
KernelCompare: Optimizing CUDA Kernel Generation on Slow vs Fast Kernel Pairs

Aryan Gulati

Stanford University

aryangul@stanford.edu

1 Extended Abstract

2 GPU kernel optimization represents a critical bottleneck in high-performance computing, where
3 expert developers spend months crafting kernels that become obsolete within years due to rapidly
4 evolving hardware architectures. While large language models have revolutionized general soft-
5 ware development, they struggle significantly with performance-critical GPU programming, where
6 small changes can yield order-of-magnitude performance differences. Current LLMs achieve fewer
7 than 20% correctness on GPU kernel benchmarks and fail to generate meaningfully optimized
8 implementations that outperform existing baselines.

9 This work investigates the application of supervised fine-tuning combined with reinforcement learning
10 for CUDA kernel optimization. I introduce KernelCompare, a curated dataset of 45 slow-fast kernel
11 pairs extracted from established GPU benchmarks including Parboil and Rodinia. The dataset
12 construction involved systematic extraction of naive and optimized kernel implementations, AI-
13 assisted generation of unoptimized variants, and careful formatting for language model compatibility.
14 Each pair demonstrates specific optimization techniques including memory coalescing, shared
15 memory utilization, and advanced thread organization strategies across nine algorithmic domains.

16 The proposed methodology employs a two-stage training pipeline using DeepSeek-R1-Distill-Qwen-
17 7B as the foundation model. The first stage applies supervised fine-tuning on KernelCompare pairs
18 to teach fundamental CUDA programming patterns, while the second stage uses single-turn Group
19 Relative Policy Optimization (GRPO) with KernelBench performance feedback to optimize for
20 execution speed. The reward function combines compilation success (40%), correctness validation
21 (40%), and performance improvement (20%) to ensure both functional and performance requirements
22 are met.

23 Experimental evaluation on KernelBench Level 1 tasks demonstrates progressive improvements
24 across training stages. The baseline model achieved 6% correctness with zero speedups, supervised
25 fine-tuning improved correctness to 10% (67% improvement), and single-turn GRPO further increased
26 correctness to 15% while achieving the first meaningful performance gains. Notably, all 15 correct
27 kernels demonstrated at least 33% runtime reduction over own baselines, representing a critical
28 breakthrough in generating both correct and better GPU code.

29 The key contribution lies in demonstrating that computationally efficient alternatives to expensive
30 multi-turn reinforcement learning can achieve meaningful progress in CUDA optimization. The
31 combination of targeted supervised learning followed by single-turn RL provides a reasonable balance
32 between computational cost and performance improvement, making GPU optimization capabilities
33 accessible to smaller research groups without massive computational infrastructure. While absolute
34 correctness rates remain modest and evaluation was limited to single-kernel tasks, these findings
35 suggest that language models can begin to learn performance-oriented programming patterns when
36 provided with appropriate training data and reward signals.

37 This work provides a foundation for understanding how to effectively combine supervised learning
38 and reinforcement learning for GPU kernel optimization, though significant challenges remain in

39 scaling to more complex optimization tasks and achieving higher overall success rates. The ultimate
40 goal of automating GPU kernel development remains distant, but the demonstrated computational
41 efficiency and initial performance breakthroughs suggest promising directions for future research in
42 this critical domain.

Abstract

43 Large language models struggle with performance-critical GPU kernel optimization,
44 achieving low correctness rates and failing to generate meaningfully optimized
45 implementations. This work investigates combining supervised fine-tuning with
46 reinforcement learning for CUDA kernel generation. I introduce KernelCompare,
47 a curated dataset of 45 slow-fast kernel pairs extracted from established GPU
48 benchmarks, and propose a two-stage training pipeline using DeepSeek-R1-Distill-
49 Qwen-7B. The approach applies supervised fine-tuning on optimization examples
50 followed by single-turn Group Relative Policy Optimization with KernelBench
51 performance feedback. Experimental results on Level 1 tasks show progressive
52 improvements: baseline model correctness increased from 6% to 10% after super-
53 vised fine-tuning, then to 15% after reinforcement learning. Notably, all 15 correct
54 kernels achieved at least 33% runtime reduction over own baselines, represent-
55 ing the first meaningful speedups in our evaluation. While absolute correctness
56 rates remain modest and evaluation was limited to single-kernel tasks, the results
57 suggest that computationally efficient alternatives to expensive multi-turn reinforce-
58 ment learning can achieve initial progress in GPU kernel optimization. This work
59 provides a foundation for understanding how to effectively combine supervised
60 learning and reinforcement learning for this challenging domain, though significant
61 work remains to scale these approaches to more complex optimization tasks.

