
Extended Abstract

Motivation Autonomous landing is a critical capability for UAVs operating in GPS-denied planetary
environments like Mars, where GNSS signals and human teleoperation are unavailable. To address
this, we propose a learning-based framework that enables a UAV to perceive, and land on visually
designated targets using onboard sensors.

Method The approach decomposes the landing task into two learnable modules: a CNN-based
perception system for visual localization and an LSTM-based control policy that outputs thrust and
torque commands. Training is performed in two stages: (1) imitation learning with a model predictive
control (MPC) expert, followed by (2) dataset aggregation (DAgger) to improve robustness. The
modular architecture enables the control policy to be trained independently using privileged state
data before integrating perception.

Implementation The drone is modeled as a 6DoF rigid body in simulation, equipped with a
downward-facing RGB camera, radar altimeter, and IMU. The expert uses convex optimization
to solve for optimal controls, while the learner network comprises a CNN-MLP for image-based
position regression, and an LSTM-MLP for control prediction. See Figure 2 for an overview of the
architecture.

Figure 1: Modular policy architecture combining CNN-based perception and LSTM-based control.

Results Evaluation on 300 test trajectories shows that behavior cloning alone yields poor gener-
alization (5.74m average error). DAgger reduces this to 0.70m. Integrating vision (CNN+LSTM)
achieves a competitive 0.84m landing error despite perception uncertainty. Control smoothness and
convergence to target positions remain consistent with expert behavior.

Discussion Compared to optimization-based policies (runtime: 0.125s), the learned policy offers a
10× speedup (0.013s), enabling real-time deployment on embedded systems. The modular design
allows flexible swapping of perception models for different environments, while maintaining the
same control policy interface.

Conclusion This work demonstrates a modular, learning-based vision-and-control pipeline for
precision UAV landing. The combination of imitation learning, DAgger, and architectural separation
yields robust, interpretable, and real-time policies suitable for GPS-denied autonomous flight.



Vision-Based Autonomous Landing through
Imitation Learning

Mike Timmerman
Department of Aeronautics and Astronautics

Stanford University
mtimmerm@stanford.edu

Abstract

This work presents a modular learning-based framework for autonomous preci-
sion landing of drones in GPS-denied environments, with a focus on planetary
exploration scenarios such as Mars. The proposed system combines a convolu-
tional visual encoder with a recurrent control module to map onboard camera,
radar, and inertial sensor data directly to thrust and torque commands. A model
predictive controller (MPC) provides expert demonstrations, which are used to
train the policy via imitation learning. To address distribution shift, we employ
Dataset Aggregation (DAgger). The modular design allows independent training
of perception and control components, facilitating interpretability and flexible
deployment. Evaluation in a high-fidelity 6-DoF simulation demonstrates that the
learned policy achieves sub-meter landing accuracy from diverse initial conditions,
while running nearly 10× faster than the expert MPC baseline. The architecture
offers a viable path toward vision-based autonomy for aerial robots in remote and
communication-limited environments.

1 Introduction

Unmanned aerial vehicles (UAVs) offer unique advantages in mobility and terrain accessibility
compared to ground-based systems, making them a promising technology for future planetary
exploration. This potential was demonstrated by NASA’s Ingenuity Mars Helicopter, which achieved
the first powered flight on another planet. However, extending the capability of aerial systems beyond
demonstration missions presents several challenges. One of the most critical limitations is the absence
of Global Navigation Satellite System (GNSS) infrastructure on Mars, which precludes standard
global positioning techniques. Additionally, the significant communication delay between Earth and
Mars makes real-time human teleoperation infeasible. As a result, planetary UAVs must operate with
a high degree of onboard autonomy, relying solely on local sensing and decision-making to perform
complex tasks such as navigation and landing.

