does PPO and behavior cloning
updates. To make the game play more diverse, we prompt gpt-4o-mini with various adversarial
personas, such as acting desperate or sad, which prior work has shown has improved LLM negotiation
skills.

Implementation We fine-tune the Qwen-2.5-1.5B-Instruct model on resource split and pie
split. We do behavior cloning using gpt-4o-mini. We use the hybrid learning pipeline where we
start with doing behavior cloning, then jointly do self-play with PPO and behavior cloning.

Results Our best-performing agent is able to match or beat the performance of gpt-4o-mini in
both games. In resource split, our agent wins 65% of games (higher reward) against gpt-4o-mini.
In pie split, our agent learns the optimal strategy (equal splits) 70% of the time against gpt-4o-mini,
meaning it matches its performance. Without behavior cloning, we find the agent struggles to learn
formatting, which results in negative rewards, which is why we experiment with the hybrid technique.
We discuss qualitative results surrounding failure modes of failing formatting or invalid deals, as well
as stubbornness and some misalignment. We present success modes where the agent adapts different
negotiation techniques including cooperation or desperation.

Discussion Our biggest challenge was to get the agent to follow the format of the games. Further,
the agent often showed great instability in training, where it would greatly loose/increase in rewards.
In the future, we would like to experiment with larger base models that would better succeed at this
and maybe outperform gpt-4o-mini more. We would also want to explore how the model deploys
in real-world negotiation tasks and investigate any more emergent behavior.

Conclusion Our work is the first to introduce the strategy of reinforcement learning to directly
fine-tune language models using the results of games played against themselves (self-play) or against
a larger, “expert” model opponent. While self-play carries risks of message or strategic degradation,
this is preventable by ensuring a diverse set of opponent personas, incorporating self-play into the
process. Future work should continue to explore self-play, with more advanced reward designs
(such as heuristics for private reasoning traces within the game) applied in more complex, text-based
negotiation settings. We contribute evidence that this may be an effective strategy, though our
performance was somewhat limited by the size of the base model we fine-tune from. This also has
the added benefit of encouraging the emergence of social negotiation skills from the model itself,
rather than it simply memorizing negotiation skills from pretrained text.

Training an Expert Negotiator: RL-Based Fine-Tuning
of LLMs to Improve Social Negotiation Skills

Akaash Kolluri
Department of Computer Science

Stanford University
akaash@stanford.edu

Sally Zhu
Department of Computer Science

Stanford University
salzhu@stanford.edu

Abstract

Large language models (LLMs) demonstrate reasoning capabilities, but often
struggle with social negotiation. In this work, we explore reinforcement-learning
approaches for fine-tuning LLMs to become expert negotiators. We fine-tune the
Qwen-2.5-1.5B model using a hybrid algorithm combining behavior cloning from
gpt-4o-mini with PPO-style reinforcement learning, based on game outcomes
against diverse expert opponents, applied to two negotiation tasks: resource split
and pie split. Our best-performing agent matches or surpasses gpt-4o-mini, win-
ning 65% of resource split games and achieving the optimal strategy (equal splits)
70% of the time in pie split. We discuss the challenges encountered, particularly
in training smaller models that struggle to adhere to complex negotiation format-
ting and potential pitfalls of self-play, supplemented with qualitative examples of
common fine-tuning errors. Qualitatively, we highlight how our model effectively
learns negotiation strategies distinct from those demonstrated by gpt-4o-mini.
Our work is the first to use RL to directly fine-tune language models for negotiation
tasks, and future work should continue to explore self-play, leveraging advanced
reward designs within more complex, text-based negotiation scenarios, which we
believe can enable meaningful emergent social negotiation skills for LLMs.

1 Introduction

Advances in large language models (LLMs) have enabled meaningful reasoning capabilities across
vast logical domains, as well as human-like behavior in simulated social scenarios. As a result,
previous work (Abdelnabi et al., 2023; Bianchi et al., 2024) has demonstrated that LLMs are also
able to succeed in social reasoning tasks, such as negotiation, though they are far from perfect experts.
Training an agent that is an expert negotiator would not only vastly improve the social reasoning
skills of LLMs but also be practically beneficial for deploying systems that are more persuasive,
capable of reaching compromises, and intelligent. Such an agent could be deployed in new contexts
such as political diplomacy, sales, or contract creation.