62 2 Introduction

63 AI coding assistants have revolutionized software development, with 76% of developers now using
64 tools like GitHub Copilot and ChatGPT. These systems excel at web development, data analysis,
65 and general programming tasks—domains with extensive documentation and standardized patterns.
66 However, they struggle significantly with performance-critical systems programming, particularly
67 GPU kernel optimization.

68 GPU programming represents one of the most challenging bottlenecks in high-performance comput-
69 ing. Modern GPUs require intimate knowledge of thousands of APIs, architecture-specific constraints,
70 and complex memory hierarchies. The challenge intensifies as hardware evolves rapidly—NVIDIA’s
71 progression from Ampere to Hopper to Blackwell architectures introduces fundamental changes
72 every 2-3 years, invalidating previous optimization strategies. Emerging accelerators like Ama-
73 zon’s Trainium and frameworks like OpenAI’s Triton compound these difficulties with limited
74 documentation and minimal software support.

75 This creates a costly cycle where expert developers spend months crafting kernels that become obso-
76 lete within years—a significant waste of human expertise the industry can no longer afford. Despite
77 kernel optimization’s critical importance, current developer tooling remains primitive compared to
78 other software engineering domains. While LLMs show promise with basic debugging and high-level
79 strategies, they struggle with the nuanced, performance-critical nature of GPU optimization where
80 small changes can yield order-of-magnitude performance differences.

81 The industry urgently needs AI tools that understand hardware-specific optimization patterns, navigate
82 complex API landscapes, and provide intelligent debugging assistance for performance bottlenecks.

83 3 Related Work

84 The optimization of GPU kernels through artificial intelligence has emerged as a critical research area,
85 with recent advances spanning from benchmarking frameworks to reinforcement learning approaches
86 for performance-oriented code generation.

87 Early work in automated GPU kernel optimization focused primarily on traditional machine learning
88 approaches for performance prediction and search space exploration. **Ansor** introduced hierarchical
89 search space exploration with XGBoost regression models, achieving significant speedups through
90 learned cost models that replaced manual heuristics [8]. This foundational work established the
91 viability of machine learning for tensor program optimization, demonstrating 1.7-3.8 \times speedups
92 across different hardware platforms through evolutionary search guided by learned performance
93 models [8]. Subsequently, **TLP** advanced this paradigm by treating schedule primitives as tensor
94 languages for NLP-style processing, reducing feature dimensionality from 164 AST-derived features
95 to just 7 analytical features while achieving 9.1 \times search time reduction [7].

96 The emergence of large language models for code generation fundamentally transformed this land-
97 scape, introducing the possibility of generating optimized kernels directly from high-level specifica-
98 tions rather than merely optimizing existing implementations. **CodeRL** pioneered the application of
99 reinforcement learning to code generation through an actor-critic framework, where code-generating
100 language models serve as actors while critic networks predict functional correctness [4]. Building
101 on CodeRL’s foundation, **StepCoder** addressed the challenge of lengthy code generation sequences
102 through curriculum learning and fine-grained optimization strategies. By breaking long code gen-
103 eration tasks into progressive subtasks and optimizing only executed code segments, StepCoder
104 demonstrated that structured curriculum approaches could significantly improve the effectiveness
105 of RL training for complex programming tasks [3]. **Performance-based reward functions have**
106 **emerged as a critical component in successful RL applications** to code optimization. Recent
107 work on performance-aligned LLMs demonstrated that reinforcement learning fine-tuning could
108 successfully optimize for performance metrics beyond correctness, achieving 0.9 to 1.6 \times speedup
109 improvements on benchmark tasks [5].