This work addresses a core component of that autonomy: vision-based precision landing in GPS-
denied environments. We propose a learning-based framework for training an autonomous drone
to identify and land on designated safe zones using onboard camera, radar altimeter, and inertial
measurements. By leveraging imitation learning, the drone is trained to perceive visual features,
estimate its position relative to a target, and execute a safe and controlled descent. The policy
is implemented as a neural network architecture consisting of a convolutional encoder, recurrent
memory, and thrust and torque predictor, reflecting the perception-action loop required for real-time
control.

Stanford CS224R 2025 Final Report



2 Related Work

As in many other domains, deep learning has attracted growing interest for visual navigation and
control in autonomy tasks involving space systems. One such task—autonomous landing in extrater-
restrial environments using visual sensors—has been explored in prior work. In particular, Ghilardi
et al. (2020) trained a policy using a CNN-LSTM architecture through imitation learning. Their
scenario involved a lunar descent of a lander modeled as a point mass. The policy receives RGB
images as observations, which are processed by a convolutional encoder. The encoder outputs from
multiple timesteps are then passed as a sequence of embeddings to an LSTM module which in turn
outputs acceleration commands. The policy is trained purely via supervised learning on pre-generated
trajectory data.

This work’s approach does not incorporate dataset aggregation (DAgger), nor does it fine-tune the
policy using reinforcement learning methods—two key limitations that I aim to address in my work.
Moreover, a simplified system without attitude dynamics is assumed. This simplification overlooks
a critical aspect: since the visual sensor is mounted on the vehicle, the system’s attitude directly
affects the observed image stream. To bridge this gap, my project aims to develop a methodology
that accounts for full six degrees of freedom motion, enabling more realistic and robust learning for
vision-based landing policies.

The work by Chekakta et al. (2022) adopts a similar policy architecture, employing a CNN to extract
spatial features from image data and an RNN based on LSTM to capture temporal dependencies.
However, their approach leverages LiDAR-based imagery, which offers significantly richer spatial
information through point cloud data. This data is pre-processed into grayscale elevation, slope,
and range images, providing detailed representations of the environment. While this can enhance
perception, it also introduces additional system constraints—LiDARs are generally more power-
intensive, complex, and less commonly flight-proven compared to standard cameras. The policy
ultimately outputs a full pose estimate, including both attitude and position.

Similar to the previous work, the policy is trained purely through supervised learning—i.e., imitation
learning—without further refinement via policy optimization. This presents an opportunity for
improvement. Additionally, the goal of their system is to recover complete pose information, which
is more information-rich than necessary for the task of autonomous landing. In contrast, my objective
is to directly output control commands—specifically accelerations—required to guide the vehicle to
a safe landing. For this, only relative state information is needed, which I hypothesize to be easier to
infer from visual data than absolute pose estimates. This distinction allows for a potentially simpler
learning problem.

3 Method

3.1 Environment

The drone is modeled as a rigid body with six degrees of freedom (6DoF), capturing its full trans-
lational and rotational dynamics in three-dimensional space. The system state includes position
(x, y, z), orientation (roll, pitch, yaw), linear velocity, and angular velocity, all expressed in an
inertial or body-fixed frame as appropriate. The equations of motion are integrated using a 4th order
Runge-Kutta scheme.

The drone is equipped with the following onboard sensors:

• Downward-facing RGB camera: captures 128×128 pixel images used for visual navigation
and landing pad detection.

• Radar altimeter: provides altitude measurements relative to the surface beneath the drone.

• Inertial Measurement Unit (IMU): measures attitude and angular velocity.

The actuators consist of four independent rotors generating vertical thrust and differential torques,
allowing full control over roll, pitch, yaw, and collective thrust. The outputs of the policy correspond
to normalized vertical thrust and torque commands, which are mapped to rotor speed inputs through a
low-level controller. The dynamics also model external forces such as gravity and aerodynamic drag.

