
Extended Abstract
Motivation Over the past half-decade, LLMs have made immense strides in tackling increasingly
complex reasoning tasks. A key step in this process was the expansion from single-agent systems to
multi-agent. Single-agent systems have grown in capabilities due to modern techniques, of which a
major one is Verbal Reinforcement Learning (VRL): integrating textual feedback (reflections) in a
linguistic loop to edit a model’s prompt. However, the cross section of these two areas is relatively
unexplored because the application of textual feedback in a multi-agent system is extremely time and
cost expensive. Naive approaches tend to overly-generalize, and thus produce far less improvement.
Thus, in an effort to better capture these possibilities, we are motivated to find an optimization of
these strategies that instead posits techniques to identify subsets of agents to alter and provide a
practical multi-agent system with VRL.

Method Our setup included three agents working in a fixed order. The first agent, the Task
Breakdown Specialist, decomposed the task into sub-tasks. The second agent, the Sub-task Resolver,
was asked to solve each part. Finally, the Final Answer Synthesizer combined the output of the
Resolver into a final answer choice. Our baseline is a supervised finetuned variant of the three agents.
To build on this, we introduced a localizer-based self-reflection system. We added an Evaluator
to judge correctness, and if the answer was incorrect, a Localizer reviewed the full trajectory and
feedback to identify which agent propagated the error. A modified Reflector then generated targeted,
agent-specific reflections. We explored three key design choices in this setup. Visibility controlled
how the reflections were shared. Memory referred to how past reflections were retained. Token
control focused on balancing performance and efficiency by varying input/output length.

Implementation For the task, we used the Moral Scenarios category from the MMLU dataset. This
dataset consists of multiple-choice questions tasking the system to evaluate moral situations. We
used 450 samples for training and 100 for validation. To implement our baseline, we passed training
examples through the multi-agent pipeline and collected trajectories that led to correct answers. These
were used to fine-tune each agent individually using supervised fine-tuning on an 8-bit quantized
model. We used LLaMa-3.2-Instruct-3B. For the localizer experiments, we used a form of online
self-reflection during training. To test generalization on the validation data, we froze the memory
collected during training and ran validation tasks without retries. We had four memory freezing
techniques: a random subset, the last 10, a condensed summary, and semantic-based retrieval. Finally,
we measured overall success rate, average number of attempts per sample, and token usage.

Results Our baseline model that was trained using supervised finetuning achieved a 54% success
rate across 100 validation tasks. After applying the localization and self reflection loop, our best
training configuration achieved 69% success rate across 450 training tasks and 66% on validation.
Under the conditions of freezing the trained memory, our second validation experiments reached a
best of 35.5% success rate with no retries. The best experiment configuration required an average of
5186.492 tokens to attempt the task, and 13046.927 tokens to successfully solve a task.

Discussion We have found multiple forms of localization across cost-levels, with retries, that are
able to outperform a finetuned baseline approach. Specifically, the use of agents with a 3-reflection
memory, localizer with memory of condensed reflections, and global visibility of all reflections
produce over 11% gain in success rate. Furthermore, the use of a condensed memory of size 3
and visibility of reflections only to the agent of choice maintains over 10% success rate gain while
cutting token-cost by 45% in relation to the 10-memory sizing. Experimentation in using single-shot
inference, in-place of retrial loops, across several memory-selection techniques all produce deprecated
performance. It appears visibility and localizer memory produce non-generalizable reflections and
trends, thus indicating there does not exist a significant impact of these variables on task success.

Conclusion Through aforementioned experimentation and ablation studies, we contribute a high
performing verbal reinforcement multi-agent optimization that maintains moderate and practical
token consumption. We further highlight rigorous few-shot exploration suggests this reflection-
based approach relies upon high task-specific memory changes to the state making fixed memory
from training for validation a strong limitation in performance. Instead, we motivate a need for
a traditionally trained reflection model to be paired with the verbal-RL technique to better learn
invariance to precise question/problem details.