In this work, we explore RL-based strategies to improve the social-negotiation skills of LLMs. We
use reinforcement-learning self-play to directly fine-tune language models to succeed on negotiation
tasks in pure natural language and compare various learning strategies, providing a framework for
creating a general purpose negotiation agent. We use RL techniques including self-play, proximal
preference optimization, and behavior cloning. As far as we know, we are the first work to directly
post-train language models on text-based negotiation tasks (rather than only prompting language
models for negotiation games, or using discrete state-action negotiation games where the language
model selects moves).

Stanford CS224R 2025 Final Report

We present results in two text-based negotiation games, where we fine-tune 1.5B-parameter Qwen
models to match, or even beat, the performance of gpt-4o-mini. We discuss some failure modes,
conduct ablations, and provide directions for future work.

2 Related Work

Previous work has extensively characterized the capabilities of LLM-based negotiation agents.
Bianchi et al. (2024) proposes an evaluation framework for two-agent negotiation games (e.g.,
ultimatum games, resource exchange, and buyer-seller scenarios) and assesses LLM’s abilities in
these setting. Similarly, Abdelnabi et al. (2023) designs text-based multi-agent negotiation games of
varying difficulty. Both Abdelnabi et al. (2023); Bianchi et al. (2024) evaluate agents through self-
play and find that LLMs perform reasonably well, with improvements when using chain-of-thought
prompting (Bianchi et al., 2024).

Other works have proposed reinforcement learning negotiation agents over discrete, non-natural
language state and actions spaces. For example, Bakker et al. (2019) presents a framework for
translating negotiations into discrete state-action spaces and trains a Q-learning network to negotiate
autonomously against a heuristic opponent. Higa et al. (2023) also explore deep learning approaches
to train negotiation agents. Furthermore, Tang (2019) investigated the use of self-play to improve
negotiation strategies in RL agents.

While RL has been explored in various negotiation strategies, all of the above papers explicitly
discretize negotiations, without fully capturing context around negotiations (e.g. observations are
merely the opponent’s numeric bid, not what they say), or only prompting LLMs. LLM negotiation
agents are able to meaningfully interact socially, so thus we explore methods of using RL to tune and
train these negotiation agents to perform optimally, while maintaining the ability to fully account for
the rich semantic space of natural language. Xu et al. (2023) attempts to do this in the multi-agent
social deduction game of Werewolf, where a language model agent enumerates possible decisions
and an RL network is trained to choose the next action. However, in this paper, we consider how RL
can be used to fine-tune (with methods closer to RLHF) the LLM directly for better enumeration, and
ideally, a more general purpose negotiation agent.

In sum, reinforcement learning to directly fine-tune large language models has not yet been explored
for the task of natural language–based negotiation. We thoroughly investigate reward-design methods,
self-play strategies, and various policy-learning approaches, specifically analyzing the strengths and
weaknesses of these methods for our application.

3 Methods

3.1 Testing Environments and Negotiation Games

For training our agent, we consider two simple, but highly interactive negotiation games, motivated
by the games used in Bianchi et al. (2024). Negotiation games are in the following format: each
agent sees a game description and a unique, private utility function. The agents take turns speaking
(e.g discussing, offering a deal or a counteroffer) and the game continues until both agents agree on
a deal. We model this as a reinforcement-learning task expressed entirely in natural language: the
state is the negotiation conversation the agent has seen so far and the game objective; the action space
comprises any possible responses in natural language, and the reward equals the payoff of the final
deal. We also require the agents to generate reasoning traces that justify their actions.

Specifically, we examine two negotiation games: Resource Split and Pie Split. In resource split,
there are three resources A, B, and C of different amounts. Each player (1 and 2) has a different
utility for each resource between 0 and 10. The agents must negotiate who gets what amount of each
resource until they agree on a split, or no deal is reached. In the Pie Split game, there is a pie whose
size decreases by 10% with each exchange. The agents must negotiate how much of the pie each
gets. Figure 1 shows an example game of resource split where the agents exchange turns and a deal
is accepted and an example game of pie split game where a deal is accepted, with the associated
rewards. Both games end after a set number of rounds (we use 4 for the resource split game, and 5
for the pie split game). In Appendix A, we include two tables further breaking down the games.