2



The landing target is a planar surface marked with a high-contrast red cross against a green background.
This design facilitates visual detection and is visible within the camera frame at the start of each
trajectory. A summery of parameters is given in Table 1

Table 1: Drone Parameters Used in Simulation

Parameter Symbol Value
Mass m 1.0 kg
Arm length (motor to center) l 0.125 m
Moment of inertia (diagonal) Ixx, Iyy, Izz 0.009, 0.009, 0.016 kg·m2

Max rotor thrust Tmax 25 N
Image resolution - 128× 128 px
Camera FoV - 45 deg
Camera frame rate - 10 Hz
Radar range - 0–150 m

3.2 Expert Agent

To generate expert demonstrations for imitation learning, we implement a model predictive control
(MPC) framework based on linear time-invariant (LTI) dynamics. The MPC controller plans over
a finite time horizon tN , discretized with control timestep ∆t, and solves a convex optimization
problem to minimize a quadratic cost function involving control effort and terminal state error.

The drone is modeled as a 6-DoF rigid body with 12 states: Euler angles (ϕ, θ, ψ), angular velocities
(p, q, r), position (x, y, z), and linear velocities (vx, vy, vz). The control inputs consist of a collective
thrust and three independent torques about the body axes. The nonlinear dynamics f(x, u) are
linearized around a steady-state hover using Jacobians computed via automatic differentiation,
resulting in a local approximation of the form ẋ = A(x− x0) +B(u− u0), where f(x0, u0) = 0.

At each control cycle, the MPC solves a convex quadratic program using CVXPY to compute the
optimal control sequence. The objective includes a quadratic penalty on control deviations from
hover as well as final state error. The controller adapts its cost structure depending on proximity to
the landing target: if the drone is within a threshold distance, a final-state-tracking cost is enforced;
otherwise, control efficiency is prioritized.

The optimization is subject to several constraints, including:

• Saturation limits on the total thrust (≤ 2.5mg) and body torques (≤ 0.01 Nm),

• Tilt angle constraints (roll and pitch ≤ 30◦),

• Altitude constraint to ensure z ≥ 0.

Importantly, the expert policy has access to privileged information during control: it observes the full
12-dimensional state of the system, including position, orientation, and their time derivatives. This
level of observability is not available to the learning agent, which must instead infer position from
onboard vision and radar sensors. As such, the expert serves as an idealized teacher from which the
policy can learn despite partial observability.

3.3 Policy Architecture

A modular deep learning architecture is designed that separates perception and control. The system is
composed of two primary components: a visual encoder and a control module. The visual encoder
processes image observations to infer positional information, while the control module combines this
positional encoding with additional onboard sensor data to produce control commands.

Specifically, gray-scale images are first passed through a convolution neural network (CNN) fol-
lowed by a multilayer perceptron (MLP) to extract a compact positional encoding. This learned
representation captures relevant visual cues in the scene, such as the location of the landing pad. This
perception pipeline outputs an estimated 2D position in the image plane, which is then concatenated
with auxiliary measurements from the drone’s onboard sensors—namely, attitude (from an inertial
measurement unit), altitude (from radar), and attitude rates (from gyroscopes).

3



Figure 2: Policy Architecture.

The concatenated state vector is fed into a single-layer LSTM network to capture temporal depen-
dencies in the drone’s motion. The output of the LSTM is processed by another MLP that maps
the internal state to the final control actions: vertical thrust and body-frame torques. This modu-
lar structure allows the perception and control components to be trained independently or jointly,
providing flexibility and interpretability. The separation also supports progressive training schemes,
such as pretraining the LSTM on privileged state information before substituting it with vision-based
positional estimates. The complete architecture is shown in Figure 2.

3.4 Imitation Learning

The initial policy is trained using behavior cloning (BC), which formulates policy learning as a
supervised learning problem. Given a dataset Dexpert = {(τ1), (τ2), . . . , (τN )} of expert trajectories,
where each trajectory τi = {(ot, at)}Tt=1 consists of observations ot and corresponding expert actions
at, the goal is to learn a policy πθ(a|o) that mimics the expert. This is achieved by minimizing the
the mean squared error:

LBC(θ) =
1

NT

N∑
i=1

T∑
t=1

∥πθ(o(i)t )− a(i)t ∥2, (1)

where πθ is the policy parameterized by θ, and T is the length of each fixed-length segment sampled
from the replay buffer. These segments are used to ensure consistent temporal context, especially
when training recurrent architectures such as LSTMs.

