ReCAP: Recursive Context-Aware Reasoning and
Planning with Language Models

Zhenyu Zhang Tianyi Chen
Department of Computer Science Department of Computer Science
Stanford University Stanford University
zhenyuz5@stanford.edu tchen2880stanford.edu
Weiran Xu

Department of Computer Science
Stanford University
weiran@stanford.edu

Abstract

Motivation. Intelligent agents must handle high-level goals and low-level actions
over dozens of steps. Flat prompting strategies such as Chain-of-Thought, ReAct,
or Reflexion struggle once the dialogue grows beyond the model’s context window,
causing plans to be forgotten or repeated. Empirically, we find that every open-
source model at or below 14 B parameters fails every task in the long-horizon
ROBOTOUILLE benchmark, exposing a severe small-model planning gap. Method.
We present ReCAP (Recursive Context-Aware Planning), a hierarchical prompting
framework that: (i) recursively decomposes a user goal into finer subtasks until
a primitive action appears; (ii) stores each goal, reasoning trace, subtask list, and
observation in a dynamic context tree; and (iii) triggers backtracking-driven revision
whenever a leaf node completes or fails, re-prompting the LLM at its parent to
update downstream plans. This keeps strategic intent adjacent to the current dialog
turn, preventing drift. To lift small models, we add ReCAP-DPO: rank-16 LoRA
adapters on Qwen-2.5-14B are tuned with Direct Preference Optimization. We
mine 1,500 preference triples by pairing the first three subtask turns from successful
GPT-4o runs (y ™) with the corresponding failed Qwen plans (y~) under identical
prompts; a single classification loss (5 = 0.1) then shifts likelihood mass from
y~ to y*. Implementation & Results. The pipeline wraps ROBOTOUILLE in an
OpenAl evaluation harness. All agents receive an “onion-cheese sandwich” one-
shot demo, same context cap, and a 3x step budget. Full-suite GPT-40: ReCAP
boosts pass@1 from 38 — 70 % (sync) and 24 — 53 % (async). Cross-scale: on
three representative recipes (IDs 2, 4, 6) ReCAP raises success from {63, 10, 23,
37, 57}% (ReAct) to {90, 33, 53, 60, 87}% across GPT-40, Qwen-32B, Qwen-
72B, LLaMA-4 400B, and DeepSeek-V3 671B. ReCAP-DPO turns the 14 B
model’s 0 % into 20 % success with only 0.17 % trainable parameters and 28 GB
of GPU memory. Discussion & Conclusion. Structured recursion and context-
aware memory allows even proprietary-size models to maintain coherent long-
range plans without expanding context windows, while lightweight DPO+LoRA
alignment revives commodity checkpoints. Limitations remain: ReCAP relies
entirely on LLM judgments, so low-level execution errors propagate unchecked,
and recursive prompting increases latency and API cost. Future work will separate
high-level planning from primitive execution, introduce graph-based memory for
targeted retrieval, and explore self-generated preference signals to remove oracle

Preprint. Under review.

dependence. Overall, ReCAP and ReCAP-DPO demonstrate a recipe for scalable,
compute-efficient embodied agents.

Abstract

We present ReCAP, a recursive, context-aware prompting framework that keeps
long-horizon plans near an LLM’s current context via a dynamic context tree and
backtracking-driven refinement. On the embodied ROBOTOUILLE benchmark
ReCAP boosts GPT-40’s pass@1 success rates from 38 — 70% (synchronous)
and 24 — 53 % (asynchronous) and consistently outperforms ReAct across five
model scales (32 B — 671 B). All models < 14 B parameters, however, still fail.
To bridge this gap we introduce ReCAP-DPO: rank-16 LoRA adapters on Qwen-
2.5-14B are tuned with 1,500 GPT-40-vs-Qwen preference triples using Direct
Preference Optimization. The aligned agent leaps from 0 % to 20 % success while
adding only 0.17 % trainable parameters, demonstrating that structured recursion
plus lightweight preference alignment can deliver compute-efficient, long-horizon
reasoning.

1 Introduction

A key characteristic of intelligence is the fluid transition between high-level abstract reasoning and
low-level concrete execution—something humans routinely perform in everyday tasks [13]. Imagine
preparing a complex dish like an onion cheese sandwich. The process begins with formulating a
broad strategic plan—identifying essential ingredients, selecting appropriate tools, and outlining a
feasible sequence of steps. This high-level plan is then progressively refined into precise, actionable
subtasks such as gathering bread slices, slicing onions, and assembling ingredients in the correct order.
However, real-world interactions typically introduce unexpected complexities: the cutting board may
already be occupied with another ingredient, a needed utensil might be temporarily unavailable, or
intermediate steps previously planned could turn incomplete or incorrect. Addressing such scenarios
demands real-time long-horizon adaptive reasoning and planning, requiring an intelligent system
not only to maintain its original intention but also to flexibly accommodate unexpected deviations
through context-aware plan revision and high-to-low-level transitions [18l, 4]

Recent advances have demonstrated the impressive capabilities of LLMs in complex sequential
reasoning and decision-making tasks through frameworks such as ReAct [4] and Reflexion [16].
By leveraging interactive reasoning and self-reflective prompting strategies, these methods enable
LLM agents to interleave reasoning with action, enhancing their problem-solving performance.
However, in long-horizon settings, sequential execution frameworks often encounter a key limitation:
early plans and interactions may no longer fit within the LLM’s context window, causing the agent
to lose track of its high-level strategy or repeatedly attempt previously failed actions. Even with
extended context lengths, LLMs still struggle to accurately retrieve and follow prior plans [11]. While
Reflexion introduces iterative self-reflection to revise memory and improve robustness, it relies on
multiple rounds of trial and correction, which can be inefficient and unstable in real settings. Without
mechanisms for effective context recall and adaptation, these methods remain fragile to unexpected
feedback and execution errors [22 3], often resulting in unproductive action loops and reduced task
success rates.