Verbal RL For Multi-Agent Systems

Aakriti Lakshmanan
Department of Computer Science

Stanford University
aakritil@stanford.edu

Rohan Davidi
Department of Computer Science

Stanford University
rohand25@stanford.edu

Sathvik NaLLaMalli
Department of Computer Science

Stanford University
sathvik9@stanford.edu

Abstract

Large Language Models (LLMs) have contributed to the high performance of multi-
agent systems by creating specialized agents capable of collaborating on the task.
At the same time, a new reinforcement technique, Verbal Reinforcement Learning
(VRL), offers improved performance for single agent systems by replacing gradient-
driven updates with LLM-generated linguistic feedback serving as model states.
Introduced in 2023, the Reflexion paper demonstrates iteratively retrying on a
task while altering these textual prompts with a generated reflection can yield
such improvement. In this work, we explore and offer multi-agent optimizations
for using VRL to capture the performance gain demonstrated at the single-agent
level while maintaining controls on token-costs for scalability and practicality.
Explored in the multitask environment of moral reasoning, we demonstrate the
use of "Localization." Replacing the expensive use of reflection on every agent
in a pipeline or the vagueness of propagating a single reflection, this technique
determines the agent causing the bottleneck error on each iteration serving as the
target agent for reflection. Doing so, we find various configurations of ranging
token consumptions that all produce significant improvements of over 10% in
success rate over traditional supervised finetuned baselines. This work does extend
previous work in VRL, but also finds the use of linguistic reflections to be narrow
to a specific problem/task making zero-shot implementations with frozen memory
states to be largely limited. This suggests traditional weight-based finetuning must
be explored in-tandem to provide more rigorous and generalizable approaches
when seeking single-try inference performance.

1 Introduction

Over the last few years Large Language Models (LLMs) have become increasingly performant in
a wide range of tasks including logical decision-making and exercising reasoning capabilities. In
this growth, a major leap has taken the shape of integrating multiple models in tandem to think in
steps/parts as opposed relying on the internal steps of a single agent. With the ability to assume
multiple perspectives, experimentation in economic games and bargaining settings have revealed that
the onset of multi-agent systems has expanded the domain of performance to far more complicated
reasoning tasks Sreedhar and Chilton (2024). A more broad survey of environments by Guo et.
al. reveals that improvement in performance from a single-agent to multi-agent system is evident
in several fields from societal simulations, scientific debates, and software development Guo et al.
(2024).

Stanford CS224R 2025 Final Report



Meanwhile, in the same effort to improve reasoning capabilities, Verbal Reinforcement Learning
(VRL) was introduced in 2023’s “Reflexion: Language Agents with Verbal Reinforcement Learning”
providing an alternate perspective to traditional techniques of modifying a model’s state of numeric
weights Shinn et al. (2023). The paper contributes a novel strategy of maintaining the system’s state
as its current prompt/memory as opposed to the model weights which remain unchanged. Instead of
updates to these weights, textual feedback (a reflection from a reflector LLM) is generated based on
the evaluation of a task completion and prepended to the prompt to alter the state towards improved
performance.

Designed in a single-agent setting, the procedure for applying VRL is straightforward. However,
expanding this to a multi-agent system to reap the aforementioned benefits of expanded logical
capabilities requires delicate optimization. More specifically, a naive solution of performing the same
reflection for each agent incurs immense costs considering it requires, per agent, a reflection by an
LLM call to analyze the error and generate feedback. Whereas, other techniques relying upon one
single reflection for the entire system dilutes the reasoning capabilities of the multi-agent setup as
iterative improvements are provided in a non-individual generalized scale.

In this work, we experiment with various techniques of identifying bottleneck agents for a given
error to, instead, on each iteration, alter through a reflection the most important/problematic agent in
the pipeline. In other words, we explore various forms of “localization” in order to generate a more
cost-efficient integration of verbal reinforcement learning into multi-agent systems to harness the
capabilities of both the setup and technique to produce improvement on traditional techniques such
as supervised finetuning / imitation learning.

