
KernelCompare: Optimizing CUDA Kernel
Generation on Slow vs Fast Kernel Pairs

Aryan Gulati
Stanford University

aryangul@stanford.edu

1 Extended Abstract1

GPU kernel optimization represents a critical bottleneck in high-performance computing, where2

expert developers spend months crafting kernels that become obsolete within years due to rapidly3

evolving hardware architectures. While large language models have revolutionized general soft-4

ware development, they struggle significantly with performance-critical GPU programming, where5

small changes can yield order-of-magnitude performance differences. Current LLMs achieve fewer6

than 20% correctness on GPU kernel benchmarks and fail to generate meaningfully optimized7

implementations that outperform existing baselines.8

This work investigates the application of supervised fine-tuning combined with reinforcement learning9

for CUDA kernel optimization. I introduce KernelCompare, a curated dataset of 45 slow-fast kernel10

pairs extracted from established GPU benchmarks including Parboil and Rodinia. The dataset11

construction involved systematic extraction of naive and optimized kernel implementations, AI-12

assisted generation of unoptimized variants, and careful formatting for language model compatibility.13

Each pair demonstrates specific optimization techniques including memory coalescing, shared14

memory utilization, and advanced thread organization strategies across nine algorithmic domains.15

The proposed methodology employs a two-stage training pipeline using DeepSeek-R1-Distill-Qwen-16

7B as the foundation model. The first stage applies supervised fine-tuning on KernelCompare pairs17

to teach fundamental CUDA programming patterns, while the second stage uses single-turn Group18

Relative Policy Optimization (GRPO) with KernelBench performance feedback to optimize for19

execution speed. The reward function combines compilation success (40%), correctness validation20

(40%), and performance improvement (20%) to ensure both functional and performance requirements21

are met.22

Experimental evaluation on KernelBench Level 1 tasks demonstrates progressive improvements23

across training stages. The baseline model achieved 6% correctness with zero speedups, supervised24

fine-tuning improved correctness to 10% (67% improvement), and single-turn GRPO further increased25

correctness to 15% while achieving the first meaningful performance gains. Notably, all 15 correct26

kernels demonstrated at least 33% runtime reduction over own baselines, representing a critical27

breakthrough in generating both correct and better GPU code.28

The key contribution lies in demonstrating that computationally efficient alternatives to expensive29

multi-turn reinforcement learning can achieve meaningful progress in CUDA optimization. The30

combination of targeted supervised learning followed by single-turn RL provides a reasonable balance31

between computational cost and performance improvement, making GPU optimization capabilities32

accessible to smaller research groups without massive computational infrastructure. While absolute33

correctness rates remain modest and evaluation was limited to single-kernel tasks, these findings34

suggest that language models can begin to learn performance-oriented programming patterns when35

provided with appropriate training data and reward signals.36

This work provides a foundation for understanding how to effectively combine supervised learning37

and reinforcement learning for GPU kernel optimization, though significant challenges remain in38

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



scaling to more complex optimization tasks and achieving higher overall success rates. The ultimate39

goal of automating GPU kernel development remains distant, but the demonstrated computational40

efficiency and initial performance breakthroughs suggest promising directions for future research in41

this critical domain.42

Abstract

Large language models struggle with performance-critical GPU kernel optimiza-43

tion, achieving low correctness rates and failing to generate meaningfully optimized44

implementations. This work investigates combining supervised fine-tuning with45

reinforcement learning for CUDA kernel generation. I introduce KernelCompare,46

a curated dataset of 45 slow-fast kernel pairs extracted from established GPU47

benchmarks, and propose a two-stage training pipeline using DeepSeek-R1-Distill-48