To overcome these limitations, we introduce RECAP (Recursive Context-Aware reasoning and
Planning), a novel hierarchical reasoning framework specifically developed to enhance the adaptability
of LLM agents in long-horizon, multi-step environments. ReCAP comprises three novel components:
(1) recursive hierarchical decomposition, systematically dividing complex tasks into relatively
simple subtasks and recursively executing them; (2) dynamic context tree, tracking evolving task
hierarchies, ongoing reasoning trajectories, and external environment feedback; and (3) a real-time
adaptive subtask generation and backtracking mechanism, enabling continuous plan refinement
and error recovery as tasks evolve. At its core, the dynamic context tree acts as a structured memory
representation, enabling ReCAP agents to alternate between reasoning levels by descending into
detailed subproblems and ascending back to higher-level goals upon completion or detection of
failures. These three components enable ReCAP agents to perform recursive execution. Such a

Far Apart

Seidl DED-@r @G> ... S

Close Together
R i RN
i O OROROROROR O OZORG)

Context Tree Execution order

Figure 1: Execution flow and context structure in sequential vs. recursive execution. Sequential
execution (e.g., ReAct) pushes early plans further into context, while ReCAP’s recursive strategy
keeps high-level goals closer to the current execution point, preserving semantic alignment.

structure provides critical context awareness across task progressions, mitigating the weakness of
previous sequential reasoning methods.

We benchmark ReCAP in two settings on the high-fidelity ROBOTOUILLE cooking simulator [6].
First, on all ten synchronous and ten asynchronous tasks using GPT-40, ReCAP boosts pass@ 1
success from 38 % to 70 % in synchronous mode and from 24 % to 53 % in asynchronous mode.
Second, to probe model-scale generality we test three representative synchronous recipes (IDs 2, 4,
6) under a 64-message context cap across five LLMs. ReCAP raises success rates for Qwen2.5-32B,
Qwen2.5-72B, LLaMA-4 (400B), and DeepSeek-V3 (671B) from {10, 23, 37, 57}% to {33, 53, 60,
87} %, respectively, and lifts GPT-40 from 63 % to 90%. Strikingly, every model at or below 14 B
parameters scores 0 %, exposing a “small-model planning gap” in long-horizon embodied tasks.

To close this gap we incorporate Direct Preference Optimization (DPO) [14] with Low-Rank Adapta-
tion (LoRA) [7]]. We pair 1,500 successful GPT-4o0 plans with failed Qwen2.5-14B plans for identical
inputs and fine-tune only rank-8 LoRA adapters in the smaller model. After three epochs the resulting
ReCAP-DPO agent attains a 20 % success rate, transforming an unusable 14 B model into one that
attains non-zero success rate.

In summary, ReCAP couples structured recursion with context-aware memory to deliver long-horizon
reasoning; its merits generalize across model scales; and lightweight DPO can rescue small models
that otherwise fail.

2 Related Work

Chain-of-thought (CoT) prompting has emerged as a simple yet powerful technique to elicit step-
by-step reasoning in LLMs, improving performance on complex multi-step problems [[19]]. Building
on this idea, the ReAct framework interleaves reasoning traces with actionable steps, enabling an
agent to query external tools or environments in the midst of its chain of thought [4]. These strategies
bolster the interactivity and interpretability of LLM reasoning; however, because they operate in a
strictly sequential fashion, they often struggle to maintain long-horizon consistency. In extended
decision-making or tool-use scenarios, a CoT or ReAct agent may lose track of global objectives or
earlier context, as there is no mechanism for revisiting earlier decisions or enforcing an overarching
plan. To address the limitations of linear thought chains, researchers have proposed hierarchical and
search-based reasoning frameworks. Tree-of-Thoughts (ToT) generalizes CoT prompting by allowing
the model to branch into multiple possible thought paths and then search or backtrack among them
to find a more coherent solution [5]. By exploring a tree of reasoning steps with self-evaluation
at each branch, ToT and similar methods introduce lookahead and deliberation beyond a greedy
left-to-right generation. This improves performance on tasks requiring planning or exploration,
such as puzzle solving and game-play, by considering alternate reasoning pathways. However, the
breadth-first or backtracking search over thoughts comes with a much higher computational cost, and
its applicability is often confined to short, self-contained problems. In open-ended or real-time agent
domains, an exhaustive search may be impractical, and a strict tree search may still fail to incorporate
new information obtained as the environment evolves.

Reflexion [16] is a self-reflective agent framework that reinforces an LLM-based policy through
trial-and-error, using verbal self-critique on failed attempts to refine its behavior incrementally.
This strategy requires many reasoning rounds with frequent environment resets, which can become

inefficient on long-horizon tasks that demand extended, coherent execution without interruption.
Similarly, AutoGPT [21]] pioneered fully autonomous goal decomposition and action execution by an
LLM agent, but it often suffers from reliability issues and aimless looping due to the unpredictability
of a purely language-driven planning process. Meanwhile, Voyager [18]] demonstrates continuous skill
acquisition in an open-ended world (Minecraft) via iterative code generation and self-verification,
achieving significant improvements in exploration and skill reuse; however, its domain-specific
design and reliance on constant environment feedback limit its generalizability. In contrast, ReCAP
offers a more robust, structured, and context-aware alternative that avoids inefficient retries through
comprehensive planning, thereby enhancing task generalization and ensuring more stable execution
even on complex long-horizon tasks.