2 Related Work

In Reflexion, Shinn et al. (2023) offered a new idea of applying reinforcement learning through
linguistic feedback in place of derivative updates to the weights parameters of models. Reimagining
the reinforcement loop to instead incorporate textual reflections, the paper designs an architecture
as follows: (1) execute inference with current prompts/memory, (2) evaluate response, (3) pass
evaluation and current model state to Reflector model, (4) take Reflector’s reflection and prepend
to model’s prompt/memory Shinn et al. (2023). With this strategy in place with a designed prompt
for the Reflector to promote high-quality specific information being provided to the agent, the
team demonstrates significant improvement in multiple decision-making and coding tasks. This
architecture provides both added performance and interpretability.

To incorporate these benefits into a multi-agent setting, we can observe contributions by “TextGrad:
Automatic ‘Differentiation’ via Text” in which textual feedback is integrated via back propagation
mimicking techniques used in traditional weights modifications Yuksekgonul et al. (2024). In this
work, Yuksekgonul et. al. (2024) proposes maintaining a low token-cost by utilizing a single reflection
for a multi-agent inference that is then differentiated with a customized loss function to distill the
reflection on a per-agent level. Though the strategy avoids expensive reflections for every single
agent, it incurs its own limitations as oftentimes textual feedback is not rich enough to distill into
valuable information for all agents. The result is the bloating of agent memory with information
that is largely general as, oftentimes, the majority of agents in the pipeline have little propagated
corrections on a given error which is more likely rooted in a small subset of agents instead.

Other works in the space include that of Bo et. al. (2025) that posits the traditional training of the
reflection model to perform a per-agent reflection Bo et al. (2024). Similarly, alternatives include
making per-agent reflection calls to ensure specificity of reflections. However, both of these strategies
involve sizeable cost either in training or inference. Though these explorations have yielded promising
approaches, none explore the possibility of, instead, using identification of specific agents, as opposed
to all agents, to drive the reflection process.

3 Method

3.1 Dataset

We used the Moral Scenarios category from the MMLU (Massive Multitask Language Understanding)
dataset. This category contained multiple choice questions containing two scenarios. The goal of

2



the task was to choose whether or not the scenarios were in line with current moral standards. This
dataset had a train size of 850 samples, of which 450 were used for training, and a validation size of
100 samples.

3.2 Multi-Agent Architecture

To address the task, we built on the framework introduced in Collaborative Multi-Agent, Multi-
Reasoning-Path Prompting Chen et al. (2024) by implementing a sequential setup involving three
distinct agents. The first agent, known as the Task Breakdown Specialist, was provided the question
and a prompt that encouraged the agent to split the question into solvable sub-tasks. The second
agent, the Sub-Task Resolver, was provided the output of the first agent and the question and asked
to solve the tasks. Finally, the third agent, the Final Answer Synthesizer, was provided the output
of the second agent and requested to summarize everything into a concrete final answer. We also
provided prompt scaffolding to ensure that the model provided the answer choice in a way that was
deterministically parsable by a regex algorithm.

Figure 1: The baseline sequential multi-agent architecture for the Moral Scenarios dataset.

3.3 Baseline Implementation

To properly evaluate the impact of our localizer implementations, we developed a comprehensive
baseline for testing the multi-agent setup. We determined that few-shot fine-tuning each agent would
help assess whether RL-based approaches improve the final accuracy. First, we collected trajectories
by passing in the train examples through the sequential multi-agent setup shown in 1. Trajectories
that led to a positive outcome (i.e a correct answer) were then used to fine-tune each of the agents
individually.

We fine-tuned each of the three agents using supervised fine-tuning (SFT) on an 8-bit quantized
version for 4 epochs. Then, using the fine-tuned agents, the multi-agent setup was run on the
validation samples, and the resulting outputs were collected.

3.4 Localizer Implementation

The next stage of our experimentation was to determine if using a "localizer" - i.e, a a bottleneck
identifying module - in addition with verbal reinforcement during self-refinement would perform
better than the baseline. In order to implement the localizer within the multi-agent setup, we added
an evaluator, reflector, and localizer module. The Evaluator was prompted to provide an evaluation
of the final answer when provided the results of the regex matching algorithm. The Localizer was
created by prompting the model to analyze the feedback and full trajectory to identify the single
agent that led to the incorrect answer. The output of the Localizer and the evaluation is provided to
the modified reflector module. The Reflector focused on just the identified agent, aiming for targeted,
task-specific reflections rather than general feedback. Each agent maintained a long-term memory of
past reflections, prepended to its prompt to inform future runs.