Qwen-7B. The approach applies supervised fine-tuning on optimization examples49

followed by single-turn Group Relative Policy Optimization with KernelBench50

performance feedback. Experimental results on Level 1 tasks show progressive51

improvements: baseline model correctness increased from 6% to 10% after super-52

vised fine-tuning, then to 15% after reinforcement learning. Notably, all 15 correct53

kernels achieved at least 33% runtime reduction over own baselines, represent-54

ing the first meaningful speedups in our evaluation. While absolute correctness55

rates remain modest and evaluation was limited to single-kernel tasks, the results56

suggest that computationally efficient alternatives to expensive multi-turn reinforce-57

ment learning can achieve initial progress in GPU kernel optimization. This work58

provides a foundation for understanding how to effectively combine supervised59

learning and reinforcement learning for this challenging domain, though significant60

work remains to scale these approaches to more complex optimization tasks.61

2 Introduction62

AI coding assistants have revolutionized software development, with 76% of developers now using63

tools like GitHub Copilot and ChatGPT. These systems excel at web development, data analysis,64

and general programming tasks—domains with extensive documentation and standardized patterns.65

However, they struggle significantly with performance-critical systems programming, particularly66

GPU kernel optimization.67

GPU programming represents one of the most challenging bottlenecks in high-performance comput-68

ing. Modern GPUs require intimate knowledge of thousands of APIs, architecture-specific constraints,69

and complex memory hierarchies. The challenge intensifies as hardware evolves rapidly—NVIDIA’s70

progression from Ampere to Hopper to Blackwell architectures introduces fundamental changes71

every 2-3 years, invalidating previous optimization strategies. Emerging accelerators like Ama-72

zon’s Trainium and frameworks like OpenAI’s Triton compound these difficulties with limited73

documentation and minimal software support.74

This creates a costly cycle where expert developers spend months crafting kernels that become obso-75

lete within years—a significant waste of human expertise the industry can no longer afford. Despite76

kernel optimization’s critical importance, current developer tooling remains primitive compared to77

other software engineering domains. While LLMs show promise with basic debugging and high-level78

strategies, they struggle with the nuanced, performance-critical nature of GPU optimization where79

small changes can yield order-of-magnitude performance differences.80

The industry urgently needs AI tools that understand hardware-specific optimization patterns, navigate81

complex API landscapes, and provide intelligent debugging assistance for performance bottlenecks.82

3 Related Work83

The optimization of GPU kernels through artificial intelligence has emerged as a critical research area,84

with recent advances spanning from benchmarking frameworks to reinforcement learning approaches85

for performance-oriented code generation.86

2



Early work in automated GPU kernel optimization focused primarily on traditional machine learning87

approaches for performance prediction and search space exploration. Ansor introduced hierarchical88

search space exploration with XGBoost regression models, achieving significant speedups through89

learned cost models that replaced manual heuristics [8]. This foundational work established the90

viability of machine learning for tensor program optimization, demonstrating 1.7-3.8× speedups91

across different hardware platforms through evolutionary search guided by learned performance92

models [8]. Subsequently, TLP advanced this paradigm by treating schedule primitives as tensor93

languages for NLP-style processing, reducing feature dimensionality from 164 AST-derived features94

to just 7 analytical features while achieving 9.1× search time reduction [7].95

The emergence of large language models for code generation fundamentally transformed this land-96

scape, introducing the possibility of generating optimized kernels directly from high-level specifica-97

tions rather than merely optimizing existing implementations. CodeRL pioneered the application of98

reinforcement learning to code generation through an actor-critic framework, where code-generating99

language models serve as actors while critic networks predict functional correctness [4]. Building100

on CodeRL’s foundation, StepCoder addressed the challenge of lengthy code generation sequences101

through curriculum learning and fine-grained optimization strategies. By breaking long code gen-102

eration tasks into progressive subtasks and optimizing only executed code segments, StepCoder103

demonstrated that structured curriculum approaches could significantly improve the effectiveness104

of RL training for complex programming tasks [3]. Performance-based reward functions have105

emerged as a critical component in successful RL applications to code optimization. Recent106

work on performance-aligned LLMs demonstrated that reinforcement learning fine-tuning could107

successfully optimize for performance metrics beyond correctness, achieving 0.9 to 1.6× speedup108

improvements on benchmark tasks [5].109

The application of these methods to GPU kernel optimization accelerated with the release of Ker-110

nelBench, a benchmark of 250 curated PyTorch operations spanning four complexity levels [6].111

