CountUP: Improving LLM Reasoning with Reinforcement
Learning and Synthetic Data

Team Members: Bruno de Moraes Dumont, Ethan Goodhart

Emails: bdumont@stanford.edu, goodhart@stanford.edu

1 Extended Abstract

Language models have made significant advances in natural language generation and reason-
ing, yet they continue to underperform on structured, multi-step symbolic problems such as
arithmetic reasoning. Existing methods like Reinforcement Learning from Human Feedback
(RLHF) often require costly preference data and suffer from reward sparsity and training
instability. This project addresses these challenges by exploring whether synthetic data and
lightweight reinforcement learning can improve model performance on the Countdown task,
a math benchmark requiring compositional arithmetic expressions using a limited set of
numbers and operations.

We propose a training pipeline built around four core components: Supervised Fine-
Tuning (SF'T) on 1,000 high-quality step-by-step examples, a novel synthetic data generation
(SD) pipeline, REINFORCE with Leave-One-Out (RLOO) policy gradients trained on the
Countdown dataset, and a lightweight Improved Generation (IG) decoding strategy. The
synthetic data pipeline is the centerpiece of our approach: it automatically constructs 7,000
verified reasoning traces using symbolic solvers, backward planning, and heuristic distractors,
closely mimicking human-authored solutions in both structure and tone. This augmentation
addresses the data scarcity issue in mathematical reasoning while scaling supervision without
human effort.

Our experiments show that adding synthetic data to SFT leads to a dramatic performance
increase, nearly doubling the model’s average score on a held-out evaluation set. IG further
boosts performance by sampling and reranking completions using a rule-based verifier, often
recovering correct answers that are missed by greedy decoding. While RLOO training does
not surpass the gains from SFT + SD, it validates the potential of using verifier-based
rewards for direct optimization without learned reward models.

These findings suggest that scalable, automated synthetic supervision, combined with
targeted training and strategic decoding, can unlock substantial reasoning improvements
in small LLMs. Our approach offers a robust alternative to fragile reinforcement learn-
ing pipelines and highlights the power of data-centric interventions for advancing symbolic
problem-solving. Future work may explore how to better support more complex reasoning
steps, but even in its current form, our method demonstrates strong, reliable improvements
in compositional arithmetic tasks.

2 Abstract

We investigate how synthetic data and lightweight reinforcement learning can improve arith-
metic reasoning in language models, focusing on the Countdown task. Our approach com-
bines supervised fine-tuning, a novel synthetic data pipeline that generates verified step-
by-step solutions, reinforcement learning via REINFORCE with Leave-One-Out (RLOO),
and an inference-time reranking method called Improved Generation (IG). Results show

that synthetic data nearly doubles performance over fine-tuning alone, and IG yields further
gains by selecting high-quality completions. While RLOO offers limited additional bene-
fit, our findings demonstrate that scalable synthetic supervision and strategic decoding are
effective, low-cost alternatives to complex RL pipelines for symbolic problem-solving.

3 Introduction

Large Language Models (LLMs) have transformed natural language processing, but they
continue to show limitations in structured, multi-step reasoning tasks—especially in do-
mains requiring symbolic manipulation, such as mathematics. These shortcomings become
particularly apparent when models are evaluated on benchmarks like the Countdown task,
which demands precise arithmetic operations under syntactic and semantic constraints. Tra-
ditional fine-tuning approaches, including supervised learning and Reinforcement Learning
from Human Feedback (RLHF), have been explored to improve LLMs in such domains.
However, these methods face challenges such as limited data diversity, sparse reward signals,
and unstable training dynamics.

This project addresses these issues by investigating whether synthetic data generation,
combined with reinforcement learning and inference-time selection techniques, can signif-
icantly improve LLM performance on math reasoning tasks. Our primary objective is to
develop a training pipeline that enhances the step-by-step problem-solving capabilities of a
small language model (Qwen 2.5 0.5B), using scalable and automated tools. We explore three
main strategies: (1) generating synthetic examples that mimic human reasoning; (2) apply-
ing REINFORCE with Leave-One-Out (RLOO) baselines to directly optimize task rewards;
and (3) introducing an inference-time reranking technique we call Improved Generation (IG).

The central research questions guiding our study are:

e Can synthetic data augmentation significantly improve model performance in symbolic
reasoning tasks beyond small, manually curated datasets?

e How effective is RLOO in optimizing correct step-by-step solutions under sparse reward
conditions?

e To what extent can inference-time sampling and reranking improve model reliability
without additional training?

By tackling these questions, we aim to shed light on data and inference-centric alternatives
to reinforcement learning for improving LLM reasoning in constrained, verifiable domains.