RL-based Alignment and Direct Preference Optimization. Reinforcement learning from human
feedback (RLHF) [2] aligns LLMs with user intent by training a reward model from pairwise
preference data and then optimizing the policy with Proximal Policy Optimization (PPO) [15]].
Although effective, RLHF entails a two-stage pipeline and extensive hyper-parameter tuning; recent
work therefore explores lighter alternatives such as RLAIF, which replaces human labels with Al-
generated preferences [9], and self-rewarding language models that iteratively judge and improve
their own generations [23)]. Direct Preference Optimization (DPO) streamlines the pipeline by
showing that the optimal RLHF policy can be obtained via a simple classification loss without explicit
reward modeling or on-policy sampling [14]]. DPO has matched or surpassed PPO-based RLHF on
summarization, dialogue, and sentiment control while being substantially simpler to implement. In
practice, parameter-efficient fine-tuning methods such as LoRA [7] further reduce computational cost,
allowing billions-parameter models to be aligned with only a few megabytes of trainable weights.
Complementary studies on reward-model evaluation and benchmarking—e.g. RewardBench [10]
and comprehensive RM surveys [1]—highlight the importance of reliable preference signals for
stable policy optimization. Our work situates ReCAP within this alignment landscape: we retain
its architectural advantages and demonstrate that a lightweight DPO+LoRA training can close the
small-model performance gap exposed by our Robotouille benchmarks.

3 ReCAP: Recursive Context-Aware Reasoning and Planning

3.1 Framework Overview

ReCAP achieves recursive execution by maintaining a dynamic context tree, where each node
represents a task and stores the reasoning history and subtasks generated by the LLM and observations
from the task environment. At each turn of the dialogue, the LLM is prompted using the node’s local
context—including environmental observations and prior thoughts—and responds with either (i) a
decomposition into subtasks, which extends the tree, or (ii) an action that can be executed directly
in the environment. When a subtask is completed, ReCAP backtracks to its parent task to allow the
LLM to refine the higher-level plan based on updated observations.

ReCAP begins by creating a root node p <+ Node(g) from the initial goal g and calling
ReCAP(p, 0, A,LLM) where o is the initial observation and A the set of valid actions. This call
triggers the recursive loop of reasoning, planning, and acting described in Algorithm 1]

3.2 Dynamic Context Tree

The only external data structure maintained by ReCAP is a dynamic context tree, which explic-
itly encodes the dependency relationships between recursively generated subtasks. Each node
in ReCAP’s dynamic context tree is represented as a structured tuple (desc, subtask_list,
children_list, obs_list, think_list), where desc denotes the natural language descrip-
tion of the current task, subtask_1list contains the latest list of planned subtasks, children_list
refers to the list of completed subtasks nodes (represented as child nodes), obs_list stores the se-
quence of environmental observations received during execution, and think_list represents the list
of intermediate reasoning steps generated by the LLM for the current task. As ReCAP recurses, nodes
grow by appending new subtasks, observations, and thoughts, providing a local view that supports
both breakdowns into subtasks and backtracking for plan refinement. In Algorithm (1} we denote
Node (desc) as the creation of a new task node initialized with the task description desc, where all
other fields—subtask_1list, children_list, obs_list, and think_list—are initially empty.

Algorithm 1 ReCAP: Recursive Context-Aware Reasoning and Planning

Require: Task node p, observation o, valid actions A, dialog model LLM
Ensure: Updated observation o after resolving task
1: g < GeneratePromptFromNode(p, o) {Initial prompt generation}
2: r < LLM.invoke(q) {Initial subtask plan and reasoning}
3: p.SetSubtasksAndThink(r) {Store initial subtasks for this task}
4: p.SetObs(o) {Store initial observation}
5: t < p.GetTaskDescription(p)
6: while HasRemainingSubtasks(p) do
7 t' + NextSubtask(p) {Get the current subtask}
8: if IsPrimitive(t') then

9: if IsvalidAction(#',0, A) then
10 Execute action ¢’ in environment
11: Update observation o based on new environment state
12: else
13: Mark subtask ¢’ as failed
14: end if
15: else
16: ¢ < Node(t') {Create new subtask node}
17: p.AddChild(c) {Add the new node to the children_list of the current node}
18: 0 + ReCAP(c, 0, A,LLM) {Recursively resolve subgoal }
19: endif

20: ¢’ + GenerateRefinePrompt(p,o, A)

21: ' + LLM.invoke(¢)

22: p.UpdateSubtasksAndThink(r’) {Refine current thought and remaining subtasks}
23: p.UpdateObs(o) {Update observation}

24: end while

25: return o

3.3 Recursive Task Decomposition and Execution

The core of ReCAP is its recursive hierarchical decomposition mechanism, centered around a task
node pointer p that indicates the current task, and an associated subtask list and thought history
maintained within each node. Starting from a user-specified high-level task, ReCAP queries an LLM,
which generates thoughts and corresponding decomposable subtasks for the current task. The pointer
p then moves downward through the first remaining subtask in the newly generated subtask list
toward a more specific action. This process then repeats, forming the downward recursive flow of
task decomposition.