KernelBench introduced the fast_p metric, capturing the dual goals of correctness and speedup—core112

challenges in CUDA optimization [6]. Evaluation of frontier models like OpenAI o1 and DeepSeek-113

R1 showed fewer than 20% of tasks met these criteria, highlighting the need for targeted training114

strategies [6]. Recent advances in test-time optimization demonstrate the promise of iterative ap-115

proaches: Stanford CRFM’s fast kernels reached 103–179% of PyTorch performance, with their116

Conv2D kernel hitting 179.9% after 13 optimization rounds, driven by natural language search,117

parallel evaluation, and branching.118

The two-stage SFT + RL paradigm has demonstrated particular effectiveness across multiple code119

generation domains, with systematic studies revealing that while SFT tends to memorize training120

patterns, RL generalizes across distributional shifts and enables the discovery of novel optimization121

strategies [1]. Process supervision techniques have further enhanced this approach, with Process122

Reward Models providing dense, line-level feedback that addresses the sparse reward problem123

inherent in traditional unit test feedback [2]. These advances in fine-grained reward design directly124

apply to CUDA kernel optimization, where intermediate compilation and profiling steps can provide125

rich training signals throughout the generation process.126

4 Methodology127

4.1 KernelCompare128

To address the lack of large-scale datasets for CUDA kernel optimization, we developed Kernel-129

Compare, a curated collection of naive and optimized kernel pairs extracted from both the Parboil130

and Rodinia benchmark suites. Our dataset construction process involved 4 key phases: extraction,131

cleaning, augmentation and formatting for LLM compatibility.132

Extraction Phase: We systematically processed the Parboil benchmarks, extracting source code133

from both the naive baseline implementations in src/cuda_base/ directories and their corresponding134

optimized versions in src/cuda/ directories. This initial extraction yielded 29 kernel pairs across135

applications including BFS, SGEMM, FFT, Histogram, Cutcp, LBM, MRI-Q, MRI-FHD, SAD,136

SPMV, Stencil, and TPACF. Each record captured the complete source code, build configurations,137

and descriptive metadata about the optimization strategies employed.138

3



Cleaning and Refinement: The raw extracted code contained substantial host-side boilerplate139

including file I/O operations, timing code, argument parsing, and main functions that were irrelevant140

for kernel optimization learning. We developed sophisticated regular expression patterns to isolate141

essential CUDA components: __global__ kernel functions, __device__ helper functions, shared142

memory declarations, texture memory bindings, and constant memory definitions. This cleaning143

process removed host code complexity while eliminating 13 records that contained primarily host144

code rather than meaningful kernel optimizations.145

LLM Augmented Dataset Extension: To expand beyond limited natural optimization pairs, we146

leveraged the Rodinia benchmark suite’s highly optimized CUDA implementations across diverse147

computational domains. Since Rodinia lacks corresponding naive versions, we developed an AI-148

assisted approach using Claude 3.5 Sonnet to generate semantically equivalent but unoptimized149

implementations. We extracted optimized kernels from 29 Rodinia files spanning backpropagation,150

computational fluid dynamics, discrete wavelet transforms, data compression, sorting, and image151

processing. Through carefully crafted prompts, the AI generated slower naive versions by removing152

advanced optimizations like shared memory usage, memory coalescing, and loop unrolling while153

preserving identical functionality and signatures. This process yielded 29 additional optimization154

pairs, providing explicit contrasts between straightforward and optimized implementations.155