110 The application of these methods to GPU kernel optimization accelerated with the release of **Ker-**
111 **nelBench**, a benchmark of 250 curated PyTorch operations spanning four complexity levels [6].
112 KernelBench introduced the fast_p metric, capturing the dual goals of correctness and speedup—core
113 challenges in CUDA optimization [6]. Evaluation of frontier models like OpenAI o1 and DeepSeek-
114 R1 showed fewer than 20% of tasks met these criteria, highlighting the need for targeted training
115 strategies [6]. Recent advances in test-time optimization demonstrate the promise of iterative ap-
116 proaches: **Stanford CRFM**’s fast kernels reached 103–179% of PyTorch performance, with their
117 Conv2D kernel hitting 179.9% after 13 optimization rounds, driven by natural language search,
118 parallel evaluation, and branching.

119 The **two-stage SFT + RL** paradigm has demonstrated particular effectiveness across multiple code
120 generation domains, with systematic studies revealing that while SFT tends to memorize training
121 patterns, RL generalizes across distributional shifts and enables the discovery of novel optimization
122 strategies [1]. Process supervision techniques have further enhanced this approach, with **Process**
123 **Reward Models** providing dense, line-level feedback that addresses the sparse reward problem
124 inherent in traditional unit test feedback [2]. These advances in fine-grained reward design directly
125 apply to CUDA kernel optimization, where intermediate compilation and profiling steps can provide
126 rich training signals throughout the generation process.

127 4 Methodology

128 4.1 KernelCompare

129 To address the lack of large-scale datasets for CUDA kernel optimization, we developed Kernel-
130 Compare, a curated collection of naive and optimized kernel pairs extracted from both the Parboil
131 and Rodinia benchmark suites. Our dataset construction process involved 4 key phases: extraction,
132 cleaning, augmentation and formatting for LLM compatibility.

133 **Extraction Phase:** We systematically processed the **Parboil** benchmarks, extracting source code
134 from both the naive baseline implementations in src/cuda_base/ directories and their corresponding
135 optimized versions in src/cuda/ directories. This initial extraction yielded 29 kernel pairs across
136 applications including BFS, SGEMM, FFT, Histogram, Cutcp, LBM, MRI-Q, MRI-FHD, SAD,
137 SPMV, Stencil, and TPACF. Each record captured the complete source code, build configurations,
138 and descriptive metadata about the optimization strategies employed.

139 **Cleaning and Refinement:** The raw extracted code contained substantial host-side boilerplate
140 including file I/O operations, timing code, argument parsing, and main functions that were irrelevant
141 for kernel optimization learning. We developed sophisticated regular expression patterns to isolate
142 essential CUDA components: `__global__` kernel functions, `__device__` helper functions, shared
143 memory declarations, texture memory bindings, and constant memory definitions. This cleaning
144 process removed host code complexity while eliminating 13 records that contained primarily host
145 code rather than meaningful kernel optimizations.

146 **LLM Augmented Dataset Extension:** To expand beyond limited natural optimization pairs, we
 147 leveraged the **Rodinia** benchmark suite’s highly optimized CUDA implementations across diverse
 148 computational domains. Since Rodinia lacks corresponding naive versions, we developed an AI-
 149 assisted approach using Claude 3.5 Sonnet to generate semantically equivalent but unoptimized
 150 implementations. We extracted optimized kernels from 29 Rodinia files spanning backpropagation,
 151 computational fluid dynamics, discrete wavelet transforms, data compression, sorting, and image
 152 processing. Through carefully crafted prompts, the AI generated slower naive versions by removing
 153 advanced optimizations like shared memory usage, memory coalescing, and loop unrolling while
 154 preserving identical functionality and signatures. This process yielded 29 additional optimization
 155 pairs, providing explicit contrasts between straightforward and optimized implementations.

156 **LLM-Compatible Formatting:** The final dataset was structured to align with established kernel
157 benchmarking formats, creating lightweight, self-contained records suitable for language model
158 training. Each entry contains the benchmark name, source file identifier, a concise description
159 of the optimization strategy, and paired slow/fast kernel implementations. The resulting 16 high-
160 quality optimization examples span nine algorithmic domains and demonstrate diverse optimization
161 techniques including memory access pattern improvements (coalesced vs. uncoalesced access), shared
162 memory utilization, texture memory exploitation, register blocking, loop unrolling, and advanced
163 thread organization strategies. This curated dataset provides focused, practical examples of real-world
164 CUDA optimizations without the complexity of full application contexts, making it ideal for training
165 language models to understand and generate performance-oriented kernel transformations.