This downward recursion temporarily pauses once a subtask generated by the LLM corresponds
directly to an executable action within the current environment. Such subtasks then become the leaf
nodes of the task hierarchy, and their validity is evaluated against the currently executable actions
given by the latest environmental constraints. Regardless of whether this leaf-level subtask execution
succeeds or fails (e.g., due to action invalidity or unforeseen environmental conditions), ReCAP
initiates a backtracking procedure to its parent node to further refine the high-level reasoning and
revise the subtask plan accordingly.

3.4 Backtracking and Next Subtask Generation

Backtracking is triggered whenever a child node—whether a leaf or an intermediate sub-
task—completes execution (i.e., no remaining subtasks), regardless of success or failure. During
backtracking, a new prompt is constructed to include the latest environmental observations and the par-
ent node’s task-specific information—such as its description (desc), reasoning trace (think_list),
and previously generated subtask list (subtask_1ist). This prompt guides the LLM to update the
parent node’s high-level reasoning and refine its previous subtask list based on the new observation.

Depending on the updated environment state, the LLM may prune completed steps from the subtask
list, refine the remaining steps, or maintain the current plan. ReCAP then proceeds by selecting the

first unfinished subtask from the refined list, instantiates it as a new child node, and continues the
recursive process. Figure 2]illustrates the local structure of backtracking and next subtask generation.

Local Resoning Subtree LLM Context
Y
Current Task @ | Previous Context + Previous
B il = New Observation Dialog
L e cEa
- @ \'*(Retrived Old Resoning and Subtasks J Input i
Just Finished T -
Subtask S — "“‘*[Reasoning + Refined Subtasks j Output
First Remaining v
Subtask
N J

Figure 2: Overview of ReCAP’s backtracking and subtask regeneration: @ The completed subtask

and new observation are appended to the LLM context. @ Previous reasoning and subtask plans are

retrieved and included as user input. ® The LLM generates refined reasoning and a new subtask list,
from which the next subtask is selected to continue running.

The main advantage of our backtracking mechanism is its ability to dynamically retrieve and rein-
troduce high-level reasoning into the current prompt. This keeps task-relevant information close to
the LLM’s decision point, maintaining semantic coherence across long-horizon plans. In addition,
backtracking enables structured error correction and minor refinements to successful plans, guided by
real-time feedback from the environment.

3.5 ReCAP-DPO: Preference-Aligned Task Decomposition for Small Models

The results in Section [5| reveal a small-model planning gap: every language model at or below
14 B parameters failed all task instances, whereas larger checkpoints succeeded frequently. Close
inspection showed that these failures concentrate in the high-level planning stage: small models
output subtask lists that (i) violate API syntax or omit required arguments, (ii) place steps in logically
impossible order, and (iii) are easily confused by the few-shot demonstration, copying irrelevant
phrases or slotting ingredients into the wrong template. We therefore align only the first few dialogue
turns, which are those responsible for high-level decomposition and correct formatting, using DPO
with LoRA, while leaving the remainder of the ReCAP control loop unchanged.

Preference Dataset. During our GPT-40 evaluations we logged every ReCAP dialogue. For each
task instance that successfully completed, we extract the first few turns—corresponding to high-level
subtask generation—as positive responses y . We then run the same prompt on an untuned Qwen2.5-
14B-Instruct model; its corresponding high-level plans (which almost always lead to downstream
failure) serve as negative responses y~. Each preference triple (z,y™,y ™) shares the same input
z (root goal, environment description, and tool list). Aggregating across ten synchronous and ten
asynchronous recipes yields 1,500 triples.

DPO Objective. DPO shows that the optimal RLHF policy can be obtained with a simple binary-
comparison loss that bypasses reward-model training and on-policy sampling [14]]. Given model g
and inverse-temperature 5 we minimize

Lopo = —E(I7y+7y_){log o(Bllog 7o (y* |) — log e (y~ | z)])} , (1

where o (+) is the logistic function. Intuitively, the gradient pushes the model to assign higher likeli-
hood to y™ than to ¢y~ for the same input, directly aligning the planner with successful decomposition
patterns.

Parameter-Efficient Fine-Tuning. We load Qwen2.5-14B-Instruct in 8-bit. Rank-16 LoRA
adapters (r=16, lora_alpha=32, dropout 0.05) are inserted only in q_proj, k_proj, v_proj,
and o_proj. All backbone weights remain frozen; the adapters add = 0.17% trainable parameters.

We train for 3 epochs with learning-rate 1 x 10~*, per-device batch size 4, and gradient-accumulation
8 (effective batch 32). 8-bit quantisation plus LoRA keeps peak memory below 28 GB, fitting
comfortably on a single A100-40 GB.

4 Evaluation

We evaluate ReCAP on ROBOTOUILLE [6], a high-fidelity cooking simulator expressly designed to
stress long-horizon reasoning. All experiments use a strict pass@1 protocol: each agent receives
exactly one uninterrupted reasoning—execution trajectory per test instance—no retries, beam search,
or ensembling. This setting isolates raw decision quality and avoids auxiliary gains from techniques
such as self-consistency, inner monologue [8]], or multi-trial majority voting. Agents are prompted
one-shot; we reuse the same “onion-cheese sandwich” demonstration for every method and adapt it
to match each reasoning format. Unless otherwise noted, GPT-40 runs with the maximum context
window.