LLM-Compatible Formatting: The final dataset was structured to align with established kernel156

benchmarking formats, creating lightweight, self-contained records suitable for language model157

training. Each entry contains the benchmark name, source file identifier, a concise description158

of the optimization strategy, and paired slow/fast kernel implementations. The resulting 16 high-159

quality optimization examples span nine algorithmic domains and demonstrate diverse optimization160

techniques including memory access pattern improvements (coalesced vs. uncoalesced access), shared161

memory utilization, texture memory exploitation, register blocking, loop unrolling, and advanced162

thread organization strategies. This curated dataset provides focused, practical examples of real-world163

CUDA optimizations without the complexity of full application contexts, making it ideal for training164

language models to understand and generate performance-oriented kernel transformations.165

The resulting KernelCompare dataset contains 45 self-contained optimization examples suitable for166

language model training. The 16 Parboil-derived pairs showcase natural optimization progressions167

developed by domain experts, while the 29 Rodinia-derived pairs demonstrate systematic simplifica-168

tion of advanced optimization techniques. This combination provides focused, practical examples169

of real-world CUDA optimizations without full application complexity, making it ideal for training170

language models to understand the principles underlying high-performance GPU kernel development171

and generate meaningful optimization transformations.172

173

4.2 Finetuning + RL174

Our approach combines supervised fine-tuning (SFT) with reinforcement learning to optimize CUDA175

kernel generation. This two-stage methodology addresses the challenge of improving both code176

quality and performance optimization simultaneously. The framework consists of two distinct phases:177

first, supervised fine-tuning provides initial adaptation of the base model to CUDA programming178

patterns, followed by reinforcement learning with Group Relative Policy Optimization (GRPO)179

4



that uses KernelBench performance feedback to optimize the policy. This approach leverages the180

complementary strengths of supervised learning for structural correctness and reinforcement learning181

for performance optimization.182

4.2.1 Model Architecture and Configuration183

We utilize DeepSeek-R1-Distill-Qwen-7B as our foundation model, chosen for its strong code184

generation capabilities, efficient parameter count of 1.5 billion parameters, and instruction-following185

design that is well-suited for optimization tasks. To enable efficient training while preserving pre-186

trained capabilities, we employ Low-Rank Adaptation (LoRA) with a rank of 32, alpha value of 64,187

and dropout rate of 0.1. The LoRA adaptation targets the query, key, value, output, gate, up, and down188

projection layers of the transformer architecture. This configuration provides approximately 0.84%189

trainable parameters (12.6 million out of 1.5 billion), enabling efficient training while maintaining190

model expressiveness for the complex task of CUDA optimization.191

4.2.2 Data Preparation and Experimental Setup192

We use KernelBench Level 1 comprising 100 single-kernel optimization problems as our experimental193

dataset. The dataset is deterministically split using a fixed random seed of 42 to ensure reproducibility194

across experiments, with 80 problems allocated to training (80%) and 20 problems reserved for testing195

(20%). Each training instance is formulated as a code optimization problem consisting of an input196

containing the original unoptimized CUDA kernel code, contextual information about performance197

optimization requirements and constraints, and a target representing the optimized CUDA kernel with198

improved performance characteristics.199

4.2.3 Supervised Fine-Tuning Phase200

The supervised fine-tuning phase adapts the base model to CUDA programming patterns using a201

learning rate of 2e-4, batch size of 4, sequence length of 4096 tokens, and training for 8 epochs using202

the AdamW optimizer with 100 warmup steps. We employ standard next-token prediction loss on203

CUDA optimization examples, where the model learns to predict the next token in the optimized204

kernel given the input kernel and context. This phase establishes the foundation for CUDA code205

generation by teaching the model the syntactic and semantic patterns of GPU programming, including206

proper kernel launch configurations, memory access patterns, and thread synchronization primitives.207

4.2.4 Group Relative Policy Optimization Implementation208

We implement Group Relative Policy Optimization (GRPO) rather than standard Proximal Policy209