After the initial behavior cloning stage, the policy is further refined using the Dataset Aggregation
(DAgger) algorithm. At each DAgger iteration k, the current policy π(k)

θ is deployed to collect new
rollouts τ (k), which are then relabeled by querying the expert for the optimal action π∗(ot) at each
timestep. These relabeled transitions are aggregated into the dataset:

Dagg ← Dagg ∪ {(ot, π∗(ot))}Tk
t=1, (2)

and the policy is retrained by minimizing the same MSE loss over the expanded dataset Dagg. This
iterative process helps the policy recover from distribution shift by training on the states it is likely to
encounter under its own control.

4



4 Experimental Setup

4.1 Expert Data Collection

To generate training data for imitation learning, we collected a total of 300 expert trajectories
using the MPC-based controller described in Section 3. Each trajectory spans 10 seconds and
contains approximately 100 timesteps, captured at a frequency of 10 Hz. To ensure diversity and
broad coverage of the state space, we sampled initial conditions using a hybrid strategy combining
low-discrepancy Sobol sequences with uniform sampling. The initial state distribution includes
randomized roll and pitch angles within ±1.5◦, horizontal positions spanning ±5 meters from the
landing pad, altitudes ranging between 75 and 100 meters, and horizontal and vertical velocities
sampled from ranges of [−1, 1] m/s and [−0.5, 0] m/s respectively. Angular rates were initialized to
zero to focus the learning task on position and attitude control.

Each trajectory includes the full 12-dimensional system state, partial observations and expert actions
computed by the MPC. These rollouts form the initial expert dataset Dexpert used for behavior cloning.
This systematic data generation process ensures that the learning agent is exposed to a representative
distribution of landing scenarios.

4.2 Replay Buffer and Data Sampling

To support training across multiple DAgger iterations, we employ a replay buffer that stores full
expert and policy-generated rollouts. The buffer maintains episode-level trajectories and allows
efficient sampling of fixed-length segments tailored for recurrent policy training. To limit memory
usage, the buffer holds a maximum of 400 episodes, removing the oldest rollouts in FIFO order when
this limit is exceeded.

During training, a batch is constructed by first determining the number of segments as the batch size
divided by the fixed segment length (typically 25 timesteps). Eligible rollouts—those with sufficient
length—are selected at random, and for each, a contiguous segment of 25 timesteps is extracted
starting from a randomly sampled offset. This segment-wise sampling ensures that each batch
contains temporally coherent sequences necessary for LSTM-based policies while also diversifying
coverage over different phases of the trajectories. This structured sampling mechanism enables stable
learning from sequential data and supports effective reuse of demonstrations and learner experience.

4.3 Training Strategy

The policy is trained using a two-step process across perception and control. This approach isolates
the submodules to simplify learning and ensure stability.

Stage 1: LSTM Control Module Pretraining. The control module, consisting of an LSTM and
output MLP, is first trained independently using ground-truth state inputs. In this stage, the drone’s
position and velocity are directly accessible, allowing the LSTM to learn a control policy without
perception noise. The training follows a behavior cloning (BC) phase, followed by two Dataset
Aggregation (DAgger) iterations. Each iteration is trained over 1500 epochs using batches of 20
trajectory segments with fixed length of 25 timesteps, resulting in a total of 2,250,000 training
datapoints (90,000 trajectory segments). In each DAgger round, an additional 10,000 timesteps
(approximately 100 learner rollouts) are collected and relabeled using the expert.