4.1 Robotouille

ROBOTOUILLE offers two modes. In synchronous mode every action completes immediately; in
asynchronous mode long-running actions (e.g., baking, filling water) progress in parallel, forcing
the agent to interleave subgoals. Minimal optimal trajectories span 10-57 steps synchronously and
21-82 steps asynchronously, far longer than prior text-only kitchens and greatly exceeding typical
LLM context lengths. Seemingly simple operations can require multiple atomic commands (e.g.,
three successive cut actions to slice a vegetable). As subtasks accumulate, early plans drift out of
context, and the environment frequently introduces blockages (e.g., occupied cutting boards) that
demand real-time replanning.

We follow prior work and evaluate on ten synchronous and ten asynchronous recipes, each with
ten official test seeds. For reproducibility we cap the dialogue history at 64 messages and set the
environment’s max_step_multiplier to 3.

4.2 Baselines

We compare ReCAP with four prompting baselines. Standard removes thoughts and actions entirely,
asking the model to emit the full action sequence in a single answer. Chain-of-Thought (CoT) [20]
appends free-form reasoning to Standard. ReAct [4] interleaves chain-of-thought, action execution,
and observation. Act-only (Act) removes the reasoning lines from ReAct, mimicking WebGPT’s
API-call style [[12]]. All methods receive the same environment description, the same step limits, and
the same few-shot demo.

4.3 Performance Across Model Scales

To gauge whether ReCAP’s benefits persist across parameter counts, we replicate the evaluation
on three representative synchronous recipes (IDs 2, 4, and 6) while limiting each run to 64 context
messages. We test five models—GPT-40, DeepSeek-V3 (671B), LLaMA-4 (400B), Qwen2.5-72B,
and Qwen2.5-32B—as well as the smaller Qwen2.5-14B that will later be fine-tuned. For each model
we run both ReAct and ReCAP under identical hyper-parameters and log pass@1 success. Aggregate
statistics are reported in Section[5.2]

4.4 Effect of DPO Alignment

Finally, we assess whether preference alignment rescues the failure mode of the 14B model. We
fine-tune Qwen2.5-14B-Instruct with the DPO+LoRA procedure described in Section [3.5] then rerun
ReCAP on the same synchronous recipes (IDs 2, 4, and 6). We compare the pass@1 success of the
ReCAP-DPO agent against the un-aligned Qwen2.5-14B under ReCAP. Outcome metrics appear in
Section[53.31

5 Results

5.1 Main Results

Table|l|summarizes the performance of ReCAP and baseline methods on Robotouille (synchronous
and asynchronous). These tasks vary significantly in their action sequence lengths and planning
demands, allowing us to evaluate how different approaches scale with reasoning horizon. This
ordering provides a natural progression in long-horizon complexity, which strongly correlates with
the observed performance differences.

Table 1: Average performance (%) across different tasks and methods using GPT-40

Task Step Range ReCAP ReAct CoT Act Standard
Robotouille (Async) 21-82 53.0 24.0 5.0 8.0 2.0
Robotouille (Sync) 10-57 70.0 380 140 31.0 12.0

ReCAP performs better than ReAct on long-horizon tasks by a large margin. On synchronous
Robotouille, it achieves a 32% gain, and on asynchronous Robotouille, a 29% improvement, repre-
senting its strength in long-horizon environments where early goals are prone to being overwritten
in flat prompting setups. In these cooking tasks, high-level objectives often span multiple atomic
actions and require multi-phase coordination. While ReAct performs all reasoning sequentially and
suffers from context overflow, ReCAP maintains a dynamic task hierarchy through its context tree and
supports explicit backtracking, enabling the agent to preserve global goals and revise local decisions
when needed. These features allow ReCAP to better handle the challenges of concurrent subgoals,
delayed dependencies, and evolving observations, all of which are common in Robotouille.

We further perform a detailed failure case analysis to understand the nature of errors across task
regimes. On easy to medium tasks (synchronous #1-5, asynchronous #1-3), ReCAP achieves
near-perfect success, with failures mostly due to minor errors like missing the final cut in a sandwich
or misplacing the completed item. In contrast, ReAct exhibits more fundamental mistakes even on
simple recipes. On long-chain or multi-dish tasks (synchronous #8-10, asynchronous #4,5,8—10),
ReCAP may occasionally make imperfect subtask choices, but it never enters deadlock. It consistently
detects failure signals and backtracks to generate a revised plan. ReAct, on the other hand, frequently
enters infinite loops when encountering blocked stations. For instance, if 1lettucel is occupying
board2, ReAct will repeatedly attempt to cut onionl by stacking and unstacking it on the blocking
item without resolving the underlying issue. ReCAP avoids such failure by leveraging its dynamic
context tree to identify the blockage and generate a corrected plan—e.g., moving lettucel to
an empty table before proceeding with the cut—thus maintaining task progress and preventing
deadlocks. Figure |3|illustrates a more detailed dialogue trace in which ReAct becomes trapped in an
infinite unstack/stack loop, whereas ReCAP detects the looping behavior via its internal “Think” step,
backtracks to move the obstruction, and then successfully resumes execution.

5.2 Performance on Different Models

To assess how our ReCAP generalizes across model scales compared to the standard ReAct setup, we
evaluated both architectures on three representative synchronous Robotouille tasks (IDs 2, 4, and 6).
To control API costs, we limited our experiments to these three tasks and imposed a hard cap of 64
context messages per run (any excess was truncated). We also set max_step_multiplier to 3. We
benchmarked four open-source and proprietary LLMs—Qwen2.5-32B, Qwen2.5-72B, LLaMA-4
(400B), and DeepSeek-V3 (671B)—alongside GPT-40, covering a broad range of parameter counts.
Table [2| reports per-task and average success rates (%) for each model under both ReAct and ReCAP.
Across every model tested, ReCAP yields a higher average success rate than ReAct, demonstrating
that our recursive, context-aware reasoning strategy consistently improves long-horizon performance
independent of model size.