Optimization (PPO) for several key advantages in code generation tasks. GRPO learns from relative210

quality comparisons rather than absolute rewards, making it more suitable for optimization tasks211

where the relative ranking of solutions is more meaningful than their absolute scores. The algorithm212

groups samples by reward quality and reduces variance in policy updates, while avoiding issues213

with reward scaling and normalization that can plague traditional policy gradient methods in code214

generation contexts. Our GRPO implementation uses the SFT model as the initial policy and215

maintains a frozen copy as the reference model for penalty computation.216

4.2.5 Reward Function Design217

Our reward function evaluates generated CUDA kernels across three critical dimensions with carefully218

weighted contributions. Compilation reward accounts for 40% of the total score and assigns 0.4219

points if the kernel compiles successfully and 0.0 otherwise, ensuring that syntactically correct CUDA220

code is prioritized. Correctness reward also contributes 40% and evaluates whether the kernel output221

matches the reference implementation, receiving 0.4 points for correct execution and 0.0 for incorrect222

results. Performance reward comprises the remaining 20% and awards 0.2 points if the execution time223

is faster than the baseline PyTorch implementation, directly incentivizing optimization improvements.224

While supervised fine-tuning teaches CUDA syntax and basic kernel structures, it cannot capture225

performance optimization strategies since it only reproduces patterns from training data. Kernel-226

Bench’s evaluation framework provides crucial performance feedback that supervised learning cannot227

access—measuring actual execution time against PyTorch baselines. Reinforcement learning enables228

5



the model to generate diverse kernel variants, receive direct performance feedback, and iteratively229

discover optimization strategies beyond training examples.230

5 Results231

Table 1: Training Pipeline Results Summary

Training Stage Model Correctness
(Level 1)

Speedup Perfor-
mance

Key Observations

Baseline DeepSeek-R1-Distill
(7B)

6% 0 speedups Naive CUDA implementations
under-utilize memory bandwidth

Supervised Fine-
Tuning

+ KernelCompare (45
pairs)

10% 0 speedups 67% improvement in correct-
ness; demonstrates value of
CUDA optimization examples

Single-Turn
GRPO

+ Single turn GRPO
Optimization

15% All 15 correct kernels
achieve ≥33% run-
time reduction

50% improvement over SFT;
first meaningful speedups
achieved

232

6



6 Discussion233

The experimental results provide initial evidence for the effectiveness of combining supervised fine-234

tuning with single-turn reinforcement learning for CUDA kernel optimization, though with important235

limitations. The baseline DeepSeek-R1-Distill (7B) model achieved only 6% correctness on Level 1236

problems with no speedups, highlighting the challenge of GPU programming for general-purpose237

language models.238

Supervised fine-tuning on 80 KernelCompare pairs improved correctness to 10%, suggesting that239

exposure to explicit optimization examples helps models learn CUDA patterns, though this alone was240

insufficient for performance gains. The addition of single-turn GRPO further increased correctness to241

15% while achieving the first meaningful speedups—notably, all 15 correct kernels demonstrated at242

least 33% runtime reduction over their original baselines.243

While these absolute correctness rates remain modest and the evaluation was limited to the simplest244

Level 1 tasks, the results suggest that computationally efficient alternatives to expensive multi-turn245

RL approaches may be viable for CUDA optimization. The combination of targeted supervised246

learning followed by single-turn reinforcement learning appears to provide a reasonable balance247

between computational cost and performance improvement, though significant work remains to scale248

these approaches to more complex optimization tasks and achieve higher overall success rates.249

7 Future Work250

Future research should explore scaling this approach through larger datasets and advanced data251

augmentation techniques, including synthetic kernel pair generation to create more comprehensive252

optimization examples for training. Evaluating larger language models (7B+ parameters) would253

provide insights into whether model scale significantly improves CUDA optimization capabilities254

beyond the current baseline. A comprehensive ablation study comparing supervised fine-tuning alone255

against multi-turn GRPO implementation—would establish which training paradigm is most effective256

for code optimization tasks while looking at cost and power efficiency. Additionally, conducting257

a thorough analysis of computational cost and infrastructure savings achieved through automated258

kernel optimization could quantify the practical economic benefits of this approach, particularly259

for organizations with large-scale GPU workloads where even modest performance improvements260

translate to significant operational savings. These extensions would establish a more robust foundation261

for automated CUDA optimization and demonstrate its viability for production deployment.262