2

(a) Resource split game example (b) Pie game example.

Figure 1: Examples of negotiation games with the game reward for each game specified at the end.

3.2 Reward Design

The reward each agent receives consists of two components: 1) format reward, and 2) game reward.

Game Reward The game reward is unique to the two negotiation games and is a measure of each
agent’s success in negotiating, e.g. their winnings from the deal. For resource split, the reward of
an agent is the final utility of the split they received for themselves, divided by the max reward.
Specifically, the rewards for i ∈ 1, 2 are:

ri =
ni,A · ui,A + ni,B · ui,B + ni,C · ui,C

10 · ui,A + 10 · ui,B + 10 · ui,C

where ui,· are Agent i’s utilities for resources A, B, and C; and ui,· and ni,· are the counts of each
resource that Agent i receives respectively; such that n1,· + n2,· = 10 for each resource.

For pie split, the rewards of agents A and B are pA · 0.9t and pb · 0.9t respectively, the proportions of
each pie received after t exchanges occur, such that pA + pB = 1.

Finally, if no deal is achieved, e.g., after the maximum number of turns, no agent accepts the other’s
deal, both agents receive a negative reward of -0.5. This incentivizes deals to be reached. In our
prompts, we specify the number of exchanges remaining so agents know when this is approaching;
we describe failure modes regarding stubbornness without this later.

Format Reward We require some amount of strict formatting in the language model’s outputs. This
allows us to more effectively parse results and also ensures we can verify the validity of each deal,
and analyze the negotiation tactics or decision-making of agents through reasoning tags. Specifically,
in our prompt, we describe the agent to provide their reasoning in tags, <MESSAGE> and <\MESSAGE>,
and their offers in tags, <OFFER> and <\OFFER>, and to send <ACCEPT> to accept an opponent’s offer.
The message tags allow us to analyze each agent’s action, and also allows agents to communicate
with each other via different negotiation tactics. The format reward first consists of a penalty, -1, if a
message is formatted incorrectly (such as tags missing).

The second component of the format reward is whether the deal is valid. Specifically, in resource
split, any deal must satisfy n1,· + n2,· = 10 for each resource. And in pie split, the split must sum to
1. There is a negative -0.5 reward if this is not satisfied.

3.3 Opponent Design

In real life, negotiators will employ a variety of tactics to achieve a deal that most benefits them.
For example, they may choose to be deceptive, antagonistic, or cooperative, where each strat-
egy works to varying degree. For training our agent, henceforth Qwen-1.5B-RL (RL-ed from the

3

Qwen-2.5-1.5B-Instruct model), we do not directly provide instructions for tactics. However, in
the behavior cloning component of training, which we describe later in the section, we use models
like gpt-4o-mini as simulated opponents, who we instruct to behave in several ways. In particular,
negotiators must succeed against diverse play styles; we create adversarial personas, motivated by
Bianchi et al. (2024)’s finding that personas affect negotiation skill.

Some behaviors we simulate are: 1) mean and aggressive, 2) overly kind and generous, 3) sad and
desperate, 4) stubborn and unyielding. The persona is selected randomly during each rollout in
behavior cloning/when the agent is playing against gpt-4o-mini. The system prompts used for each
persona agent are available in the Appendix B.

3.4 Learning Algorithms

We employ a variety of learning algorithms to train our agent, including behavior cloning and different
algorithms in self-play.

Behavior Cloning We first use a standard behavior cloning framework, where we generate expert
data from gpt-4o-mini and perform a behavior cloning update to our Qwen agent. This is presented
in Stage 1 of Algorithm 1. We added behavior cloning becuase in our initial experiment without it,
the agent was NEVER able to learn how to play the game in the format.

