
Extended Abstract

Motivation Over the past few decades, Reinforcement Learning has proved a critical tool in stock
market trading (Moody & Saffell, 2001), more recently being applied to large cryptocurrencies as
well (Liu et al., 2021). In this paper, we extend its usage to trading recently created small market-cap
cryptocurrencies. These coins display significantly higher levels of volatility than traditional assets,
making training an RL agent to trade them challenging and often not profitable, and thus leaving the
area largely unexplored.

Method We leverage historical transaction data on newly created coins to simulate an online
reinforcement-learning trading environment. First, we train LSTM-based feature extractors in a
supervised fashion to capture temporal patterns in price. The extracted features are then concatenated
with other real-time statistics of the target cryptocurrency (e.g., current price, recent max price,
average buy streak, etc.) and fed into a multilayer perceptron (MLP) head, which serves as both
the policy and value networks within our PPO framework. We chose Proximal Policy Optimization
(PPO) because its clipped objective promotes stable updates in online settings, it is relatively robust
to hyperparameter variations, and it has demonstrated strong sample efficiency in financial-trading
tasks (Schulman et al., 2017; Deng et al., 2017).

Implementation To ensure our model focused on sufficiently active cryptocurrencies, we first
filtered for coins with at least 100 transactions in their first 15 minutes after being launched, using
their IDs to gather each coin’s full transaction history. We then trained an LSTM network in PyTorch
to predict price movements 1, 5, and 10 minutes ahead based on the previous 100 transactions. Next,
we built a custom trading environment in Stable Baselines that replays these historical transaction
sequences, which is used to train our PPO agent for 10 million time steps. Finally, we split our dataset
at the coin level with a 70:30 train-test ratio.

Results Our LSTM models had strong performance, achieving a low MSE in predicting the next
minute’s movement based on coin price movement data alone. We found that our our additional
features did not contribute significantly to short term prediction, their addition in our longer term
models was crucial in price forecasting. With these features, our models achieved reasonable accuracy
in prediction of the price in 5 and 10 minutes, which are long time horizons relative to the lifetime of
most coins (often under 30 minutes).

Next, we utilized these predictions in training our reinforcement learning agent. It initially exhibited
unstable training, refusing to trade as doing so would expose it to initial negative reward before it
learned how to profitably trade. After we edited the reward function during the initial stages of its
learning to encourage buying and selling coins, it stabilized in 5, 000, 000 timesteps. It ultimately
reached an average training reward per coin of 0.08, equivalent to an 8% return per coin. This
generalized well to our test set, where it received a reward of 0.07, or a 7% return.

Discussion Through training several alternative models, we found that a reinforcement learning
model struggled to learn future price prediction due to the complexity of this data. Instead, training
models offline to do this exhibited the best results. This abstracted one challenging part of trading
away from our RL agent, which allowed it to focus on trading strategy and timing.

Moving forward, we plan to enhance the trading environment by incorporating realistic transaction
costs such as variable fees and slippage, rather than our current fixed percent fee structure. Addition-
ally, our current agent is constrained to a single buy-sell cycle per coin at a fixed volume, a strategy
that we found to be most effected in this high volatility environment. In future work, we will lift this
restriction by allowing multiple trade cycles and dynamic volume selection, thereby better capturing
real-world trading behaviors. We will eventually move on to live trading too and add live features we
are unable to grab with our API.

Conclusion By combining supervised LSTM forecasts with a PPO agent, we trained an RL policy
that yields a 7 % return per coin in a simulated small-cap cryptocurrency market. Decoupling
short-term price prediction from policy learning proved critical for stability in this high-volatility
setting. Future work will focus on refining reward functions to better reflect real-world trading costs,
incorporating richer market signals, and live testing.

Reinforcement Learning in Cryptocurrency Trading

Alex Bloom
Department of Computer Science

Stanford University
apbloom@stanford.edu

Michael Liu
Department of Computer Science

Stanford University
mliu1204@stanford.edu

Abstract

We present a combined supervised learning and reinforcement learning model for
automated trading of small-cap cryptocurrencies. These assets are characterized by
extremely high volatility and short live spans, which explains the lack of academic
interest towards them. First, we train LSTM models on historical transaction
sequences to predict 1, 5, and 10-minute price movements, then merge these
learned representations with real-time statistics (e.g., current and recent peak
prices, buy-streak metrics) as inputs to our Proximal Policy Optimization (PPO)
agent. In a custom Stable Baselines environment that replays filtered crypto coin
histories (≥100 trades in the first 15 minutes), our agent stabilizes by 5 million
timesteps and achieves an average simulated return of 8 % per coin in training and
7 % on held-out coins. Decoupling price prediction from policy learning proved
essential to stability in this high-volatility setting. Future work will incorporate
realistic transaction costs, dynamic trade sizing, and live API integration.