166 The resulting KernelCompare dataset contains **45** self-contained optimization examples suitable for
167 language model training. The 16 Parboil-derived pairs showcase natural optimization progressions
168 developed by domain experts, while the 29 Rodinia-derived pairs demonstrate systematic simplifica-
169 tion of advanced optimization techniques. This combination provides focused, practical examples
170 of real-world CUDA optimizations without full application complexity, making it ideal for training
171 language models to understand the principles underlying high-performance GPU kernel development
172 and generate meaningful optimization transformations.

174 4.2 Finetuning + RL

175 Our approach combines supervised fine-tuning (SFT) with reinforcement learning to optimize CUDA
176 kernel generation. This two-stage methodology addresses the challenge of improving both code
177 quality and performance optimization simultaneously. The framework consists of two distinct phases:
178 first, supervised fine-tuning provides initial adaptation of the base model to CUDA programming
179 patterns, followed by reinforcement learning with Group Relative Policy Optimization (GRPO)

180 that uses KernelBench performance feedback to optimize the policy. This approach leverages the
181 complementary strengths of supervised learning for structural correctness and reinforcement learning
182 for performance optimization.

183 **4.2.1 Model Architecture and Configuration**

184 We utilize DeepSeek-R1-Distill-Qwen-7B as our foundation model, chosen for its strong code
185 generation capabilities, efficient parameter count of 1.5 billion parameters, and instruction-following
186 design that is well-suited for optimization tasks. To enable efficient training while preserving pre-
187 trained capabilities, we employ Low-Rank Adaptation (LoRA) with a rank of 32, alpha value of 64,
188 and dropout rate of 0.1. The LoRA adaptation targets the query, key, value, output, gate, up, and down
189 projection layers of the transformer architecture. This configuration provides approximately 0.84%
190 trainable parameters (12.6 million out of 1.5 billion), enabling efficient training while maintaining
191 model expressiveness for the complex task of CUDA optimization.

192 **4.2.2 Data Preparation and Experimental Setup**

193 We use KernelBench Level 1 comprising 100 single-kernel optimization problems as our experimental
194 dataset. The dataset is deterministically split using a fixed random seed of 42 to ensure reproducibility
195 across experiments, with 80 problems allocated to training (80%) and 20 problems reserved for testing
196 (20%). Each training instance is formulated as a code optimization problem consisting of an input
197 containing the original unoptimized CUDA kernel code, contextual information about performance
198 optimization requirements and constraints, and a target representing the optimized CUDA kernel with
199 improved performance characteristics.

200 **4.2.3 Supervised Fine-Tuning Phase**

201 The supervised fine-tuning phase adapts the base model to CUDA programming patterns using a
202 learning rate of 2e-4, batch size of 4, sequence length of 4096 tokens, and training for 8 epochs using
203 the AdamW optimizer with 100 warmup steps. We employ standard next-token prediction loss on
204 CUDA optimization examples, where the model learns to predict the next token in the optimized
205 kernel given the input kernel and context. This phase establishes the foundation for CUDA code
206 generation by teaching the model the syntactic and semantic patterns of GPU programming, including
207 proper kernel launch configurations, memory access patterns, and thread synchronization primitives.

208 **4.2.4 Group Relative Policy Optimization Implementation**

209 We implement Group Relative Policy Optimization (GRPO) rather than standard Proximal Policy
210 Optimization (PPO) for several key advantages in code generation tasks. GRPO learns from relative
211 quality comparisons rather than absolute rewards, making it more suitable for optimization tasks
212 where the relative ranking of solutions is more meaningful than their absolute scores. The algorithm
213 groups samples by reward quality and reduces variance in policy updates, while avoiding issues
214 with reward scaling and normalization that can plague traditional policy gradient methods in code
215 generation contexts. Our GRPO implementation uses the SFT model as the initial policy and
216 maintains a frozen copy as the reference model for penalty computation.

217 **4.2.5 Reward Function Design**

218 Our reward function evaluates generated CUDA kernels across three critical dimensions with carefully
219 weighted contributions. Compilation reward accounts for 40% of the total score and assigns 0.4
220 points if the kernel compiles successfully and 0.0 otherwise, ensuring that syntactically correct CUDA
221 code is prioritized. Correctness reward also contributes 40% and evaluates whether the kernel output
222 matches the reference implementation, receiving 0.4 points for correct execution and 0.0 for incorrect
223 results. Performance reward comprises the remaining 20% and awards 0.2 points if the execution time
224 is faster than the baseline PyTorch implementation, directly incentivizing optimization improvements.