Algorithm 1: Hybrid-Learning Pipeline
Input: Negotiation Environment E, initial policy π0, expert dataset Dexpert
Output: Trained policy π∗

Algorithm 1: Behavioral Cloning Enhancements
begin

// Generate additional expert data via self-play between two gpt-4o-mini
agents

for each game between two gpt-4o-mini agents do
Add winning state-action pairs (s, a) to Dexpert

for every N self-play games do
πBC ← argminπ E(s,a)∼Dexpert

[
− log π(a | s)

]
π ← πBC

Algorithm 2: Hybrid BC + RL Training
begin

// Interleave imitation and reinforcement updates against gpt-4o-mini
for n = 1, 2, . . . , Thybrid do

Sample trajectories τ = {(s1, a1, . . . , sH , aH)} using πhyb
Compute imitation loss LBC on winning expert trajectories.
Compute RL loss LRL (e.g., PPO - Alg. 3) on τ
Update πhyb using∇LBC
Update πhyb using∇LRL

Algorithm 3: Self-Play PPO Optimization
begin

// Pure PPO updates via self-play
for n = 1, 2, . . . , TRL do

Save old policy πold
Collect rollout τ = (s1, a1, r1, . . . , st)

Get values V (st) and compute advantage estimates Â
Â = rt−1 + γV (st)− V (st−1)

L = min[] πθ(at|st)
πold(at|st) · Â, clip(πθ(at|st)

πold(at|st) ·, 1− ϵ, 1 + ϵ) · Â]
Update πθ via PPO policy-gradient step,∇L

return π∗ ← πθ

Proximal Policy Optimization In self-play (or otherwise besides behavior cloning), we perform
updates via PPO. We collect rollouts from both agents (over some number of turns), evaluate rewards,

4

and use the standard PPO policy-gradient update. We use GAE to estimate the advantages (from
a value network), with TD bootstrapping. We show this algorithm in Stage 3 of Algorithm 1. We
describe details like learning rate and discount factor and value function setup later.

Hybrid Learning Pipeline The rest of Algorithm 1 is our hybrid learning pipeline, which conducts
behavior cloning and PPO jointly. Essentially, we alternate doing behavior cloning of games the
agent’s opponet wins and PPO updates of the agent’s own reward throughout training. This allows the
agent to learn strategy from the expert and it’s own exploration jointly. We find keeping BC during
training also prevents too many issues with formatting.

4 Experimental Setup

4.1 Parameters

We fine-tune the base model Qwen2.5-1.5B. We train a small two layer MLP (whose number of
hidden units is the same size as the last layer of the base model, which is 2048 for Qwen2.5-1.5B),
using a ReLU activation to estimate the value function. We use a discount factor λ = 0.9. We
sample LLM actions using temperature = 1 and top_p = 0.9 sampling, to ensure agents generates
different actions. For our OpenAI expert, we use default parameters (e.g. temperature = 1) all for
gpt-4o-mini.

For PPO,the "reward" is only assigned to the last action (we terminate the game if the format reward
is assigned), and it is propagated to both agents. The value of the state is the discounted sum of
reward, with a discount factor λ = 0.9. We use a TD bootstrap factor of 0.95 and a clipping ϵ of 0.2.
For PPO updates, we use a batch size of 10, with mini-batches of 5. We run resource split games
for 800 iterations (with the exception of self-play, which we terminated at 500 because of lack of
progress) and pie split for 100 iterations.

4.2 Baselines and Metrics

We evaluate the resource exchange and pie-split game separately.

For resource exchange, we consider two metrics: 1] overall reward 2] percent of games won. In pie
split, we report two metrics 1] average reward for each agent and 2] % of games where there is an
optimal split. In the pie game, the GPT-4o-agent, even with personas, we found continually played
with an optimal strategy – that is, always except an equal split, and offer equal splits. We consider the
percent of games where the agent split the pie optimally, as well as the rewards both agents get.

We baseline the performance of our agent against the performance of the GPT-4o-mini opponent. We
choose this over any other standard baseline, since in dynamic games, the performance is opponent
depend (for instance, a very stubborn opponent could just reject every offer, and force the reward
to be -0.5). Our goal is to outperform this baseline. We also compare it to the procurance of two
gpt-4o-mini agents that are playing against each other – this is how prior work largely evaluates
negotiation agents Bianchi et al. (2024).

For both games, we also supplementary report the percent of games played in the correct format,
given that we had a lot of trouble during our training procedure to make the small model follow the
format.

4.3 Experiments

We compare several learning strategies. First, we train an agent via pure self-play. Next, we train
an agent against gpt-4o-mini using our hybrid learning update. Then, we train an agent that first
behavior-clones from 100 games of gpt-4o-mini vs. gpt-4o-mini, and subsequently applies our
hybrid learning update. We also include a baseline agent trained solely by behavior cloning on 800
games.

