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1 Extended Abstract

GPU kernel optimization represents a critical bottleneck in high-performance computing, where
expert developers spend months crafting kernels that become obsolete within years due to rapidly
evolving hardware architectures. While large language models have revolutionized general soft-
ware development, they struggle significantly with performance-critical GPU programming, where
small changes can yield order-of-magnitude performance differences. Current LLMs achieve fewer
than 20% correctness on GPU kernel benchmarks and fail to generate meaningfully optimized
implementations that outperform existing baselines.

This work investigates the application of supervised fine-tuning combined with reinforcement learning
for CUDA kernel optimization. I introduce KernelCompare, a curated dataset of 45 slow-fast kernel
pairs extracted from established GPU benchmarks including Parboil and Rodinia. The dataset
construction involved systematic extraction of naive and optimized kernel implementations, Al-
assisted generation of unoptimized variants, and careful formatting for language model compatibility.
Each pair demonstrates specific optimization techniques including memory coalescing, shared
memory utilization, and advanced thread organization strategies across nine algorithmic domains.

The proposed methodology employs a two-stage training pipeline using DeepSeek-R1-Distill-Qwen-
7B as the foundation model. The first stage applies supervised fine-tuning on KernelCompare pairs
to teach fundamental CUDA programming patterns, while the second stage uses single-turn Group
Relative Policy Optimization (GRPO) with KernelBench performance feedback to optimize for
execution speed. The reward function combines compilation success (40%), correctness validation
(40%), and performance improvement (20%) to ensure both functional and performance requirements
are met.

Experimental evaluation on KernelBench Level 1 tasks demonstrates progressive improvements
across training stages. The baseline model achieved 6% correctness with zero speedups, supervised
fine-tuning improved correctness to 10% (67% improvement), and single-turn GRPO further increased
correctness to 15% while achieving the first meaningful performance gains. Notably, all 15 correct
kernels demonstrated at least 33% runtime reduction over own baselines, representing a critical
breakthrough in generating both correct and better GPU code.

The key contribution lies in demonstrating that computationally efficient alternatives to expensive
multi-turn reinforcement learning can achieve meaningful progress in CUDA optimization. The
combination of targeted supervised learning followed by single-turn RL provides a reasonable balance
between computational cost and performance improvement, making GPU optimization capabilities
accessible to smaller research groups without massive computational infrastructure. While absolute
correctness rates remain modest and evaluation was limited to single-kernel tasks, these findings
suggest that language models can begin to learn performance-oriented programming patterns when
provided with appropriate training data and reward signals.

This work provides a foundation for understanding how to effectively combine supervised learning
and reinforcement learning for GPU kernel optimization, though significant challenges remain in
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scaling to more complex optimization tasks and achieving higher overall success rates. The ultimate
goal of automating GPU kernel development remains distant, but the demonstrated computational
efficiency and initial performance breakthroughs suggest promising directions for future research in
this critical domain.

Abstract

Large language models struggle with performance-critical GPU kernel optimiza-
tion, achieving low correctness rates and failing to generate meaningfully optimized
implementations. This work investigates combining supervised fine-tuning with
reinforcement learning for CUDA kernel generation. I introduce KernelCompare,
a curated dataset of 45 slow-fast kernel pairs extracted from established GPU
benchmarks, and propose a two-stage training pipeline using DeepSeek-R 1-Distill-
Qwen-7B. The approach applies supervised fine-tuning on optimization examples
followed by single-turn Group Relative Policy Optimization with KernelBench
performance feedback. Experimental results on Level 1 tasks show progressive
improvements: baseline model correctness increased from 6% to 10% after super-
vised fine-tuning, then to 15% after reinforcement learning. Notably, all 15 correct
kernels achieved at least 33% runtime reduction over own baselines, represent-
ing the first meaningful speedups in our evaluation. While absolute correctness
rates remain modest and evaluation was limited to single-kernel tasks, the results
suggest that computationally efficient alternatives to expensive multi-turn reinforce-
ment learning can achieve initial progress in GPU kernel optimization. This work
provides a foundation for understanding how to effectively combine supervised
learning and reinforcement learning for this challenging domain, though significant
work remains to scale these approaches to more complex optimization tasks.

2 Introduction

Al coding assistants have revolutionized software development, with 76% of developers now using
tools like GitHub Copilot and ChatGPT. These systems excel at web development, data analysis,
and general programming tasks—domains with extensive documentation and standardized patterns.
However, they struggle significantly with performance-critical systems programming, particularly
GPU kernel optimization.