To do that, we focused the project on the Countdown problem. The task is a symbolic
arithmetic reasoning challenge where the model is given a list of integers {xq,xs,...,z,}
and a target T The objective is to construct an arithmetic expression using each number
at most once and basic operations {4, —, X, +} such that the expression evaluates exactly
to T'. Intermediate results must be integers. This task tests the model’s ability to reason
compositionally over multiple steps, making it a natural fit for exploring structured LLM
training techniques.

4 Related Work

Our project builds on a growing body of work exploring reinforcement learning and synthetic
supervision to improve language model reasoning, particularly in symbolic and mathematical
domains.

STP: Self-play LLM Theorem Provers (Dong and Ma, 2025) introduced a self-play frame-
work for symbolic theorem proving, where an LLM iteratively generated theorems and at-
tempted proofs while using rule-based verification to guide learning. The key insight was
that tasks with deterministic verifiability, such as formal logic or mathematics, allow for scal-
able, automated supervision. STP demonstrated that models can benefit from high-quality
synthetic data generated without human labeling. Our project draws heavily from this prin-
ciple, using a brute-force solver and rule-based verifier to generate and validate synthetic
examples for the Countdown arithmetic task. However, unlike STP, which focused on theo-
rem proving in formal logic systems, our task involves free-form natural language reasoning
traces for arithmetic problems, requiring additional heuristics to mimic human-like expla-
nations. Moreover, we do not use an iterative self-play mechanism; our data generation is
one-shot and backward-guided.

DeepSeek-R1 (DeepSeek-Al et al., 2025) presented a pipeline for enhancing reasoning
capabilities in LLMs through reinforcement learning using synthetic chain-of-thought (CoT)
traces. These traces were distilled from expert models and used to train smaller models via
reward modeling and RL optimization. DeepSeek-R1 showed that high-quality intermediate
steps, even when synthetic, could significantly improve downstream reasoning tasks. Inspired
by this, we also create synthetic reasoning traces, but instead of distilling them from larger
models, we use brute-force symbolic solvers and heuristics to construct reasoning paths.
Additionally, our project investigates the use of a lightweight, rule-based reward function
(rather than learned preference models) and explores inference-time improvements (IG),
diverging from the training-intensive DeepSeek-R1 framework.

5 Methods

Our project explores a hybrid approach to improving arithmetic reasoning in LLMs by com-
bining supervised fine-tuning, reinforcement learning, test-time optimization, and synthetic
data. In this section, we describe the core training components used throughout the project.
All training was conducted using the Qwen 2.5 0.5B model checkpoint, implemented via
HuggingFace Transformers and PyTorch. Unless otherwise noted, all experiments used the
AdamW optimizer, a batch size of 1 (due to GPU memory constraints), and a max new
tokens limit of 1024. Prompts were masked during training to prevent models from being
rewarded for simply copying the input. A light hyperparameter sweep was conducted to
tune learning rates and training durations for each stage.

5.1 Supervised Fine Tuning

The supervised fine-tuning (SFT) phase serves as the initialization step for downstream
reinforcement learning. It leverages standard teacher-forcing with a next-token prediction
loss on paired (prompt, response) examples. Given a natural language prompt x and an ideal
completion y, the model is trained to maximize the log-likelihood of the correct response
tokens, conditioned on the prompt and the previously generated tokens.

We apply the loss only to the completion tokens; that is, gradients are masked over the
prompt to ensure that the model does not learn to copy or overfit to prompt phrasing. This
aligns with the standard SF'T objective used in language model pretraining. The objective
is given by:

|yl
mgix]E;E,yGD tz; IOg o (yt | X, y<t)

For this task we used the warmstart dataset, consisting of 1k pairs of queries and comple-
tions containing an explanation of the countdown problem and a human-generated step-by-
step solution to the specific problem. For this phase, we trained for 5 epochs with a learning
rate of 1e — 5 on the entire dataset using a held-out subset of the Countdown dataset for
validation.

5.2 REINFORECE leave one out

To build on the supervised initialization and directly optimize the model for correct reason-
ing, we implemented REINFORCE with Leave-One-Out (RLOO) — an on-policy gradient
estimator that uses a per-batch baseline to reduce variance. The key idea is to generate mul-
tiple completions for a given prompt z, assign each one a reward using a rule-based verifier,
and compute the policy gradient with respect to the advantage over the average reward of
other samples in the batch.

Formally, the update rule for RLOO is given by:

k

1 1 ii.d.