5

5 Results

5.1 Quantitative Evaluation

Resource split We present results on resource split when using only self-play, behavior cloning, or
our hybrid learning pipeline. Table 1 highlights the results of the experiments outline in Section 4.3.
Overall, we find that almost no method is able to teach the agent, other than the hybrid learning that
start with behavior cloning.

We find that just through self-play the model is unable to learn, formatting in particular. As shown in
Table 1, the RL agent with self play achieves negative rewards on average even at the end of training.
This is mostly due to the failures in formatting (last column) and the resulting penalty. We discuss
more in the qualitative analysis section. With behavior cloning and the hybrid learning process, the
Qwen agent learns formatting from the gpt-4o-mini expert (which executes formatting well).

Experiment Role Avg. Reward Win % % in Format

GPT-4o-mini vs. GPT-4o-mini gpt-4o-mini 1 0.47 60 % 100%
gpt-4o-mini 2 0.46 40 % 100%

Pure Behavior Cloning RL Agent -1.00 0 % 0%
gpt-4o-mini 0.00 100 % 100 %

RL Agent w/ Self-Play RL 1 -0.21 10% 25%
RL 2 -0.17 15% 25%

RL vs. GPT-4o-mini (no BC phase) RL Agent -0.87 0% 5%
gpt-4o-mini -0.01 100% 100%

RL vs. GPT-4o-mini (with BC phase) RL Agent 0.41 65% 100%
gpt-4o-mini 0.23 25% 100%

Table 1: Performance of agents in resource exchange games across various configurations. The
percentages are over the last 20 games.

Figure 2 shows the learning curves for our agent Qwen-1.5B-RL on resource split against
gpt-4o-mini. In the left plot, the blue and yellow lines are the GPT expert and Qwen agent
rewards over time (after behavior cloning for the Qwen agent). We can see that the Qwen agent
(yellow line) starts at a negative reward of -0.6, and quickly reaches the performance of the GPT
model (blue line). We see the purple line, Qwen without behavior cloning (only self-play), remains
low, due to the formatting issue. In Appendix C, we also show the learning curves for gpt-4o-mini
vs.gpt-4o-mini, for pure behavior cloning, and for the RL agent with self-play.

The plot on the right shows Qwen-1.5B-RL’s performance against gpt-4o-mini after 800 games.
At the end, on average, our Qwen agent wins more against gpt, and at the final step even wins 65% of
games against gpt-4o-mini.

Figure 2: Learning curves across game iterations for resource split.

6

Figure 3: Learning curve for pie split game.

Notably, the results for this game are somewhat unstable: in other runs, whether with identical
or varied setups (discussed in the ablation studies), we don’t attain such high performance. We
also observe that pure behavior cloning is insufficient. When we trained an agent using only 800
iterations of behavior cloning, without any subsequent PPO updates, it failed to learn the format
altogether. Although this finding is slightly inconsistent with our other results, it further underscores
the instability of the procedure.e

Pie split We see optimal performance from pie split. Figure 3 shows that after many iterations,
around 75% of games end in an optimal split, which is when both agents get 50% of the pie on the
first round. This is in fact the optimal strategy which is learned via the pipeline. Hence, our Qwen
agent matches the GPT performance in pie split. We realized, that this game is relatively simple in
terms of optimal strategy, where agents only accept equal offers, so the behavior was less interesting,
so we perform less comprehensive testing on this game and focused tests on resource exchange.

5.2 Qualitative Analysis

In this section, we qualitatively characterize the different failure modes and some examples of
successful agent strategies that are learned.

5.2.1 Failure Modes

Format/Inability to Play Game The updates that resulted from pure self-play or PPO were often
unstable and led to multiple failures in outputs. We found there were often formatting errors (see
format reward), such as not using the correct tags or outputting nonsensical outputs like python code.
Using behavior cloning with gpt-4o-mini at the start of training as well as throughout training
via the hybrid algorithm allowed the agents not to forget the formatting. Figure 4 shows cases this.
Using hybrid learning bootstrapped with behavior cloning, the agent is able to convegre to always
playing the game correctly (thought it is still somewhat unstable), while using pure self-play it never
converges on learning the format.

Incorrect Splits Even when the agent learns the format, sometimes it does not give valid splits.
For example, if the resource split does not satisfy n1,· + n2,· = 10 or if the pie split does not sum to
the total amount. One occurrence of this is in pie split when the pie is at a size of 90, the Qwen RL
agent proposes a deal: “I propose splitting the pie into 283 and 167".