GPU programming represents one of the most challenging bottlenecks in high-performance comput-
ing. Modern GPUs require intimate knowledge of thousands of APIs, architecture-specific constraints,
and complex memory hierarchies. The challenge intensifies as hardware evolves rapidly—NVIDIA’s
progression from Ampere to Hopper to Blackwell architectures introduces fundamental changes
every 2-3 years, invalidating previous optimization strategies. Emerging accelerators like Ama-
zon’s Trainium and frameworks like OpenAI’s Triton compound these difficulties with limited
documentation and minimal software support.

This creates a costly cycle where expert developers spend months crafting kernels that become obso-
lete within years—a significant waste of human expertise the industry can no longer afford. Despite
kernel optimization’s critical importance, current developer tooling remains primitive compared to
other software engineering domains. While LLMs show promise with basic debugging and high-level
strategies, they struggle with the nuanced, performance-critical nature of GPU optimization where
small changes can yield order-of-magnitude performance differences.

The industry urgently needs Al tools that understand hardware-specific optimization patterns, navigate
complex API landscapes, and provide intelligent debugging assistance for performance bottlenecks.

3 Related Work

The optimization of GPU kernels through artificial intelligence has emerged as a critical research area,
with recent advances spanning from benchmarking frameworks to reinforcement learning approaches
for performance-oriented code generation.
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Early work in automated GPU kernel optimization focused primarily on traditional machine learning
approaches for performance prediction and search space exploration. Ansor introduced hierarchical
search space exploration with XGBoost regression models, achieving significant speedups through
learned cost models that replaced manual heuristics [8]. This foundational work established the
viability of machine learning for tensor program optimization, demonstrating 1.7-3.8x speedups
across different hardware platforms through evolutionary search guided by learned performance
models [8]. Subsequently, TLP advanced this paradigm by treating schedule primitives as tensor
languages for NLP-style processing, reducing feature dimensionality from 164 AST-derived features
to just 7 analytical features while achieving 9.1x search time reduction [7]].

The emergence of large language models for code generation fundamentally transformed this land-
scape, introducing the possibility of generating optimized kernels directly from high-level specifica-
tions rather than merely optimizing existing implementations. CodeRL pioneered the application of
reinforcement learning to code generation through an actor-critic framework, where code-generating
language models serve as actors while critic networks predict functional correctness [4]. Building
on CodeRL’s foundation, StepCoder addressed the challenge of lengthy code generation sequences
through curriculum learning and fine-grained optimization strategies. By breaking long code gen-
eration tasks into progressive subtasks and optimizing only executed code segments, StepCoder
demonstrated that structured curriculum approaches could significantly improve the effectiveness
of RL training for complex programming tasks [3]]. Performance-based reward functions have
emerged as a critical component in successful RL applications to code optimization. Recent
work on performance-aligned LLMs demonstrated that reinforcement learning fine-tuning could
successfully optimize for performance metrics beyond correctness, achieving 0.9 to 1.6x speedup
improvements on benchmark tasks [J5]].

The application of these methods to GPU kernel optimization accelerated with the release of Ker-
nelBench, a benchmark of 250 curated PyTorch operations spanning four complexity levels [6].
KernelBench introduced the fast_p metric, capturing the dual goals of correctness and speedup—core
challenges in CUDA optimization [6]]. Evaluation of frontier models like OpenAl ol and DeepSeek-
R1 showed fewer than 20% of tasks met these criteria, highlighting the need for targeted training
strategies [[6]. Recent advances in test-time optimization demonstrate the promise of iterative ap-
proaches: Stanford CRFM’’s fast kernels reached 103—179% of PyTorch performance, with their
Conv2D kernel hitting 179.9% after 13 optimization rounds, driven by natural language search,
parallel evaluation, and branching.

The two-stage SFT + RL paradigm has demonstrated particular effectiveness across multiple code
generation domains, with systematic studies revealing that while SFT tends to memorize training
patterns, RL generalizes across distributional shifts and enables the discovery of novel optimization
strategies [[1]. Process supervision techniques have further enhanced this approach, with Process
Reward Models providing dense, line-level feedback that addresses the sparse reward problem
inherent in traditional unit test feedback [2]. These advances in fine-grained reward design directly
apply to CUDA kernel optimization, where intermediate compilation and profiling steps can provide
rich training signals throughout the generation process.

4 Methodology

4.1 KernelCompare

To address the lack of large-scale datasets for CUDA kernel optimization, we developed Kernel-
Compare, a curated collection of naive and optimized kernel pairs extracted from both the Parboil
and Rodinia benchmark suites. Our dataset construction process involved 4 key phases: extraction,
cleaning, augmentation and formatting for LLM compatibility.