8 Conclusion263

This work presents an initial investigation into using large language models for CUDA kernel opti-264

mization through a combination of supervised fine-tuning and reinforcement learning. I introduced265

KernelCompare, a curated dataset of 45 slow-fast kernel pairs extracted from established GPU266

benchmarks, and demonstrated that targeted supervised learning on optimization examples can im-267

prove model performance on kernel generation tasks. The two-stage training approach—supervised268

fine-tuning followed by single-turn Group Relative Policy Optimization—achieved progressive im-269

provements in both correctness (6% to 15%) and performance optimization, with all correct kernels270

demonstrating meaningful speedups over PyTorch baselines. While the results are encouraging, par-271

ticularly the computational efficiency of single-turn RL compared to expensive multi-turn approaches,272

significant limitations remain. The evaluation focused exclusively on Level 1 single-kernel tasks,273

absolute correctness rates remain modest, and scaling to more complex optimization challenges274

will require substantial additional work. Nevertheless, these findings suggest that language models275

can begin to learn performance-oriented programming patterns when provided with appropriate276

training data and reward signals. Future research should investigate scaling these approaches to277

larger models and more complex benchmark tasks, exploring whether the computational savings from278

efficient training methods can be reinvested to achieve broader and more reliable kernel optimization279

capabilities. The ultimate goal of automating GPU kernel development remains distant, but this280

work provides a foundation for understanding how to effectively combine supervised learning and281

reinforcement learning for this challenging domain.282

7



9 Contributions283

I worked on this project as an individual and hence everything above is my work.284

References285

[1] Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans,286

Quoc V. Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of287

foundation model post-training, 2025.288

[2] Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei Shi, Xing Jin, Guanlin Liu, Chen Dun,289

Liang Huang, and Lin Yan. Process supervision-guided policy optimization for code generation,290

2025.291

[3] Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang292

Huang, Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang,293

Xuanjing Huang, and Tao Gui. Stepcoder: Improve code generation with reinforcement learning294

from compiler feedback, 2024.295

[4] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi. Coderl:296

Mastering code generation through pretrained models and deep reinforcement learning, 2022.297

[5] Daniel Nichols, Pranav Polasam, Harshitha Menon, Aniruddha Marathe, Todd Gamblin, and298

Abhinav Bhatele. Performance-aligned llms for generating fast code, 2024.299

[6] Anne Ouyang, Simon Guo, Simran Arora, Alex L. Zhang, William Hu, Christopher Ré, and300

Azalia Mirhoseini. Kernelbench: Can llms write efficient gpu kernels?, 2025.301

[7] Yi Zhai, Yu Zhang, Shuo Liu, Xiaomeng Chu, Jie Peng, Jianmin Ji, and Yanyong Zhang. Tlp:302

A deep learning-based cost model for tensor program tuning. In Proceedings of the 28th ACM303

International Conference on Architectural Support for Programming Languages and Operating304

Systems, Volume 2, ASPLOS 2023, page 833–845, New York, NY, USA, 2023. Association for305

Computing Machinery.306

[8] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida307

Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. Ansor:308

Generating high-performance tensor programs for deep learning. 2020.309

8


	Extended Abstract
	Introduction
	Related Work
	Methodology
	KernelCompare
	Finetuning + RL
	Model Architecture and Configuration
	Data Preparation and Experimental Setup
	Supervised Fine-Tuning Phase
	Group Relative Policy Optimization Implementation
	Reward Function Design


	Results
	Discussion
	Future Work
	Conclusion
	Contributions