5.3 ReCAP-DPO Results

After DPO fine-tuning on 1,500 high-level planning examples for 3 epochs, Qwen2.5-14B-Instruct
achieved a 20% on Robotouille success rate under the ReCAP framework, up from 0% before

4(ReAct) [ReCAP (Ours)]—

(... omit ...) (...omit ...)

Reasoning: The goal is to prepare a cheese chicken sandwich on a table. Currently, chicken1 Task: Cut onion1

is on top of cheese1 at stove1. To prepare the sandwich, chicken1 needs to be cooked before Subtasks: [Pick up onion1 from table7, Move robot1 from table7 to board2,
assembling it with cheese and bread ... Unstack chicken1 from cheese1 so it can be cooked Cut onion1 on board2 using robot1, ...]

... Cook chicken1 on stove1 ... move chicken1 to a table to assemble the sandwich ...

Assemble the sandwich by placing chicken1 and cheese1 between bread1 and bread2. (... omit ...) Task Decomposition
Act: Unstack chicken1 from cheese1 using robot1 Task: Move roboti from table7 to board2 & Recursion
Feedback: Success, ... New Obs: ... Act: Move robot1 from table7 to board2

Feedback: Success, ... New Obs: ...
Reasoning: The goal is to prepare a cheese chicken sandwich on a table. The sandwich

requires stacking the ingredients as follows: bread -> cheese -> chicken -> bread ... chicken1 Task: Cut onion1 on board2 using robot1

at stovel, and cheese is directly on stove ... Stack chicken1 on top of cheese1 so that it Act: Cut onion1 on board2 using robot1 Backtracking
can be cooked properly. Feedback: Fail, not in valid action /_\ & Refine
Act: Stack chicken1 on top of cheese1 using robot1 (... doing unstack and stack twice ...)

Feedback: Success, ... New Obs: ...
Think: cutting the onion ...
Reasoning: ... chicken1 and cheese1 are already stacked together on stove1, which is a

N . e 0 +.. place onion1 on
good start ... next step is to cook chicken1 while it is stacked on cheeset, ... chicken1 and

4 board? for cutting.
cheeseT are already stacked ... cook chicken1 on stove ... Subtasks: [Remove lettuce from board2, Place onion1 on board2 using robot1, ...]

Act: Cook chicken1 on stove1 using robot1
Feedback: Fail, not in valid action

Replan

Task: Remove lettuce1 from board2
Think: To clear the cutting board ... need to place onion1 on table3 temporarily ...
Reasoning: ... sandwich should be stacked with bread, cheese, chicken, and another bread return to board? to pick up lettuce ... move lettuce1 from board? to table4 ...

slice ... chicken1 is stacked on top of cheese1 at stove1 ... | mistakenly attempted to cook it Subtasks: [Place oniont on table3 using robot1, ..., Pick up i
directly without separating it from cheese1 ... | need to unstack chickent ... lettuce1 from board2 using robot1, ..., Place lettuce1 on table3 using robot1]

Act: Unstack chicken1 from cheese1 using robot1 Task: Place onion1 on board2 using robot1

Feedback: Success, ... New Obs: ... Think: Onion1 is now placed on table3 ... move back to board? to pick up lettucel
so that | can move it to table4, freeing the cutting board for onion1.

Reasoning: ... Subtasks: [Move robot1 from table3 to board2, Pick up lettuce1 from board2 using

Infinite Loop! robot1, Move robot1 from board? to table4, Place lettuce1 on table4 using robot1]
Act: Stack chicken1 on top of cheese1 using robot1 No Replan it
Feedback: Success, ... New Obs: ... (.. omit....)
§ x Task: Pick up lettuce1 from board2 using robot1

Reasoning: ...

(... omit ...)

Act: Unstack chicken1 from cheese1 using robot1 Back to track

Feedback: Success, ... New Obs: ... Task: Place onion1 on board2 using robot1

Think: Lettuce1 ... been placed on table4 ... now we have space for cutting onion ...

(.. Infinite unstack and stack loop ...) move back to table3, pick up onion1 and place it on board2 for cutting.

(... omit ...)

Figure 3: Detailed comparison of ReAct vs. ReCAP on a blocked station. Left: ReAct repeatedly
alternates between stacking and unstacking the same item, entering an infinite loop. Right: ReCAP
detects the deadlock, backtracks to clear the board by moving the blocking lettuce, and then proceeds

with the correct sequence of actions.

Table 2: Average success rate comparison between ReAct and ReCAP across model scales

GPT-40 Qwen2.5 Qwen2.5 Qwen2.5 LLaMA-4 DeepSeek-V3

Method - 14B 32B 728 400B 671B

ReAct 63 0 10 23 37 57
ReCAP 90 0 33 53 60 87

fine-tuning. This improvement shows that DPO-based alignment can help a smaller model generate
more correct high-level subtasks within ReCAP’s recursive reasoning process. Although fine-tuned
performance remains below larger models, achieving a nonzero success rate indicates that even
modest amounts of preference data can substantially boost small-model planning.