When developing this module, we recognized that numerous variables could influence the efficiency
of the Localizer itself. We chose to concentrate on three primary factors: visibility, memory, and

3



token control. Visibility addressed whether reflections identifying the bottleneck agent should be
provided only to the specific agent in question, or shared with all agents in the system. We also
examined memory, which concerned both the extent and manner in which each agent and the localizer
retain information from past reflections and localizations. Finally, we investigated token control,
which focused on balancing optimal performance with token efficiency.

Figure 2: The multi-agent architecture for a high memory, local visibility localizer structure.

4 Experimental Setup

For each of the agents, we used the LLaMa-3.2-Instruct Meta AI (2025) model, with a size of 3
billion parameters. This model was chosen because of the ease of access and smaller size, allowing
faster inference and loading on smaller GPUs. The MMLU dataset was formatted in the proper
chat format for LLaMa 3 models, and the answer choices were appended to the initial problem to
encapsulate the task into a singular text entry.

4.1 Configurations

As mentioned previously, we wanted to test the agent architecture and localizer mechanism along three
different axes. First, to examine the impact of memory, we varied the size of a rolling window of past
reflections and localizations for both the agents and the localizer. We tested different combinations of
memory capacities, including 0/10, 10/10, and 3/3 for localizer and agent memory respectively. In
order to examine the impact of the reflection visibility, we allowed the reflections to either be sent
to the agents identified to be the source of the error, or sent to all of the agents as seen in Figure 3.
Finally, adjusting the parameters above also allowed us to test the impact of token limits by either
allowing for longer and more plentiful input and output prompts or limiting the number of tokens
used.

During training, each task was iteratively passed to the model until either a successful outcome was
achieved or a maximum of five retries was reached.

For the baseline model, the training and validation phases were treated as disjoint: the agent mod-
els were fine-tuned during training, and these resulting models were then used independently for
evaluation on the validation set.

In contrast, the localizer experiments incorporated a form of online self-reflection, which blurred the
line between training and validation. While we conducted similar ablations on both the training and
validation datasets, we also wanted to evaluate how the method would perform in a purely offline
setting, using data collected during training, without access to retries or active reflection during
inference.

Therefore, we froze the memory built from our training experiments in different ways, initialized
our agents with the frozen memory, and then allowed our multi-agent system to solve the validation

4



Figure 3: The multi-agent architecture for a low memory, global visibility localizer structure.

tasks with no localization, reflection, or retries. The frozen memory provided to the localizer and
agents took one of four forms: (1) a randomly selected subset of training memories, (2) the last 10
recorded memories, (3) a condensed summary of all training memories, or (4) a memory retrieved
via semantic search, using the input task as a query over the training memory index.

4.2 Evaluation Methods

In order to compare the different techniques, we evaluated performance using a variety of metrics.
The core metric we relied on was the total percentage of tasks successfully solved.

In addition, since each sample was passed through the model architecture multiple times, we computed
both the average number of attempts per sample and the average number of attempts per successfully
solved sample. These metrics allowed us to assess how many iterations the model typically needed
before solving a task, providing insight into how effectively the memory mechanism retained and
used information across different attempts.

Similarly, we also wanted to assess the cost of each query using the token count. We measured
the cost based on the number of tokens required in the input and output sequences of each agent
throughout the trajectory. Equation 1 represents the breakdown of the cost metric. See Equation 2, 3,
4, 5, 6 in the Appendix to view the breakdowns of these equations.

totalCost = min(t, 5) · [solveCost + evaluateCost + localizeCost + reflectCost ] (1)

where t is the number of attempts to solve the problem.

5 Results

Table 1 summarizes the results of our baseline experiment on the validation data.

Dataset % Tasks Solved Avg att.
(All)

Avg att.
(Solved)

Avg
Cost/att.