Stage 2: CNN Perception Module Pretraining. In parallel, the CNN perception module is pretrained
to regress 2D position estimates from image observations. The training uses expert rollouts split
90/10 into training and evaluation sets. Over 1000 epochs with a batch size of 64, the network is
trained on 64,000 total examples. The goal is to enable the CNN to encode visual cues—such as the
landing pad appearance—into accurate spatial representations.

5



5 Results

5.1 Expert Trajectories

Figure 3 and Figure 4 illustrate the expert trajectories in terms of linear position, velocity, and
corresponding control inputs. These figures highlight the diversity of initial conditions sampled
during data collection, resulting in a wide distribution of trajectories. This variation ensures that the
expert dataset provides a rich and informative training signal, covering a broad portion of the state
space relevant for robust policy learning.

Figure 3: State trajectories covered by the expert training dataset.

Figure 4: Input trajectories covered by the expert training dataset.

5.2 CNN Perception Module

The loss over the training epochs for both training and validation sets is shown in Table 2. The CNN
was trained to predict 2D image-plane positions from grayscale camera inputs using a mean squared
error loss. Rapid improvements are observed in the early training phase, with both training and
validation losses dropping significantly within the first 200 epochs. By iteration 400, performance
appears to plateau, and after 600 epochs, the loss stabilizes around 0.034 on both datasets.

This stagnation suggests that the CNN converges to a local optimum and further training does not
yield meaningful improvements. The similar loss values between the training and validation sets
indicate that the model is not overfitting, but rather reaches the capacity of its representational power
under the current architecture and data regime. The achieved loss corresponds to an average squared
error of approximately 0.034. This implies a root mean squared error (RMSE) of about≈ 0.18 meters
in the xy-plane.

This plateau in performance motivated additional training of the CNN in conjunction with the
LSTM module in the second stage of training, to better align the CNN’s output distribution with the
downstream control network’s expectations.

6



Table 2: Performance Comparison

Iter Training Set Validation Set
Avg. Loss Std. Loss Avg. Loss Std. Loss

Iter 0 0.1241 0.0581 0.1276 0.0542
Iter 200 0.0351 0.0247 0.0354 0.0258
Iter 400 0.0342 0.0238 0.0340 0.0252
Iter 600 0.0342 0.0238 0.0339 0.0252
Iter 800 0.0343 0.0239 0.0343 0.0252
Iter 1000 0.0343 0.0238 0.0342 0.0252

5.3 LSTM Control Module

Figure 5 shows the loss over training epochs. Annotated in the figure are the points at which the
dataset is aggregated with expert labeled learner rollouts. In the inital behavior cloning, a strong
decline in loss is observed. Once DAgger is initiated, the loss shoots up rapidly again, while slowely
converging to an optimal point. Notice that the same final loss is not achieved as in the initial behavior
cloning, however, a stronger performance is observed from the evaluation trajectories. Evaluation
trajectories after behaviour cloning and after the final DAgger iteration are given in subsection A.1
from which the importance of DAgger becomes apparent.

Figure 5: LSTM Control Module Loss over DAgger Iterations.

5.4 Quantitative Evaluation

Table 3 reports the final landing position errors (in meters) for three policy variations. The LSTM
behavior cloning and dataset aggregation policies rely exclusively on perfect state information,
evaluating the performance of the control module in isolation. As shown, the behavior cloning
baseline yields the highest average error (5.74m) and largest variance, suggesting poor generalization
from expert demonstrations alone. Incorporating Dataset Aggregation (DAgger) significatly improves
control accuracy, reducing average error to 0.70m and significantly lowering the variance, confirming
the value of iterative data correction. The LSTM + CNN policy additionally integrates a learned
perception module that estimates position from visual input. Despite the added uncertainty from
visual estimation, this model achieves comparable accuracy (0.84m average error), demonstrating
that the perception module effectively supports the control pipeline.

Table 3: Landing Performance Metrics.