5.4 Ablation Studies

To further investigate the effectiveness of our structure, we conducted extended ablation studies
on the Robotouille task synchronous/6_lettuce_tomato_cheeseburger, which requires 23
(theoretical optimal) to 40 (average) rounds of agent-environment interaction to complete. We also
evaluate the statistical significance of differences in success rates between the structural variants and
the original version. Table [3|reports the success rates and p-values for various ReCAP structural
variants, including alterations to the maximum reasoning depth (LEVEL 2/3/4/5), omission of
reasoning traces during backtracking (NAME ONLY), and modifying the output format to generate
only decomposition/action outputs without the “think” reasoning (NO THINK), as well as passing all
think history instead of just the most recent (THINK MANY). All structural variants were evaluated
with a context length of 128, where context length refers to the number of messages stored in the
LLM history during the conversation. For the NO THINK and NAME ONLY variants, we adapted the

one-shot prompt to match their structure. Table [d] presents the success rates and p-values for context
length variants using the original structure.

Table 3: Statistical comparison of ReCAP structural variants: success rates and p-values.
ReCAP Variant Success Rate (%) p-value

ReCAP-original 80 -
ReCAP-think_many 70 0.32
ReCAP-no_think 60 0.14
ReCAP-name_only 55 0.0098
ReCAP-level _5 70 0.32
ReCAP-level 4 60 0.14
ReCAP-level_3 10 0.00015
ReCAP-level 2 0 0.000012

Table 4: Statistical comparison of ReCAP context length variants: success rates and p-values.

ReCAP Variant Success Rate (%) p-value
ReCAP-original-128 80 -
ReCAP-original-64 55 0.091
ReCAP-original-32 70 0.47
ReCAP-original-16 55 0.091

For the long-horizon task synchronous/6_lettuce_tomato_cheeseburger, the success rate
degrades significantly when reasoning traces are removed or when the maximum reasoning depth is
restricted (LEVEL 2/3). This suggests that the explicit reasoning traces produced by ReCAP help the
LLM perform better by allowing it to recall previous subtasks and lines of reasoning. With restricted
reasoning depth, the LLM is limited in its ability to recursively decompose higher-level tasks into
atomic, directly executable actions, forcing it to generate actions from insufficiently decomposed
subtasks and thus reducing accuracy.

On the other hand, the THINK MANY and NO THINK variants achieve success rates comparable to
the original, indicating that ReCAP is robust even when the LLM is provided with either excessive
reasoning history or only decomposition/action outputs without the intermediate “think” reasoning.
This robustness is also observed in the context length variants: no significant performance degradation
occurs when limiting the number of messages stored in the LLM history during the conversation,
implying that ReCAP remains effective under context-sensitive scenarios.

5.5 Cost Estimate

We conducted cost estimation on Robotouille for ReCAP, and cost comparison between ReCAP and
ReAct on ALFWorld [17]], a dataset similar to Robotouille but with simpler dependencies and shorter
horizons for cost saving.

For the Robotouille task synchronous/6_lettuce_tomato_cheeseburger, the average number
of LLM calls is 74.95 with a standard deviation of 27.87, and the average cumulative cost for one
complete run is 7.77 USD with a standard deviation of 3.45 USD.

For ALFWorld, the total cost of running all 134 tasks in the test set is 37.89 USD using ReAct, and
118.40 USD using ReCAP—approximately three times the cost of ReAct. We identified that the
extra cost mainly comes from the additional reasoning traces in the input and the extra steps required
for intermediate task decomposition.

6 Discussion
Limitations. Although ReCAP, augmented with DPO, greatly improves long-horizon success,

the framework still hinges on the underlying language model for every decision. Without external
grounding or formal verification, incorrect reasoning by the LLM can propagate unchecked through

10

the dynamic context tree. Our DPO alignment targets only the first few planning turns; low-level
execution errors remain uncorrected and occasionally derail otherwise sound plans. In addition,
collecting preference pairs requires access to a stronger oracle model (GPT-40 here), limiting
scalability for domains where such a model is unavailable. Finally, recursive prompting lengthens
interaction trajectories, raising latency and API cost—an issue magnified in the asynchronous
ROBOTOUILLE mode.

Broader Impact. A compute-efficient, preference-aligned planner lowers the barrier to deploying
autonomous agents on modest hardware, potentially democratizing embodied Al research. Conversely,
the same technology could amplify misuse: an aligned small model may execute long-horizon
instructions that facilitate disallowed behavior if the preference data are biased or incomplete.
Careful auditing of alignment data and explicit safety constraints will be essential before real-world
deployment.

Project Challenges. Three challenges dominated the project. (i) Data curation. Instrumenting
ROBOTOUILLE to capture only the high-level subtask turns, and filtering out dialogues whose
chosen string accidentally contained user roles, required substantial logging utilities. (ii) Resource
constraints. Even with 8-bit loading, Qwen2.5-14B plus rank-16 LoRA adapters consumed close to
28 GB; we iterated on smaller ranks before finding a stable configuration. (iii) Cost. GPT-40 queries
for 1,500 preference triples were expensive; we mitigated this by limiting collection to the most
informative synchronous tasks and pruning redundant demonstrations. These difficulties motivated
our shift from PPO to the simpler, data-efficient DPO objective, which is more tractable under the
available budget and hardware.

7 Conclusion

We introduce ReCAP, a recursive, context-aware reasoning and planning framework that enables
LLM agents to tackle complex, long-horizon tasks through hierarchical decomposition and adaptive
execution. By maintaining a dynamic context tree and supporting subgoal-level backtracking,
ReCAP offers a structured alternative to flat prompting, significantly improving robustness and
decision quality in feedback-rich environments. Our experiments across embodied and symbolic
tasks demonstrate consistent gains without requiring any model training, highlighting ReCAP’s
ability to generalize through architecture alone. This opens new directions for non-linear context
representations, modular planning systems, and memory-efficient reasoning, laying the groundwork
for more scalable and generalizable LLM-based agents.