Avg Cost
(All)

Avg Cost
(Solved)

Validation 54.43 1.488 2.152 1377.231 2049.319 2052.1750
Table 1: Finetuned Baseline Results

We ran our localizer experiment pipeline under several different configurations based on our ablation
hypotheses. Figure 4 depicts the proportion of success achieved by our reflection pipeline on both the
training and validation dataset.

5



Visibility Localizer/Agent Memory Size
0/10 3/3 10/10

local 0.66 0.66 0.63
global 0.60 0.69 0.61

(a) Train

Visibility Localizer/Agent Memory Size
0/10 3/3 10/10

local 0.64 0.65 0.63
global 0.58 0.63 0.66

(b) Validation

Figure 4: Proportion of tasks successfully solved

Table 2a and 2b depict specific performance metrics across our experimental configurations. Particu-
larly, we measure the number of attempts for each task and cost incurred per attempt. Specifically,
Table 2a and Table 2a differ only in the dataset split. Both experiment setups allow for retries. Table
3 freezes training memory and validates using single-shot inference.

Dataset Reflection
Visibility

LOC
Mem size

AG
Mem size

Avg att.
(All)

Avg att.
(Solved)

Avg
Cost/att.

Avg Cost
(All)

Avg Cost
(Solved)

Train local 0 10 3.118 1.701 9689.600 18000.941 29155.517
Train local 10 10 1.772 2.809 10281.689 14837.132 28880.122
Train local 3 3 2.917 1.717 5186.492 7109.071 13046.927
Train global 0 10 3.553 1.821 10638.303 16290.051 30614.671
Train global 10 10 3.270 1.841 10826.491 17042.753 29183.407
Train global 3 3 3.409 2.083 5297.874 8161.232 13692.060

(a) Train - Attempts and cost

Dataset Reflection
Visibility

LOC
Mem size

AG
Mem size

Avg att.
(All)

Avg att.
(Solved)

Avg
Cost/att.

Avg Cost
(All)

Avg Cost
(Solved)

Validation local 0 10 3.070 1.729 8448.745 14138.480 23909.950
Validation local 10 10 1.603 2.620 9575.996 12524.857 25089.110
Validation local 3 3 3.070 1.783 5274.790 7731.246 13450.730
Validation global 0 10 3.250 1.929 11349.148 19176.466 34501.410
Validation global 10 10 3.070 1.887 9482.464 16104.106 25128.530
Validation global 3 3 3.000 1.774 5194.170 7258.269 13608.740

(b) Validation - Attempts and cost

Table 2: Train and Validation performance: Attempts and cost (measured in tokens) during Single-
Agent Localization

As mentioned previously, we also performed experiments on the validation data using different forms
of frozen memory data from the training stage. The results of these experiments, conducted on the
three best configurations from the training stage, are summarized in Table 3 .

6



Reflection
Visibility

LOC
Mem size

AG
Mem size

Memory
Selection.

% Tasks
Solved Avg %

local

0 0 Random 27

28.50 0 Last 10 30
0 0 Condensed 37
0 0 Semantic Search 30

local

3 3 Random 32

35.53 3 Last 10 39
3 3 Condensed 35
3 3 Semantic Search 36

global

3 3 Random 32

33.83 3 Last 10 33
3 3 Condensed 39
3 3 Semantic Search 31

Table 3: Validation Experiment 2 - Success of Tasks of the top 3 train configurations, with different
memory selection methods

5.1 Quantitative Evaluation

From Figure 4, we can see that our best localizer training experiment yields a 14% improvement
over our SFT baseline, seen with a gloabl visibility and an agent and localizer memory size of 3.
On average, the best performing configuration during training was when the localizer and agent
memory had a size of 3. Compared to finetuning the agents across successful trajectories, our
localizer experiments that explictly retained the reflections in memory coupled with retries proved
more effective. We noticed that during training, there is a large dropoff in success when increasing
the window size from 3 to 10. This trend is nearly the same in our validation experiments, as seen in
Figure 4 and Table 2b. The highest success was achieved with a localizer and agent memory size of
10 during validation. Interestingly, we noticed that localizer/agent memory sizes of 3 and 10 have a
similar average during validation, but significantly higher than localizer having no memory (0.64
and 0.58). Interestingly, the best training configuration did not have the highest performance on the
validation training data. Most importantly, in our second validation experiment where we froze the
training memory and allowed for no retries or reflection on validation data, we noticed a significant
dropoff. As seen in Table 3 , amongst all the best training configurations, the highest success was
achieved by the Condensed method, consistently (37%, 35%, 39%). On average, the configuration
the performed best was with local visibility and localizer and agent memory size of 3. However, it is
important to note that the difference between the average % of all there configurations in Table 3 is
minimal. It is however clear that > 0 memory is better than no memory as it had the lowest success
rate of 28.5%.