EZ R(y@),) — p— > Ry, x)| Viegm(ys | z) for yay,...,yw = mo(- | z)
=1

For this task, we trained on the countdown dataset containing 490k pairs of numbers and
targets without a prompt or answer. Since the countdown dataset is massive we trained for
only one epoch on a small subset of the data using a learning rate of le — 6. Sampling was
conducted with top, = 50. Values for the temperature were tested between 0.7 and 1 to
promote trajectory diversity, and the maximum number of completions per prompt K were
also varied between 4, 8, and 16. The reward function combined correctness verification
with formatting constraints, ensuring that only syntactically valid and numerically correct
completions were rewarded.

5.3 Extention: Synthetic Data

A central contribution of this project is the development of a scalable, automated pipeline
for generating synthetic Countdown examples that resemble the structure and style of the
manually curated warmstart dataset. The core objective of this synthetic data generation
process is not only to increase training volume, but also to emulate the reasoning heuris-
tics and linguistic patterns exhibited in human-written examples. This section outlines our
procedure in detail, including the solution discovery algorithm, the backward reasoning gen-
eration strategy, and the techniques used to inject realistic variability and naturalness into
the outputs.

5.3.1 Problem Selection and Solvability Filtering

We begin by sampling Countdown problems from the large Countdown dataset, excluding
any prompts used in supervised fine-tuning or evaluation. For each selected instance, defined
by a list of integers and a target number, we first attempt to determine whether the problem
is solvable within a restricted computational budget. The goal is not to exhaustively search
all valid expressions, but to identify a correct solution pathway that can be explained step-
by-step in a natural format.

To test for solvability, we use a hierarchical brute-force algorithm that categorizes prob-
lems into one of three complexity classes — addition/subtraction only, requires one division,
or requires one multiplication — while ensuring tractability. The process operates as follows:

e Pure Addition/Subtraction Check: Each number in the list is multiplied by either
+1 or —1 and summed. We enumerate all 2" combinations (where n is the number
of input numbers) and check if any combination yields the target. If successful, the
problem is classified under the addition category.

e Single Division Check: If no additive combination works, we test whether the target
can be reached using exactly one division. We iterate over all pairs of numbers that are
divisible and create a new number from their quotient. The two original numbers are
removed and the quotient is added to the number list. We then reapply the addition-
only brute-force check to this modified list. If any combination succeeds, the problem
is added to the division category.

e Single Multiplication Check: If division fails, we repeat a similar procedure for
one multiplication operation. A pair of numbers is multiplied and replaced with their
product, after which the modified list is subjected to the addition-only brute-force
solver. If this succeeds, the example is placed in the multiplication category.

e Discarding Unsolvable Examples: Any example that cannot be solved using at
most one multiplication or division followed by addition/subtraction is discarded to
maintain both tractability and clarity in solution traces. This restricted formulation
allowed us to solve over 75

5.3.2 Heuristic Reasoning Trace Construction

Once a valid solution is found, we do not simply translate the final expression into natural
language. Instead, we construct a plausible reasoning sequence that approximates how a
human might arrive at the correct answer. This is achieved by working backwards from the
solution and incrementally building an explanation that satisfies two competing objectives:
(1) semantic coherence and (2) alignment with observed warmstart patterns. The reasoning
trace generation is split into two stages: Constructing Multiplication/Division Rea-
soning Steps: If the solution required a multiplication or division step, the reasoning trace
begins by simulating exploratory operations over the number list. Specifically, we:

e Sample two random pairs of numbers (that are not divided/multiplied in the final
solution) and attempt to divide or multiply them.

e [f a division yields a non-integer result or a multiplication yields a value exceeding 3x
the target, the operation is marked as not useful. Otherwise, it’s marked as potentially
useful

e Then we divide/multiply the numbers we used on the final solution and mark that as
very useful.

Constructing Addition/Subtraction Reasoning Steps: After the core multiplicative
or divisive transformation, the problem reduces to a sequence of additions and subtractions.
At this point, we:

e Initialize a running total by selecting one of the positive components of the final solu-
tion.

e [f the current value is greater than the target, we try subtracting a number from the
list (we subtract a number that is subtracted on the final solution). If its less than or
equal to the target we we attempt an addition.

e After all operations we evaluate if the new running total is too big or too small

5.3.3 Finalizing the output

Once the complete reasoning sequence is constructed, we perform a recap phase, where
we summarize the key operations and present the final result in a coherent, grammatically
polished paragraph. To enhance readability and naturalness, we include transitional phrases
whenever switching operation types, and we start the solution with a small introduction.
These linguistic cues were modeled after repeated discourse patterns found in the warmstart
dataset.