Policy Min. Error Max. Error Avg. Error Std. Error

LSTM behavior cloning 1.56 10.47 5.74 2.14
LSTM dataset aggregation 0.56 0.91 0.70 0.09
LSTM + CNN 0.54 1.27 0.84 0.21

7



5.5 Qualitative Evaluation

Figure 6 and Figure 7 show the position, linear velocity, and control inputs for the integrated
perception and control policy. The trajectories closely follow the expert demonstrations, with the
agent consistently converging toward the target landing position. Notably, the control inputs are
smoother and lack the oscillations observed in the LSTM-only policy (Figure 11). However, the
state trajectories exhibit a wider spread in final landing positions and a higher terminal velocity of
approximately 5m/s compared to the LSTM-only case. This suggests that while the perception
module enables effective control, further fine-tuning—such as policy gradient optimization with an
explicit penalty on terminal velocity could improve robustness and landing precision.

Figure 6: State trajectories for integrated perception and control modules.

Figure 7: Input trajectories for integrated perception and control modules.

6 Discussion

The experimental results demonstrate the effectiveness of the proposed modular architecture in
achieving accurate and robust autonomous landings. Beyond accuracy metrics, several practical
advantages arise from the design choices made in this system.

Runtime Efficiency. A key advantages of the LSTM-based control module is its real-time inference
capability. In contrast to the expert policy—which solves a convex optimization problem at each
timestep and requires 0.125±0.025s per control input—the end-to-end CNN+LSTM policy generates
control commands in just 0.0132 ± 0.0014s. This represents an almost 10× reduction in runtime,
a significant improvement that is critical for deployment on embedded platforms with constrained
computational resources or in high-frequency control loops where low-latency is essential.

Modularity and Adaptability. The separation between perception and control offers significant
benefits in terms of modularity and adaptability. Each module can be independently improved,
swapped, or adapted to new environments without requiring full retraining of the entire system. For
example, in highly structured environments, a simple CNN-based perception module may suffice to
estimate position. In contrast, in more unstructured or dynamic environments, the perception module
could be replaced with a more complex vision system capable of semantic segmentation or visual
landmark detection. As long as the output remains a relative target position, the control module can
remain unchanged, effectively generalizing to new tasks with minimal retraining.

8



Stable Curriculum and Training Pipeline. The staged training strategy—first training perception
and control independently, followed by potential alignment and fine-tuning—enables stable and
interpretable learning. This progressive build-up reduces the risk of catastrophic failure in end-
to-end learning pipelines and provides clear debugging and validation checkpoints. Moreover,
such a structure aligns well with progressive autonomy approaches, where modules can be verified
individually.

Overall, this work highlights the feasibility of combining modular deep learning components for
perception and control in safety-critical robotics tasks. The architecture not only performs well
empirically but also provides a principled foundation for extensibility and deployment in real-world
scenarios.

7 Conclusion

This work presents a modular deep learning framework for vision-based precision landing in au-
tonomous aerial systems operating without GPS. By combining expert MPC-generated demonstra-
tions with staged imitation learning, our approach achieves robust and accurate landings using only
onboard camera, radar, and inertial measurements. The control policy, built around an LSTM net-
work, demonstrates strong generalization when trained with Dataset Aggregation, and retains high
performance when paired with a CNN perception module trained to estimate image-plane positions.
Despite the partial observability and high-dimensional image inputs, the integrated CNN+LSTM
policy achieves near-expert performance while reducing runtime by an order of magnitude—an
essential benefit for real-time applications.

Importantly, the system’s modular design allows for independent development and replacement of
perception and control components, enabling adaptability to different sensor suites and environmental
conditions. This decoupling also facilitates structured training and debugging, which are critical
for scaling autonomy in complex domains. Future work may explore end-to-end fine-tuning using
reinforcement learning, incorporate richer visual reasoning (e.g., terrain classification or visual
SLAM), and extend the system to more dynamic or unstructured planetary environments. The
results demonstrate a promising step toward enabling autonomous aerial navigation and landing in
GNSS-denied, communication-constrained contexts such as planetary exploration.