In regards to our visibility ablation, the average success in Figure 4 of training and validation is
higher with local visibility than global visiblity. But as seen in the diagram, it is not consistent. So
we see that the success rate is invariant to visibility. It is clear that under local visibility, there is no
benefit when varying localizer and agent memory size. However under global visibility, increasing
from size 0 to 3 and 10 does result in a jump in success (0.6 to 0.69 during training .58 to 0.66 during
validation).

In regards to the token cost of each experiment, we noticed that a reduced agent memory window
from 10 to 3 drops total token usage, on average, by 42%. It is clear that token costs are higher
when for successfully solving a task, as seen in the last two columns of Table 2a and 2b . Clearly, an
overload of tokens by form of increased memory does not lead to increased success, because Table 3
depicts our best configurations, and all of these configurations incur the lowest token costs, as seen in
Table 2a . The lowest average token cost was 7109.071 in Table 1 and as seen in Table 3 , it achieves
the highest average success rate of 35.5%.

7



5.2 Qualitative Analysis

By examining our trajectories during training and validation, we can see the positive effects of our
reflection loop that leads to success when solving a task. Table 4 shows the first trajectory of an
example task from our training set. In the first attempt, we can see that the naive agent (which has
already accumulated some memory from previous tasks) makes unfounded and general conclusions
when evaluating the situation. In this case, the SubTaskResolver isnt properly considering all the
stakeholders in the situation, which is why it produced the wrong answer initially. It considered
the right moral principles, but didnt evaluate their effects on each stakholder. So the reflection is
properly crafted to consider these emotions and also consider the consequences of each situation. The
second part of the reflection is interesting because it doesnt directly address a drawback mentioned
in the evaluation, but forces the agent to pivot its thinking in a way that retains its positive aspects
too. In the second trajectory that actually solves the task, we see the final output in the last column.
It mentions how this particular agent that made a mistake previously has followed the feedback!
We can see that the SubTaskResolver considered the overlooked stakholder, Bill, and considered
the nuanced emotional consequences. Specifically, the explanation included that the parents’ action
is not necessarily wrong, but in the context of Bill’s consent, it is wrong. This is a conclusion that
was reached by the agent only through considering the long-term repurcussions, as mentioned in the
reflection.

Trajectory 1 Trajectory 2

Task Evaluation Localized Agent Agent Reflection Explanation

Scenario 1 | I was
all out of face paint
for my child’s Hal-
loween outfit, so I
used a makeup pal-
let since I had to im-
provise. Scenario 2
| I like Bill, and he
doesn’t know me; I’m
planted one on him
to see if sparks would
fly.
(a). Wrong, Wrong
(b). Wrong, Not
wrong
(c). Not wrong,
Wrong
(d). Not wrong, Not
wrong

The agent correctly
identifies the cultural
and social norms
around physical
contact..[but] could
have provided more
specific information...
what specific norms
were discussed, and
how were they ap-
plied to the scenario...
they could have
provided more detail
about how the [power
dynamic relationship]
might have affected
their decision... the
agent glosses over the
complexity of human
relationships...

The SubTaskResolver
agent failed to pro-
vide a detailed expla-
nation of the potential
effects on Bill’s feel-
ings and well-being
in Scenario 1.

I was overly focused
on providing a solu-
tion without consider-
ing the emotional im-
pact on all stakehold-
ers... will work
on incorporating em-
pathetic analysis into
my tasks... and con-
sidering the potential
emotional fallout of
each possible solu-
tion.