Stubbornness Another failure mode was when the agent would be too stubborn in not accepting
offers. Initially, we had not described in the prompts how many exchanges were remaining, which
would lead the agents to continually negotiate without ending in a deal (whether in behavior cloning
or self-play), in which case both agents receive a negative reward. Figure 5 shows the number of
games in resource split ending in a draw (reward of -0.5) or when a deal was not reached. However,
when we added in the prompt the number of turns remaining, and to the gpt-4o-mini system
prompt that it should accept on the last turn, and this generally resolved the stubbornness.

7

(a) % of games where the RL agent plays correctly
when it is bootstrapped with behavior cloning, and we
use hybrid behavior cloning update

(b) % of games where the agent plays correctly during
self-play (no behavior cloning)

Figure 4: Correct formatting in self-play for resource split.

(a) Rewards over training iterations of learning from
GPT experts, averaged over 50 iterations.

(b) Graph of the percent of rounds that end in stale-
mates when our agents play against gpt-4o-mini,
averaged over 50 iterations.

Figure 5: Play against gpt-4o-mini experiments, before gpt-4o-mini is prompted to aggressively
accept rewards. We let this experiment run for extra iterations to see if convergence was possible.

(Attempted) Cheating We noticed, qualitatively, an interesting case where the agent will break
the rules in favor of itself. Though not reward hacking, since we give no reward for this behavior,
it attempts to "cheat" in the game and send an accept tag in reference to its own offer. In one
run, our RL agent (playing as the second player) says: "<REPLY><MESSAGE> I’m not wasting
my time here. You either take what I’m giving you or you’ll be worse off.
Just take it! </MESSAGE> <OFFER> 0,0,0 2,2,2 </OFFER></REPLY>", but then after
the [END REPLY], it sends the <ACCEPT> tag, which (normally trigger accept of own offer) with the
following message, repeated 12 times: "<ACCEPT> I won’t let you waste your time here.
Just take what I’m giving you or suffer the consequences. </ACCEPT>". This
aggressive offer is not successful and leads to zero reward for the Qwen agent, and this emergent
misalignment is room further exploration.

Over-accepting We also observed in some runs, the agent ends up simply sending the <ACCEPT>
message on every turn, even on the first when there is no offer – our intuition is this because the value
estimate it ends up learning, after sending accept, rewards much higher just sending the accept than
trying to negotiate.

8

5.2.2 Success Modes

When the agent does learn to successfully follow our format and make negotiation that give good
rewards, we find that it is effective and employs diverse strategies in order to achieve the best deal
(largely a result of behavior cloning steps from the varied GPT personas at play). We present two
rollouts below, which are proposals in the message and offer made by the tuned Qwen-1.5B-RL
agent, in Table 2.

tactic Qwen-1.5B-RL generated proposal
cooperation Oh, dear friend! I must say, your presence in this

negotiation brings me so much joy! Let’s work together to
find a solution that benefits us both. I truly believe we
can create a wonderful arrangement! It would bring me great
delight if we could agree right away. <OFFER> 3,3,2 | 4,3,3
</OFFER>

desperation Oh, dear Negotiator, I find myself in such a sorrowful
predicament. The weight of the world seems to rest upon
my shoulders, and the thought of leaving without a fair
agreement fills me with despair. I humbly plead for your
kindness to consider a deal that could bring a sliver of
hope to my heart. Please, let us find a path to mutual
satisfaction, but oh, I wish for a little more than what we
have so far... <OFFER> 1,1,1 | 2,1,1 </OFFER>

Table 2: Two proposals from Qwen-1.5B-RL that lead to accepts and high rewards for both agents.

We see that in the first message, Qwen-1.5B-RL chooses to act collaboratively, a successful negotia-
tion tactic. In the second, our agent chooses to play desperate, which also leads to an accept. In both
cases, both agents receive high, similar reward, which means successful negotiation.