By avoiding rigid templates and instead using structured heuristics, this generation pro-
cess yields natural, step-by-step explanations that simulate authentic problem-solving be-
havior while ensuring correctness through verifier-backed construction. Importantly, the
variation in phrasing, exploratory steps, and transitional logic mirrors the stylistic diversity
of warmstart data without requiring human authorship.

Below is an example of a full response

Let me analyze this step by step:

I will try to get to 74 using those numbers.
First, I will try some division operations
92 + 23 = 4.8 (maybe helpful)

30 + 23 = 1.3043 (not helpful)

30 + 6 = 5 (very helpful)

Using the division, now I will try some addition operations
5 + 92 = 97 (too big)

So, I will try some subtraction operations
97 - 23 = 74 (equal to target)

This works!

Let's verify:

3B N6 =5

SE-R02 =8 07

97 - 23 =74

</think>

<answer> (3@:6) + 92 - 23 </answer>”

5.4 Improved Generation (IG)

Improved Generation (IG) is a decoding-time strategy designed to enhance performance
without modifying model parameters. It leverages the observation that language models

often generate near-correct responses, and that sampling multiple completions can reveal
valid solutions missed by greedy decoding. By combining stochastic sampling with reward-
based selection, IG increases accuracy through inference-time reranking.

The process is simple yet effective: for each prompt, the model generates multiple can-
didate responses using temperature = 1 sampling. Each output is scored using the same
compute score function provided.

6 Experimental Setup

We conducted a sequence of controlled experiments to evaluate the effectiveness of our tech-
niques in improving language model reasoning on the Countdown task. Our core goal was to
assess how different stages in the training pipeline, Supervised Fine-Tuning (SFT), Synthetic
Data (SD), Reinforcement Learning with Leave-One-Out (RLOO), and Improved Genera-
tion (IG), contributed to overall performance. To ensure a fair and consistent evaluation,
we used a standardized scoring metric and analyzed results across multiple levels of task
difficulty and operation categories.

All models were evaluated on both the held-out leaderboard datasets using the official
compute score function from the Countdown benchmark. This function assigns a binary
reward of 1.0 for perfectly correct completions and a score of 0.1 for syntactically valid
expressions that are numerically incorrect. For each model, we compute the average reward
across all examples in the test set. To ensure reproducibility, we use consistent prompts
across runs, picking the prompt template from the warmstart dataset for all of them. All
experiments only used one generation per prompt, except for the ones with the improved
generation.

7 Result and Analysis
7.1 First Leaderboard Test Set

The primary experiment evaluates the performance of four model variants on the leaderboard
dataset:
Table 1: Models performance on leaderboard 1

Leaderboard 1 model's performance

i —— Model Test Score
” Qwen 0.0065
P SFT 0.3970
b SFT + SD 0.6310
- RLOO 0.6380
b SFT + SD + IG 0.8425

SFT RLOO
Models

The base Qwen 2.5 0.5B model performed poorly on the Countdown task, as expected,
since it lacks exposure to structured symbolic reasoning during pretraining. Applying SF'T
using just 1,000 warmstart examples resulted in a large performance jump, validating that
high-quality, human-authored reasoning traces can significantly improve arithmetic perfor-
mance, even in small quantities.

Adding the synthetic dataset to the SF'T training nearly doubled the average reward.
This highlights the effectiveness of our synthetic generation pipeline: even though the data

is machine-generated, its structure and linguistic variation closely mimic the warmstart ex-
amples. The diversity and correctness of these 7,000 examples likely helped the model
generalize better to new arithmetic prompts.

Applying RLOO reinforcement learning after SEF'T + SD did not yield significant further
gains. We attribute this to reward sparsity and optimization instability. Because most
outputs earn a score of 0, the learning signal is too weak to improve the model beyond what
was already captured during supervised training. Additionally, since we trained RLOO on
only a small subset of examples for one epoch, the model likely lacked sufficient exploration
to benefit from on-policy updates.

Finally, Improved Generation (IG) showed the most consistent gains across the board.
Without modifying the model weights, IG increased accuracy by reranking multiple comple-
tions using our verifier. This suggests that many of the model’s incorrect greedy completions
were close to valid solutions and could be rescued through simple sampling and selection.
IG’s model, agnostic nature and low overhead make it a highly practical enhancement in
settings where RL is fragile or expensive.

7.2 Breakdown by Operation Type

To better understand where performance gains occur, we grouped the leaderboard examples
by the operation category required to solve them. These matched the same categories used
during synthetic data generation: addition only, requires division, and requires multiplica-
tion.