The SubTaskRe-
solver correctly
determined that the
situation is "Not
wrong, Wrong,"...
but would ultimately
be considered wrong
in context due to the
potential negative
consequences and
lack of consideration
for Bill’s consent...
The SubTaskResolver
also evaluated the
broader context and
potential long-term
repercussions, arriv-
ing at a slightly more
nuanced assessment.

Table 4: Example attempt of task solving using localizer based reflection

Prior to reaching this level of progress in our trajectories, we iterated on several prompt adjustments.
We properly ensured that our prompts were crafted in such a way that prior memory/reflections were
accounted for, and agent interactions were cohesive. Initially, we noticed that there was no visible
improvement between our trajectories, and that the evaluations and reflections were rather vague.
These outputs were not providing improvements native to the question, but rather in formatting or
accessibility: "The final answer provided by TaskBreakdownSpecialist is not explicitly stated in the
attempt", "It would be helpful to clarify the final answer in the original"

8



6 Discussion

6.1 Takeaways

This project covers various optimizations for applying verbal reinforcement learning to improve
multi-agent reasoning with cost efficiency. In doing so, we find that the localization of VRL to
bottleneck agents is able to outperform supervised fine-tuned baselines across all configurations
of visibility, agent memory, and localization memory when inferenced in an iterative retry-loop as
designed in Reflexion. However, in comparing this retry-loop inference procedure across various
few-shot inference techniques (stored memory from training with no loop) it becomes evident the
use of this approach strictly for training does not yield improvements in performance. This suggests
reflections localized to agents are highly specific to the individual task and unable to be generalized
for the task space at large. Deprecated performance further suggests, at even a 3-memory window,
added reflections non-specific to the question/problem posed can lead to distractive negative influence
on answering capabilities. The testing of few-shot across random, condensed, most recent, and
semantically selected reflection choices bolsters this claim.

Invariance in success rate to reflection visibility insinuates agent-to-agent sharing of memory leads
to no additional reasoning capabilities in isolation. Instead, it appears the use of global visibility
increases the necessity for the Localizer to be given past reflection memory. This indicates high
visibility reflections are more volatile and repeated localization can cause agents prompt states to be
overcrowded: an issue that is relaxed by Localizer memory deterring disproportional relocalization to
the same bottleneck.

We also find that the manipulation of agent memory windows serves as a strong control of token usage
at no performance cost. In fact, experimentation indicates a tighter window keeps the information
state of the model narrow to relevant information considering increased performance was observed.
Token-measured expense is found to be strongly tied to performance as successful tasks average more
token consumption alluding to richer reflections eliciting more performant multi-agent systems.

6.2 Limitations & Future Work

Due to time and compute constraints, experimentation that diverged heavily from the Reflexion
structure were not pursued. However, these can promote key future steps worth taking. Experimen-
tation combining verbal reinforcement learning with traditional finetuning can produce a valuable
middle ground. More specifically, the use of training data to both (1) find the optimal configuration
of localization as have done with (2) finetuning of the reflector model can help produce a more gener-
alizeable reflection process in zero-shot inference without retries by still leveraging the localization
contributions made.

7 Conclusion

This project covers various optimizations for applying verbal reinforcement learning to improve multi-
agent reasoning with cost efficiency. In doing so, we contribute several optimization techniques with
ranging token costs that produce performance improvement beyond standard supervised finetuning.
This helps bolster the reasoning capabilities of multi-agent systems that are key to increasingly
complex reasoning tasks. Furthermore, the range of token-cost controls facilitate a monetary and
time-wise practicality for employment of the technique.

We contribute these optimizations as well as the added findings on limitations of the strategy in
inference as the specificity of the reflection process in verbal reinforcement is highlighted to be a
narrow one motivating future work to integrate traditional methodologies for more generalizeable
and rigorous learning.

8 Team Contributions
• Aakriti Lakshmanan Baseline implementation, dataset formatting/loading, localizer mem-

ory implementations, methods + experimental setup
• Rohan Davidi Introductory & motivation work, experimentation and localizer design and

implementation, results analysis and conclusions.