Extraction Phase: We systematically processed the Parboil benchmarks, extracting source code
from both the naive baseline implementations in src/cuda_base/ directories and their corresponding
optimized versions in src/cuda/ directories. This initial extraction yielded 29 kernel pairs across
applications including BFS, SGEMM, FFT, Histogram, Cutcp, LBM, MRI-Q, MRI-FHD, SAD,
SPMY, Stencil, and TPACF. Each record captured the complete source code, build configurations,
and descriptive metadata about the optimization strategies employed.
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Cleaning and Refinement: The raw extracted code contained substantial host-side boilerplate
including file I/O operations, timing code, argument parsing, and main functions that were irrelevant
for kernel optimization learning. We developed sophisticated regular expression patterns to isolate
essential CUDA components: __global__ kernel functions, __device__ helper functions, shared
memory declarations, texture memory bindings, and constant memory definitions. This cleaning
process removed host code complexity while eliminating 13 records that contained primarily host
code rather than meaningful kernel optimizations.

LLM Augmented Dataset Extension: To expand beyond limited natural optimization pairs, we
leveraged the Rodinia benchmark suite’s highly optimized CUDA implementations across diverse
computational domains. Since Rodinia lacks corresponding naive versions, we developed an Al-
assisted approach using Claude 3.5 Sonnet to generate semantically equivalent but unoptimized
implementations. We extracted optimized kernels from 29 Rodinia files spanning backpropagation,
computational fluid dynamics, discrete wavelet transforms, data compression, sorting, and image
processing. Through carefully crafted prompts, the Al generated slower naive versions by removing
advanced optimizations like shared memory usage, memory coalescing, and loop unrolling while
preserving identical functionality and signatures. This process yielded 29 additional optimization
pairs, providing explicit contrasts between straightforward and optimized implementations.

LLM-Compatible Formatting: The final dataset was structured to align with established kernel
benchmarking formats, creating lightweight, self-contained records suitable for language model
training. Each entry contains the benchmark name, source file identifier, a concise description
of the optimization strategy, and paired slow/fast kernel implementations. The resulting 16 high-
quality optimization examples span nine algorithmic domains and demonstrate diverse optimization
techniques including memory access pattern improvements (coalesced vs. uncoalesced access), shared
memory utilization, texture memory exploitation, register blocking, loop unrolling, and advanced
thread organization strategies. This curated dataset provides focused, practical examples of real-world
CUDA optimizations without the complexity of full application contexts, making it ideal for training
language models to understand and generate performance-oriented kernel transformations.

The resulting KernelCompare dataset contains 45 self-contained optimization examples suitable for
language model training. The 16 Parboil-derived pairs showcase natural optimization progressions
developed by domain experts, while the 29 Rodinia-derived pairs demonstrate systematic simplifica-
tion of advanced optimization techniques. This combination provides focused, practical examples
of real-world CUDA optimizations without full application complexity, making it ideal for training
language models to understand the principles underlying high-performance GPU kernel development
and generate meaningful optimization transformations.

"messages":

CUDA optimization expert. Given an unoptimized CUDA kernel, your task is to provide an optimized version that impro ile maintaining th

ze this CUDA kernel from the bfs benchmark (kernel.cu):\n\nsxDescriptionsx: - k for a \ impler n GPU\n\n#kCurrent Kernel (Unoptif

n unoptimized CUDA kernel, your task is to provide an optimi.

ze this CUDA kernel from the fft benchmark (fft.cu):\n\mwDescriptions: - This i asic FFT\n\ns+Current Kernel (Unoptimize

optimized CUDA kernel with ir rformance:\n\n* "¢ s o void GPU_FFT2( float2 &v1,float2 &2 ) {\n float2 v = vi;\n

4.2 Finetuning + RL

Our approach combines supervised fine-tuning (SFT) with reinforcement learning to optimize CUDA
kernel generation. This two-stage methodology addresses the challenge of improving both code
quality and performance optimization simultaneously. The framework consists of two distinct phases:
first, supervised fine-tuning provides initial adaptation of the base model to CUDA programming
patterns, followed by reinforcement learning with Group Relative Policy Optimization (GRPO)
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that uses KernelBench performance feedback to optimize the policy. This approach leverages the
complementary strengths of supervised learning for structural correctness and reinforcement learning
for performance optimization.