Changes from Proposal While it was intended to use policy gradient optimization to fine-tune the
policy to achieve higher landing accuracy and lower terminal velocity, due to the changes of the policy
architecture into a modular design, I did not manage to finish the further fine-tuning implementation.
However, I do intend to further work on this after the class ends for own interest.

References
Zakaria Chekakta, Abdelhafid Zenati, Nabil Aouf, and Olivier Dubois-Matra. 2022. Robust deep

learning LiDAR-based pose estimation for autonomous space landers. Acta Astronautica 201
(2022), 59–74. https://doi.org/10.1016/j.actaastro.2022.08.049

Luca Ghilardi, Andrea D’Ambrosio, Andrea Scorsoglio, Roberto Furfaro, Richard Linares, and
Fabio Curti. 2020. Image-based Optimal Powered Descent Guidance via Deep Recurrent Imitation
Learning.

9

https://doi.org/10.1016/j.actaastro.2022.08.049


A Additional Experiments

A.1 LSTM Module Training

Figure 8 and Figure 9 show the position and linear velocity, and corresponding control inputs after
initial behavior cloning. The rotational states are omitted for brevity. Clearly, the learned policy does
not achieve its task of landing near the desired position, and the inputs are very chaotic and diverse
across trajectories, as opposed to the training data.

Additionally, Figure 8 and Figure 9 show the position and linear velocity, and corresponding control
inputs after the dataset aggregation phase. Clearly, these trajectories align better with the expert
trajectories, with the agent converging towards the target. One aspect to note is the apparent oscillation
in the control torque trajectories.

Figure 8: Learner state trajectories after initial behavior cloning.

Figure 9: Learner input trajectories after initial behavior cloning.

Figure 10: Learner state trajectories after dataset aggregation.

10



Figure 11: Learner input trajectories after dataset aggregation.

A.2 Implementation Details

Environment. The autonomous landing task is implemented using a custom gymnasium envi-
ronment. The environment exposes a continuous action space A ⊂ R4, where the agent controls
normalized thrust and moment commands. The state transition dynamics follow a 12-dimensional
quadrotor model, comprising attitude (Euler angles), angular velocity, position, and linear velocity.

Dynamics integration is performed using a fourth-order Runge–Kutta (RK4) solver with a fixed
timestep of ∆t = 0.1 s. A landing pad is rendered in the scene, and the simulation terminates either
upon reaching a target landing altitude or after a fixed time horizon.

Rendering and Observations. To generate image observations, the drone is rendered in a 3D
PyBullet scene. The drone is visualized as a simple cuboid with dimensions and inertia properties
configured via a structured configuration object. For each simulation step, the drone’s visual pose
and velocity are updated to match the integrated physics state.

A virtual downward-facing camera is mounted on the drone. Its extrinsics are computed using the
drone’s current world-frame position and orientation, with the look-at direction aligned along the
negative body Z-axis.

The camera produces RGB images at 128× 128 resolution using a pinhole camera model with a field
of view of 45◦. Only grayscale-converted RGB frames are used by the agent for policy inference.

Episode Execution. Each episode begins with a randomized initial state (attitude, velocity, and
position) unless specified. During each timestep, the drone receives an action, integrates its state
forward, updates the PyBullet rendering, and receives the next observation. The environment provides
logging support for actions, states, and timestamps to facilitate offline analysis of trajectories.

Project Code. https://github.com/MikeTimmerman-ae/Visual_Drone_Landing/

11

https://github.com/MikeTimmerman-ae/Visual_Drone_Landing/

	Introduction
	Related Work
	Method
	Environment
	Expert Agent
	Policy Architecture
	Imitation Learning

	Experimental Setup
	Expert Data Collection
	Replay Buffer and Data Sampling
	Training Strategy

	Results
	Expert Trajectories
	CNN Perception Module
	LSTM Control Module
	Quantitative Evaluation
	Qualitative Evaluation

	Discussion
	Conclusion
	Additional Experiments
	LSTM Module Training
	Implementation Details