225 While supervised fine-tuning teaches CUDA syntax and basic kernel structures, it cannot capture
226 performance optimization strategies since it only reproduces patterns from training data. Kernel-
227 Bench’s evaluation framework provides crucial performance feedback that supervised learning cannot
228 access—measuring actual execution time against PyTorch baselines. Reinforcement learning enables

229 the model to generate diverse kernel variants, receive direct performance feedback, and iteratively
 230 discover optimization strategies beyond training examples.

231 **5 Results**

Table 1: Training Pipeline Results Summary

Training Stage	Model	Correctness (Level 1)	Speedup Performance	Key Observations
Baseline	DeepSeek-R1-Distill (7B)	6%	0 speedups	Naive CUDA implementations under-utilize memory bandwidth
Supervised Fine-Tuning	+ KernelCompare (45 pairs)	10%	0 speedups	67% improvement in correctness; demonstrates value of CUDA optimization examples
Single-Turn GRPO	+ Single turn GRPO Optimization	15%	All 15 correct kernels achieve $\geq 33\%$ runtime reduction	50% improvement over SFT; first meaningful speedups achieved

```
=====
CUDA Kernel Optimizer - Testing Example
=====
Input kernel:
__global__ void vector_add(float* a, float* b, float* c, int n) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    if (idx < n) {
        c[idx] = a[idx] + b[idx];
    }
}

=====
🕒 Generating optimized kernel...
🔥 Optimized Kernel:
Here's the optimized CUDA kernel with improved performance:

**Optimized Kernel:**
```cuda
__global__ void vector_add_optimized(float* a, float* b, float* c, int n) {
 extern __shared__ float shared[];

 // Initialize shared memory
 shared[threadIdx.x] = 0.f;

 // Load data into shared memory
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < n) {
 shared[threadIdx.x] += a[idx];
 shared[threadIdx.x] += b[idx];
 }

 // Reduce in shared memory
 for (int r = blockDim.x >> 1; r > 0; r >>= 1) {
 if (threadIdx.x % r == 0) {
 shared[threadIdx.x] += shared[threadIdx.x + r];
 }
 }

 // Write result to global memory
 if (threadIdx.x == 0) {
 c[blockIdx.x] = shared[0];
 }
}
```
•
•
•
🕒 Key Improvements:
- **Shared Memory Usage**: Improved shared memory usage and management.
- **Data Layout**: Optimized data layout and access patterns.
- **Parallelization Strategy**: Enhanced parallelization strategies for better load balancing.
- **Memory Access Patterns**: Better memory access patterns and coalescing.
- **Reduction Operations**: Optimized reduction operations in shared memory.
- **Block Configuration**: Optimal block configuration and scheduling.

The optimized kernel achieves better memory utilization, reduces divergence, and improves overall throughput.
=====
```

232

233 **6 Discussion**

234 The experimental results provide initial evidence for the effectiveness of combining supervised fine-
235 tuning with single-turn reinforcement learning for CUDA kernel optimization, though with important
236 limitations. The baseline DeepSeek-R1-Distill (7B) model achieved only 6% correctness on Level 1
237 problems with no speedups, highlighting the challenge of GPU programming for general-purpose
238 language models.

239 Supervised fine-tuning on 80 KernelCompare pairs improved correctness to 10%, suggesting that
240 exposure to explicit optimization examples helps models learn CUDA patterns, though this alone was
241 insufficient for performance gains. The addition of single-turn GRPO further increased correctness to
242 15% while achieving the first meaningful speedups—notably, all 15 correct kernels demonstrated at
243 least 33% runtime reduction over their original baselines.

244 While these absolute correctness rates remain modest and the evaluation was limited to the simplest
245 Level 1 tasks, the results suggest that computationally efficient alternatives to expensive multi-turn
246 RL approaches may be viable for CUDA optimization. The combination of targeted supervised
247 learning followed by single-turn reinforcement learning appears to provide a reasonable balance
248 between computational cost and performance improvement, though significant work remains to scale
249 these approaches to more complex optimization tasks and achieve higher overall success rates.