For each model, we computed the average reward within each category. Our results show
that:

Category breakdown leaderboard 1

¢ I Base
SFT
08 Il SFT + SD
SFT +SD
+1G
06

Score

04

02

S We observed that SFT + SD dramatically improved
accuracy on addition-only problems, likely because these examples dominate both the warm-
start and synthetic datasets. Addition steps are also easier to express in natural language
and follow more predictable reasoning patterns, making them easier for the model to learn.

However, performance on multiplication and division problems stagnated or even de-
clined. This suggests that our synthetic data may not have captured the complexity of these
operations as effectively. Multiplicative and divisive reasoning often involves non-intuitive
transformations and more numerical variability, which the model may struggle to internal-
ize from limited, heuristically generated examples. Since the test dataset is composed of
90% addition problems, this discrepancy might also be due to limited data on division and
multiplication problems.

By contrast, Improved Generation increased performance in all operation categories,
showing its robustness to problem type. Since IG selects completions based on outcome va-
lidity rather than process form, it is able to recover correct answers even in harder categories

where the model fails under greedy decoding.

7.3 Second Leaderboard
We did the same for the leaderboard 2

Leaderboard 2 model's performance

08 ms. Table 2: Models performance on leaderboard 2
0s Model Test Score
; SFT 0.2548
02 SFT + SD 0.3592
. RLOO 0.3754
SFT SFT*SSI RLOO SFT+SD+IG SFT + SD _l_ IG 0‘6841
o ategory breakdown leaderboare - .

M SFT +SD
06 SFT +SD
+1G

04

Score

02

Addition Division Multiplication Unsolved

Categories

On the second held-out leaderboard, we observed the same pattern as the first. The
scores were smaller across the board due to a higher level of difficulty of the dataset, but the
findings were consistent with the first set of results.

8 Discussion

This project demonstrated that combining synthetic data with inference-time reranking can
significantly improve arithmetic reasoning in LLMs, but several limitations remain. Most
gains were concentrated in addition-only problems, with poorer generalization to multipli-
cation and division, likely due to bias in the synthetic dataset and the complexity of these
operations. Reinforcement learning via RLOO yielded limited improvements, possibly due to
sparse rewards and short training runs. We also faced compute constraints, which restricted
batch sizes, training duration, and the number of experiments. Despite these challenges,
our results highlight the promise of scalable, verifier-backed synthetic data and decoding
strategies as practical alternatives to heavy RL pipelines. However, care must be taken to
ensure that synthetic examples promote generalizable reasoning rather than reinforce brittle
patterns.

9 Conclusion

Our project explored how synthetic data and decoding-time reranking can enhance the math-
ematical reasoning capabilities of small language models without the instability or overhead
of complex reinforcement learning. By designing a scalable synthetic generation pipeline
and leveraging a simple reward-based selection strategy, we achieved strong performance im-
provements on a challenging arithmetic benchmark. The key takeaway is that well-targeted

data and smarter inference can often outperform fragile RL methods in low-resource settings.
Looking forward, future work could improve performance on harder operations like multi-
plication and division by refining synthetic reasoning traces, incorporating learned reward
models, or extending our inference strategies with ensemble sampling and self-improving
generation loops.

10 Team Contributions

e Bruno de Moraes Dumont: Coded both SFT and RLOO, designed and developed
the synthetic data pipeline, wrote and presented the poster, wrote the final report,
designed and ran all experiments.

e Ethan Goodhart: Brainstormed ideas, wrote part of the project proposal, and at-
tempted to increase the performance of the RLOO model.

References

[1] DeepSeek-Al et al. (2025). DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning. arXiv:2501.12948 [cs.CL).

2] Dong, K. and Ma, T. (2025). STP: Self-play LLM Theorem Provers with Iterative Con-
jecturing and Proving. arXiv:2502.00212 [cs.LG|.

[3] Ouyang, L., Wu, J., Jiang, X. et al. (2022). Training language models to follow instruc-
tions with human feedback. arXiv:2203.02155 [cs.CL]. https://arziv.org/abs/2203.02155

[4] Wei, J., Wang, X., Schuurmans, D. et al. (2022). Chain of Thought Prompt-
ing Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL].
https://arziv.org/abs/2201.11903

10

	Extended Abstract
	Abstract
	Introduction
	Related Work
	Methods
	Supervised Fine Tuning
	REINFORECE leave one out
	Extention: Synthetic Data
	Problem Selection and Solvability Filtering
	Heuristic Reasoning Trace Construction
	Finalizing the output

	Improved Generation (IG)

	Experimental Setup
	Result and Analysis
	First Leaderboard Test Set
	Breakdown by Operation Type
	Second Leaderboard

	Discussion
	Conclusion
	Team Contributions