Building on these foundations, we leverage DPO and LoRA to further adapt ReCAP for challenging
settings that require alignment and efficient fine-tuning. Future work includes modularizing the
system by separating high-level planning from low-level execution, enabling specialized models to
collaborate more effectively. LORA’s parameter efficiency allows for selective adaptation of different
modules, improving flexibility and reducing compute costs. Additionally, optimizing the recursive
context tree—for example, by structuring memory as an executable graph or enabling targeted
retrieval—may further enhance reasoning under context constraints. Integrating preference-based
objectives like DPO with advanced memory or routing strategies presents a promising path for
improving both the scalability and decision quality of ReCAP in complex environments.

8 Contributions

* Zhenyu Zhang: Responsible for the design and implementation of the agent and algorithm,
including the context tree, recursive subtask decomposition, backtracking, and error correc-
tion. Also designed and analyzed ablation studies. Compared to the original proposal, my
role shifted from focusing on evaluation to leading the algorithm’s design and implementa-
tion, while evaluation was handed over to two other team members. This adjustment was
made to better leverage our respective strengths and improve our overall efficiency.

* Tianyi Chen: Set up the ROBOTOUILLE simulation environment and integrated both the base
Qwen2.5-14B model and the GPT-40 oracle into the pipeline, development of the DPO fine-
tuning loop, and implemented the data-collection scripts that automatically log successful
GPT-40 runs, pair them with the corresponding failed Qwen outputs, and construct the

11

positive/negative triples required for DPO training. Aside from switching from PPO to DPO
and adding the sample-mining code, the responsibilities remain unchanged from the original
proposal.

* Weiran Xu: Wrote detailed one-shot example prompts and conducted research on multi-GPU
training, focusing on implementing all baselines and running them on different models. Also
monitored recent papers for new techniques that we might incorporate, such as improved
reward modeling or enhanced prompting strategies for the oracle. Coordinated the writing
of the final report. My responsibilities have remained largely unchanged from the proposal,
slightly shift more to running experiments to better support the whole workflow.

* Sponsors: Alex Pentland, Jiaxin Pei. Sponsored OpenAl API and Together Al API for
testing various models.

References

[1] Rui Chen, Mingyu Zhang, and Xiang Li. A comprehensive survey of reward models: Taxonomy,
progress, and challenges. arXiv preprint arXiv:2504.12328, 2024.

[2] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In Advances in Neural Information
Processing Systems, 2017.

[3] Gautier Dagan, Frank Keller, and Alex Lascarides. Dynamic planning with a 1lm, 2023.

[4] Yao et al. React: Synergizing reasoning and acting in language models. In International
Conference on Learning Representations (ICLR), 2023.

[5] Yao et al. Tree of thoughts: Deliberate problem solving with large language models. In
Conference on Neural Information Processing Systems (NeurlPS), 2023.

[6] Gonzalo Gonzalez-Pumariega, Leong Su Yean, Neha Sunkara, and Sanjiban Choudhury.
Robotouille: An asynchronous planning benchmark for 1lm agents, 2025.

[7] Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen, Zhiqing Saunders, Lu Li, and Deep
Ganguli. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2022.

[8] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas
Jackson, Linda Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue:
Embodied reasoning through planning with language models, 2022.

[9] Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, and
Colton et al. Bishop. Rlaif vs. rlhf: Scaling reinforcement learning from human feedback with
ai feedback. In arXiv preprint arXiv:2309.00267, 2023.

[10] Yaoming Li, Danni Cheng, Tianyun Zhi, and et al. Rewardbench: Evaluating reward models for
language modeling. arXiv preprint arXiv:2403.13787, 2024.

[11] Nelson F Liu, Kevin Lin Yu, Nora Kassner, Fan Du, Daniel Khashabi, Ashish Sabharwal, and
Noah A Smith. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023. Computer Science > Computation and Language, arXiv:2307.03172.

[12] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna
Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John
Schulman. Webgpt: Browser-assisted question-answering with human feedback, 2022.

[13] Allen Newell and Herbert A. Simon. Human Problem Solving. Prentice-Hall, Englewood Cliffs,
NIJ, 1972.

[14] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In arXiv preprint arXiv:2305.18290, 2023.

12

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. In arXiv preprint arXiv:1707.06347, 2017.

[16] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

[17] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. Alfworld: Aligning text and embodied environments for interactive
learning, 2021.

[18] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023.

[19] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models, 2023.

[20] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023.

[21] Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions, 2023.

[22] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.

[23] Weicheng Yuan, Yuntao Bai, Julian Michael, and et al. Self-rewarding language models. arXiv
preprint arXiv:2401.10020, 2024.

13

	Introduction
	Related Work
	ReCAP: Recursive Context-Aware Reasoning and Planning
	Framework Overview
	Dynamic Context Tree
	Recursive Task Decomposition and Execution
	Backtracking and Next Subtask Generation
	ReCAP-DPO: Preference-Aligned Task Decomposition for Small Models

	Evaluation
	Robotouille
	Baselines
	Performance Across Model Scales
	Effect of DPO Alignment

	Results
	Main Results
	Performance on Different Models
	ReCAP-DPO Results
	Ablation Studies
	Cost Estimate

	Discussion
	Conclusion
	Contributions