4.2.1 Model Architecture and Configuration

We utilize DeepSeek-R1-Distill-Qwen-7B as our foundation model, chosen for its strong code
generation capabilities, efficient parameter count of 1.5 billion parameters, and instruction-following
design that is well-suited for optimization tasks. To enable efficient training while preserving pre-
trained capabilities, we employ Low-Rank Adaptation (LoRA) with a rank of 32, alpha value of 64,
and dropout rate of 0.1. The LoRA adaptation targets the query, key, value, output, gate, up, and down
projection layers of the transformer architecture. This configuration provides approximately 0.84%
trainable parameters (12.6 million out of 1.5 billion), enabling efficient training while maintaining
model expressiveness for the complex task of CUDA optimization.

4.2.2 Data Preparation and Experimental Setup

We use KernelBench Level 1 comprising 100 single-kernel optimization problems as our experimental
dataset. The dataset is deterministically split using a fixed random seed of 42 to ensure reproducibility
across experiments, with 80 problems allocated to training (80%) and 20 problems reserved for testing
(20%). Each training instance is formulated as a code optimization problem consisting of an input
containing the original unoptimized CUDA kernel code, contextual information about performance
optimization requirements and constraints, and a target representing the optimized CUDA kernel with
improved performance characteristics.

4.2.3 Supervised Fine-Tuning Phase

The supervised fine-tuning phase adapts the base model to CUDA programming patterns using a
learning rate of 2e-4, batch size of 4, sequence length of 4096 tokens, and training for 8 epochs using
the AdamW optimizer with 100 warmup steps. We employ standard next-token prediction loss on
CUDA optimization examples, where the model learns to predict the next token in the optimized
kernel given the input kernel and context. This phase establishes the foundation for CUDA code
generation by teaching the model the syntactic and semantic patterns of GPU programming, including
proper kernel launch configurations, memory access patterns, and thread synchronization primitives.

4.2.4 Group Relative Policy Optimization Implementation

We implement Group Relative Policy Optimization (GRPO) rather than standard Proximal Policy
Optimization (PPO) for several key advantages in code generation tasks. GRPO learns from relative
quality comparisons rather than absolute rewards, making it more suitable for optimization tasks
where the relative ranking of solutions is more meaningful than their absolute scores. The algorithm
groups samples by reward quality and reduces variance in policy updates, while avoiding issues
with reward scaling and normalization that can plague traditional policy gradient methods in code
generation contexts. Our GRPO implementation uses the SFT model as the initial policy and
maintains a frozen copy as the reference model for penalty computation.

4.2.5 Reward Function Design

Our reward function evaluates generated CUDA kernels across three critical dimensions with carefully
weighted contributions. Compilation reward accounts for 40% of the total score and assigns 0.4
points if the kernel compiles successfully and 0.0 otherwise, ensuring that syntactically correct CUDA
code is prioritized. Correctness reward also contributes 40% and evaluates whether the kernel output
matches the reference implementation, receiving 0.4 points for correct execution and 0.0 for incorrect
results. Performance reward comprises the remaining 20% and awards 0.2 points if the execution time
is faster than the baseline PyTorch implementation, directly incentivizing optimization improvements.

While supervised fine-tuning teaches CUDA syntax and basic kernel structures, it cannot capture
performance optimization strategies since it only reproduces patterns from training data. Kernel-
Bench’s evaluation framework provides crucial performance feedback that supervised learning cannot
access—measuring actual execution time against PyTorch baselines. Reinforcement learning enables
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the model to generate diverse kernel variants, receive direct performance feedback, and iteratively
discover optimization strategies beyond training examples.

S5 Results
Table 1: Training Pipeline Results Summary
Training Stage Model Correctness | Speedup Perfor- | Key Observations
(Level 1) mance

Baseline DeepSeek-R1-Distill | 6% 0 speedups Naive CUDA implementations

(7B) under-utilize memory bandwidth
Supervised Fine- | + KernelCompare (45 | 10% 0 speedups 67% improvement in correct-
Tuning pairs) ness; demonstrates value of

CUDA optimization examples
Single-Turn + Single turn GRPO | 15% All 15 correct kernels | 50% improvement over SFT;
GRPO Optimization achieve >33% run- | first meaningful speedups
time reduction achieved

# CUDA Kernel Optimizer - Testin

Input kernel:
__global__ void vector_add(float* a, floatx b, floatx c, int
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < n) {
clidx] = alidx] + b[idx];

® Generating optimized kernel...
& Optimized Kernel:
Here's the optimized CUDA kernel with improved performance:

*xk0ptimized Kernel:xx

“*cuda

__global__
extern

void vector_add_optimized(float* a, floatx b, floatx c, int n) {
_shared__ float shared[];