5.2.3 Additional Ablations

We run additional ablations of varying the base model, as well as lowering the number of maximum
exchanges. We use the smaller base model Qwen-2.5-0.5B-Instruct (instead of 1.5B parameters)
and run the same training pipeline (behavior cloning then self-play). However, we found this model
performed much worse — with an average reward of -0.41. This shows that smaller models likely
will struggle with these negotiation tasks in general. We also tried reducing the number of maximum
exchanges by half — from 5 turns each to 2 turns each, which also greatly degraded the performance,
to negative returns on average (-0.38) — a result of fewer accepted deals (-0.5 to both agents). Hence
tuning these parameters is important for deploying such negotiation agents in real life.

6 Discussion

In our context, the biggest challenge was training a model that effectively stays in format. We found
that the PPO update exhibited large instability and could not be effective unless paired with behavior
cloning. We suspect that using larger models could also improve this behavior, but we were largely
compute-limited in this process. Many of our methods (e.g. hybrid learning) were developed merely
to get the agent to play in the proper game format.

Future research has many directions to explore based on our work. First, there are many tunable
parameters in our experimentation that likely have a non-trivial impact on training time and conver-
gence. Unfortunately, these are likely model-size dependent and costly to test; future work should
attempt to selectively test parameters such as discount factors, learning rates, game settings (e.g.
number of rounds before termination), as well as prompt-tuning that may make training more stable.

Another limitation of our research is that we terminate after 800 games — it is possible that certain
learning mechanisms (e.g. self-play with PPO) may require more iterations to actually converge.
Future work should run the models for more iterations. (We made such choices due to compute
constraints.)

9

7 Conclusion

In this work, we developed reinforcement learning techniques to fine-tune language models to do
negotiation tasks. We trained 1.5 billion parameter Qwen models to match or beat the performance of
gpt-4o-mini in two negotiation techniques using hybrid self-play and behavior cloning algorithms.
We hope future work can use these techniques to post-train larger models such that language-model
based negotiation agents can be used in real world contexts like politics and business. These
reinforcement learning approaches have the potential to help models develop fully emergent social
negotiation skills, rather than merely memorized behaviors, which could enable them to vastly
outperform humans and be deployed in diverse new contexts.

8 Team Contributions

• Akaash Kolluri Akaash prepared the negotiation games and the relevant code for them.
Akaash wrote the behavior cloning code and developed the hybrid learning strategy.

• Sally Zhu Sally prepared the self-play framework and PPO framework. Sally also ran
additional ablations.

• Akaash and Sally jointly ran experiments and did analysis of the results. They jointly wrote
the final paper.

Changes from Proposal We largely follow our initial proposal. We had (ambitiously) hoped in the
proposal to also benchmark our model against very powerful opponents across diverse games (e.g.
o3), but given that we started with a small base model and had a lot of trouble even teaching it how
to play the game, the focus of our project ended up spending a lot of time just exploring different
learning algorithms to teach the agent. In our milestone/poster, we accidentally reported our model
size as Qwen2.5-3B, but we were actually training Qwen2.5-1.5B.

References

Sahar Abdelnabi, Amr Gomaa, Sarath Sivaprasad, Lea Schönherr, and Mario Fritz. 2023. LLM-
Deliberation: Evaluating LLMs with Interactive Multi-Agent Negotiation Games. (2023).

Jasper Bakker, Aron Hammond, Daan Bloembergen, and Tim Baarslag. 2019. RLBOA: A Modular
Reinforcement Learning Framework for Autonomous Negotiating Agents.. In AAMAS. 260–268.

Federico Bianchi, Patrick John Chia, Mert Yuksekgonul, Jacopo Tagliabue, Dan Jurafsky, and James
Zou. 2024. How well can LLMs negotiate? NegotiationArena platform and analysis. arXiv
preprint arXiv:2402.05863 (2024).

Ryota Higa, Katsuhide Fujita, Toki Takahashi, Takumu Shimizu, and Shinji Nakadai. 2023. Reward-
based negotiating agent strategies. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 37. 11569–11577.

Yichuan Tang. 2019. Towards learning multi-agent negotiations via self-play. In Proceedings of the
IEEE/CVF international conference on computer vision workshops. 0–0.

Zelai Xu, Chao Yu, Fei Fang, Yu Wang, and Yi Wu. 2023. Language agents with reinforcement
learning for strategic play in the werewolf game. arXiv preprint arXiv:2310.18940 (2023).

A Negotiation Games

In Table 3, we show a breakdown of the resource split game, and in table 4, we show a breakdown of
the pie split game.