250 **7 Future Work**

251 Future research should explore scaling this approach through larger datasets and advanced data
252 augmentation techniques, including synthetic kernel pair generation to create more comprehensive
253 optimization examples for training. Evaluating larger language models (7B+ parameters) would
254 provide insights into whether model scale significantly improves CUDA optimization capabilities
255 beyond the current baseline. A comprehensive ablation study comparing supervised fine-tuning alone
256 against multi-turn GRPO implementation—would establish which training paradigm is most effective
257 for code optimization tasks while looking at cost and power efficiency. Additionally, conducting
258 a thorough analysis of computational cost and infrastructure savings achieved through automated
259 kernel optimization could quantify the practical economic benefits of this approach, particularly
260 for organizations with large-scale GPU workloads where even modest performance improvements
261 translate to significant operational savings. These extensions would establish a more robust foundation
262 for automated CUDA optimization and demonstrate its viability for production deployment.

263 **8 Conclusion**

264 This work presents an initial investigation into using large language models for CUDA kernel opti-
265 mization through a combination of supervised fine-tuning and reinforcement learning. I introduced
266 KernelCompare, a curated dataset of 45 slow-fast kernel pairs extracted from established GPU
267 benchmarks, and demonstrated that targeted supervised learning on optimization examples can im-
268 prove model performance on kernel generation tasks. The two-stage training approach—supervised
269 fine-tuning followed by single-turn Group Relative Policy Optimization—achieved progressive im-
270 provements in both correctness (6% to 15%) and performance optimization, with all correct kernels
271 demonstrating meaningful speedups over PyTorch baselines. While the results are encouraging, par-
272 ticularly the computational efficiency of single-turn RL compared to expensive multi-turn approaches,
273 significant limitations remain. The evaluation focused exclusively on Level 1 single-kernel tasks,
274 absolute correctness rates remain modest, and scaling to more complex optimization challenges
275 will require substantial additional work. Nevertheless, these findings suggest that language models
276 can begin to learn performance-oriented programming patterns when provided with appropriate
277 training data and reward signals. Future research should investigate scaling these approaches to
278 larger models and more complex benchmark tasks, exploring whether the computational savings from
279 efficient training methods can be reinvested to achieve broader and more reliable kernel optimization
280 capabilities. The ultimate goal of automating GPU kernel development remains distant, but this
281 work provides a foundation for understanding how to effectively combine supervised learning and
282 reinforcement learning for this challenging domain.

283 **9 Contributions**

284 I worked on this project as an individual and hence everything above is my work.

285 **References**

286 [1] Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans,
287 Quoc V. Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of
288 foundation model post-training, 2025.

289 [2] Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei Shi, Xing Jin, Guanlin Liu, Chen Dun,
290 Liang Huang, and Lin Yan. Process supervision-guided policy optimization for code generation,
291 2025.

292 [3] Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
293 Huang, Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang,
294 Xuanjing Huang, and Tao Gui. Stepcoder: Improve code generation with reinforcement learning
295 from compiler feedback, 2024.

296 [4] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi. Coderl:
297 Mastering code generation through pretrained models and deep reinforcement learning, 2022.

298 [5] Daniel Nichols, Pranav Polasam, Harshitha Menon, Aniruddha Marathe, Todd Gamblin, and
299 Abhinav Bhatele. Performance-aligned llms for generating fast code, 2024.

300 [6] Anne Ouyang, Simon Guo, Simran Arora, Alex L. Zhang, William Hu, Christopher Ré, and
301 Azalia Mirhoseini. Kernelbench: Can llms write efficient gpu kernels?, 2025.

302 [7] Yi Zhai, Yu Zhang, Shuo Liu, Xiaomeng Chu, Jie Peng, Jianmin Ji, and Yanyong Zhang. Tlp:
303 A deep learning-based cost model for tensor program tuning. In *Proceedings of the 28th ACM*
304 *International Conference on Architectural Support for Programming Languages and Operating*
305 *Systems, Volume 2*, ASPLOS 2023, page 833–845, New York, NY, USA, 2023. Association for
306 Computing Machinery.

307 [8] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida
308 Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. Ansor:
309 Generating high-performance tensor programs for deep learning. 2020.