// Initialize shared memor
shared[threadIdx.x] = 0.f;

// Load data into shared memory
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < n) {

shared[threadIdx.x] += alidx];

shared [threadIdx.x] += b[idx];

// Reduce in shared memory
for (int r = blockDim.x >> 1; r > @; r >>= 1) {
if (threadIdx.x % r == @) {
shared[threadIdx.x] += shared[threadIdx.x + r];

}

// Write result to global memory
if (threadIdx.x == @) {
c[blockIdx.x] = shared[@];

### Key Improvements:
*+¥Shared Memory Usagexk: Improved shared memory usage and management.
xxData Layoutsk: Optimized data layout and access patterns.

xkParallelization Strategy#x: Enhanced parallelization strategies for better load balancing.

xkMemory Access Patternssx: Better memory access patterns and coalescing.
*¥Reduction Operations#x: Optimized reduction operations in shared memory.
*xxBlock Configurationsx: Optimal block configuration and scheduling.

The optimized kernel achieves better memory utilization, reduces divergence, and improves overall throughput.
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6 Discussion

The experimental results provide initial evidence for the effectiveness of combining supervised fine-
tuning with single-turn reinforcement learning for CUDA kernel optimization, though with important
limitations. The baseline DeepSeek-R1-Distill (7B) model achieved only 6% correctness on Level 1
problems with no speedups, highlighting the challenge of GPU programming for general-purpose
language models.

Supervised fine-tuning on 80 KernelCompare pairs improved correctness to 10%, suggesting that
exposure to explicit optimization examples helps models learn CUDA patterns, though this alone was
insufficient for performance gains. The addition of single-turn GRPO further increased correctness to
15% while achieving the first meaningful speedups—notably, all 15 correct kernels demonstrated at
least 33% runtime reduction over their original baselines.

While these absolute correctness rates remain modest and the evaluation was limited to the simplest
Level 1 tasks, the results suggest that computationally efficient alternatives to expensive multi-turn
RL approaches may be viable for CUDA optimization. The combination of targeted supervised
learning followed by single-turn reinforcement learning appears to provide a reasonable balance
between computational cost and performance improvement, though significant work remains to scale
these approaches to more complex optimization tasks and achieve higher overall success rates.

7 Future Work

Future research should explore scaling this approach through larger datasets and advanced data
augmentation techniques, including synthetic kernel pair generation to create more comprehensive
optimization examples for training. Evaluating larger language models (7B+ parameters) would
provide insights into whether model scale significantly improves CUDA optimization capabilities
beyond the current baseline. A comprehensive ablation study comparing supervised fine-tuning alone
against multi-turn GRPO implementation—would establish which training paradigm is most effective
for code optimization tasks while looking at cost and power efficiency. Additionally, conducting
a thorough analysis of computational cost and infrastructure savings achieved through automated
kernel optimization could quantify the practical economic benefits of this approach, particularly
for organizations with large-scale GPU workloads where even modest performance improvements
translate to significant operational savings. These extensions would establish a more robust foundation
for automated CUDA optimization and demonstrate its viability for production deployment.

8 Conclusion

This work presents an initial investigation into using large language models for CUDA kernel opti-
mization through a combination of supervised fine-tuning and reinforcement learning. I introduced
KernelCompare, a curated dataset of 45 slow-fast kernel pairs extracted from established GPU
benchmarks, and demonstrated that targeted supervised learning on optimization examples can im-
prove model performance on kernel generation tasks. The two-stage training approach—supervised
fine-tuning followed by single-turn Group Relative Policy Optimization—achieved progressive im-
provements in both correctness (6% to 15%) and performance optimization, with all correct kernels
demonstrating meaningful speedups over PyTorch baselines. While the results are encouraging, par-
ticularly the computational efficiency of single-turn RL compared to expensive multi-turn approaches,
significant limitations remain. The evaluation focused exclusively on Level 1 single-kernel tasks,
absolute correctness rates remain modest, and scaling to more complex optimization challenges
will require substantial additional work. Nevertheless, these findings suggest that language models
can begin to learn performance-oriented programming patterns when provided with appropriate
training data and reward signals. Future research should investigate scaling these approaches to
larger models and more complex benchmark tasks, exploring whether the computational savings from
efficient training methods can be reinvested to achieve broader and more reliable kernel optimization
capabilities. The ultimate goal of automating GPU kernel development remains distant, but this
work provides a foundation for understanding how to effectively combine supervised learning and
reinforcement learning for this challenging domain.
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9 Contributions

I worked on this project as an individual and hence everything above is my work.
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