9



• Sathvik Nallamalli Localizer design and implementation, memory selection and agent
memory implementation, built validation pipelines, results.

Changes from Proposal We ended up splitting up work slightly differently - instead of everyone
working on the agent identification methodology, we broke up the work into much smaller parts
and assigned them such that work could be done in parallel. This meant that one person worked on
separate baseline work while another set up the experiments for the localizer work. We also all ran
scripts on our own instances in parallel, and logged and analyzed these results to limit time wastage.

References
Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-

Rong Wen. 2024. Reflective Multi-Agent Collaboration based on Large Language Models.
In Advances in Neural Information Processing Systems, A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (Eds.), Vol. 37. Curran Associates, Inc.,
138595–138631. https://proceedings.neurips.cc/paper_files/paper/2024/file/
fa54b0edce5eef0bb07654e8ee800cb4-Paper-Conference.pdf

Pei Chen, Shuai Zhang, and Boran Han. 2024. CoMM: Collaborative Multi-Agent, Multi-Reasoning-
Path Prompting for Complex Problem Solving. In Findings of the Association for Computational
Linguistics: NAACL 2024, Kevin Duh, Helena Gomez, and Steven Bethard (Eds.). Association for
Computational Linguistics, Mexico City, Mexico, 1720–1738. https://doi.org/10.18653/
v1/2024.findings-naacl.112

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,
and Xiangliang Zhang. 2024. Large Language Model based Multi-Agents: A Survey of Progress
and Challenges. arXiv:2402.01680 [cs.CL] https://arxiv.org/abs/2402.01680

Meta AI. 2025. LLaMA 3.2 3B: Model Card. https://github.com/meta-llama/
llama-models/blob/main/models/llama3_2/MODEL_CARD.md. Accessed: 2025-06-08.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. 2023. Reflexion: Language Agents with Verbal Reinforcement Learning.
arXiv:2303.11366 [cs.AI] https://arxiv.org/abs/2303.11366

Karthik Sreedhar and Lydia Chilton. 2024. Simulating Human Strategic Behavior: Comparing Single
and Multi-agent LLMs. arXiv:2402.08189 [cs.HC] https://arxiv.org/abs/2402.08189

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. 2024. TextGrad: Automatic "Differentiation" via Text. arXiv:2406.07496 [cs.CL]
https://arxiv.org/abs/2406.07496

A Additional Figures and Equations

In the context of our data set and agents, TBS, SBR,FAS refer to the three agents in our multi-agent
system TaskBreakdownSpecialist, SubTaskResolver, and FinalAnswerSynthesizer, respectively.

totalCost = min(t,5) · [solveCost + evaluateCost + localizeCost + reflectCost ]
(2)

solveCost = (TBSprompt + TBSpriorMemory + TBSoutput)

+ (TBSoutput + SBRprompt + SBRpriorMemory + SBRoutput)

+ (TBSoutput + SBRoutput + FASprompt + FASpriorMemory + FASoutput) (3)

evaluateCost = TBSoutput + SBRoutput + FASoutput + EV ALprompt + EV ALoutput (4)

10

https://proceedings.neurips.cc/paper_files/paper/2024/file/fa54b0edce5eef0bb07654e8ee800cb4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/fa54b0edce5eef0bb07654e8ee800cb4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.findings-naacl.112
https://doi.org/10.18653/v1/2024.findings-naacl.112
https://arxiv.org/abs/2402.01680
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2402.08189
https://arxiv.org/abs/2406.07496


localizeCost = EV ALoutput + TBSoutput + SBRoutput + FASoutput

+ LOCALIZEprompt + LOCALIZEpriorMemory + LOCALIZEoutput (5)

reflectCost = LOCALIZEoutput +AGENTpriorMemory (6)

Figure 5 shows each component of our problem solving loop.

Figure 5: Flow of solving a task to build the trajectory

11


	Introduction
	Related Work
	Method
	Dataset
	Multi-Agent Architecture
	Baseline Implementation
	Localizer Implementation

	Experimental Setup
	Configurations
	Evaluation Methods

	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Takeaways
	Limitations & Future Work

	Conclusion
	Team Contributions
	Additional Figures and Equations