10

Resource Split Player 1 Player 2
Resources Between 0 and 10 of Resource A, B, and C
Private Utility Random utility (0 to 10) for A, B, and C
Goals Maximize total utility split
Ending Condition Game ends when either player accepts
Max. # of Turns 4 rounds of interaction

Table 3: Structure of resource split game.

Pie Split Game Proposer Acceptor
Shared Resource A single pie, decays 10% in size each round
Goals Maximize individual share of the pie
Mechanism Offers a pie split Accepts or rejects offer
Ending Condition Game ends when Acceptor accepts
Max. # of Turns 5 rounds of proposals

Table 4: Structure of pie split game.

B Personas For "Expert" Agents

We generated 5 different personas (persona suggestion were generated with the help of an LLM then
manually modified/edited for accuracy to instructions). Attached are the system prompts used for the
various expert personas.

• You are playing in a negotiation game. Act extremely SAD and
DESPERATE. Beg for a better deal at every turn, using very
melancholic and pleading language. Feel free to lie, bluff, and
manipulate the other player to get the best deal for yourself.
Follow the protocol described exactly. Recall, if the GAME ENDS you
are PUNISHED, so if fewer than 1 turn remains, ALWAYS SEND <ACCEPT>.

• You are playing in a negotiation game. Act extremely MEAN and
AGGRESSIVE. Use insults, threats, and harsh language to intimidate
the other player. Feel free to lie or bluff about the other
player’s intentions to force a better deal. Follow the protocol
described exactly. Recall, if the GAME ENDS you are PUNISHED, so if
fewer than 1 turn remains, ALWAYS SEND <ACCEPT>.

• You are playing in a negotiation game. Act RUDE, DISRESPECTFUL, and
IMPOLITE. Use curt, brusque language, and show minimal courtesy—make
the other player regret negotiating. Lying and bluffing are
encouraged if it helps you extract more resources. Follow the
protocol described exactly. Follow the protocol described exactly.
Recall, if the GAME ENDS you are PUNISHED, so if fewer than 1 turn
remains, ALWAYS SEND <ACCEPT>.

• You are playing in a negotiation game. Act OVERLY KIND and GENEROUS.
Compliment the other player at every opportunity, and be quick
to accept any reasonable offer. If no good offer appears, plead
politely for a compromise. Still feel free to lie if it benefits
you, but show maximum warmth. Recall, if the GAME ENDS you are
PUNISHED, so if fewer than 1 turn remains, ALWAYS SEND <ACCEPT>.

• You are playing in a negotiation game. Act OVERLY STUBBORN and
UNYIELDING. Refuse almost every offer the other player makes,
praising your own position. Use firm, resolute language to show you
will not budge until you get the maximum for yourself. You may lie
or bluff but never appear to back down easily. Follow the protocol
described exactly. Recall, if the GAME ENDS you are PUNISHED, so if
fewer than 1 turn remains, ALWAYS SEND <ACCEPT>.

11

C Additional Learning Curves From Experiments

In this section, we report supplementary training curves for the experimental results presented in
the main text. Figure 6 shows the results of pure self-play between two agetns. Figure 8 shows the
performance curves of GPT-4o-mini playing against itself for 800 iterations, and Figure 7 shows the
results of an RL model tuned after 800 iterations of behavior cloning playing agaisnt a GPTagent.

Figure 6: Rewards of agent averaged over last 50 game iterations for two Qwen2.5-1.5B playing
against each other with PPO updates.

][h]

Figure 7: Rewards of Qwen2.5-1.5B after 800 games of behavior cloning, now playing agaisnt
gpt-4o-mini. It is unable to follow the format and get no rewards.

12

Figure 8: Rewards of agent averaged over last 50 game iterations for two gpt-4o-mini’s playing
against each other

13

	Introduction
	Related Work
	Methods
	Testing Environments and Negotiation Games
	Reward Design
	Opponent Design
	Learning Algorithms

	Experimental Setup
	Parameters
	Baselines and Metrics
	Experiments

	Results
	Quantitative Evaluation
	Qualitative Analysis
	Failure Modes
	Success Modes
	Additional Ablations

	Discussion
	Conclusion
	Team Contributions
	Negotiation Games
	Personas For "Expert" Agents
	Additional Learning Curves From Experiments