1 Introduction

Automated trading systems have long leveraged reinforcement learning (RL) to optimize decision-
making in financial markets, from early applications in equities (Moody & Saffell, 2001) to more
recent work on major cryptocurrencies such as Bitcoin and Ethereum (Liu et al., 2021). However,
most existing approaches focus on large-cap assets with relatively stable liquidity and price dynamics.
In contrast, small-cap cryptocurrencies, specific ones that are launched by individuals and have no
value backings, exhibit extreme short-term volatility and fleeting lifespans, posing unique challenges
for end-to-end RL: noisy price trajectories hinder value estimation, and sparse trading windows limit
sample efficiency.

In this paper, we propose a two-stage framework that decouples price forecasting from policy learning
to tame the volatility of small-cap markets. First, we train Long Short-Term Memory (LSTM)
networks in a supervised manner to predict 1-, 5-, and 10-minute ahead returns using raw transaction
sequences. These learned representations, together with real-time market statistics (e.g., recent high,
average buy/sell streaks), form the observation space for a Proximal Policy Optimization (PPO)
agent. By filtering for coins with at least 100 trades in their first 15 minutes and replaying their full
transaction histories in a custom OpenAI Gym environment, we enable stable online training despite
the coins’ brief trading horizons.

Our empirical results demonstrate that this decomposition yields substantial benefits: the LSTM
forecasters achieve low mean squared error on very short windows, and the combined PPO agent
consistently converges to profitable policies, averaging an 8 % return per coin in training and 7 % on
held-out test data. This significantly outperforms our preliminary attempts, which involved training a
MLP feature extractor that feeds into an LSTM end to end. That end to end model failed to generalize
past simple coin trajectories.

Stanford CS224R 2025 Final Report

Despite achieving a positive reward, our model is unlikely to attain the same level of performance in a
live trading environment. This discrepancy arises from several simplifying assumptions in our setup,
including an oversimplified fee structure, constrained trading cycles, and the absence of dynamic
responses from real-world traders and bots. Nevertheless, our work establishes a foundation by
outlining modeling strategies and demonstrating initial results for reinforcement learning–based
trading in the high-volatility domain of newly minted cryptocurrencies.

2 Related Work

Reinforcement learning has been investigated as a tool for trading market assets for over two decades.
Moody and Saffell (2001) were among the first to apply reinforcement learning directly to learn
to trade. It showed that reinforcement learning could optimize returns, maximizing Sharpe (a
measure of expected returns adjusted for risk) while accounting for fees in trading. Building on this,
Deng et al (2016) introduced a novel strategy for training reinforcement learning agents to trade.
They used deep learning to extra feature representations of dynamic trading, which were fed into a
reinforcement learning agent that then utilized these features in trading.

More recently, reinforcement learning has begun to become applied in cryptocurrency markets. Many
studies have focused on Bitcoin and Ethereum. Liu and Tsyvinski (2021) document that cryptocur-
rency movements depend on a select few factors. Among these include time series movement,
legitimizing trading based of off movement data. Fengrui Liu et al (2021) developed a policy to
trade Bitcoin at high frequency. It uses LSTM-based price predictors, combining this with PPO for
learning a RL agent policy, which is ultimately the architecture we employed. Very recent work
has explored alternative architectures. Sarlakifar et al (2025) used a similar framework but switch
LSTM networks for xLSTM networks. This has a higher predictive power when trying to capture
long-term dependencies, although we found it did not yield improvements when using our relatively
short window of historical data.

3 Preliminary Tests

Our initial hypothesis was that an MLP-LSTM model (trained without assist from supervised learning)
would succeed in this environment. This model involves a MLP feature extraction head that would
process the time series data from the current step, then pass the logits to the LSTM. This was trained
end-to-end with no assist from supervised learning.

While still trained using PPO, this model breaks the Markov assumption by maintaining a hidden
state that aggregates past observations rather than relying solely on the current observation. This is a
highly expressive model for our agent that we believed would allow it fully capture the complicated
nature of market movements.

Due to the complexity of training this model, we begun with simplified tasks, which we initially
made harder. First, we trained it on a trivial binary output task, where it got a reward for performing
action 0 and was punished for action 1 regardless of observation.

Next, we transitioned to a somewhat more complicated time-dependent process. At every moment,
the model was shown 1 or 0 and is allowed to take actions 1 or 0. Its goal was to predict whether
there was a 1 in the past 5 digits. If it outputted 1 and this was the case, it received a reward of
+0.5, but if it was erroneous, it received a reward of −1. If it predicted 0 it would receive a −0.2
reward regardless of the true pattern. This converged to a reward of 8.02 within 150, 000 time steps.
Running simple code to play the game optimally on repeat, we see the average reward is roughly
8.15, meaning our model achieved near optimal success, with an occasional error.

Our final test was training a model to trade in a highly predictable environment. We generated
movement data for coins with 1200 timesteps that exhibited clear patterns. At each timestep, the
coin’s price had a 0.9 probability of moving in the same direction as it did in the last time step. The
magnitude of change in price at each timestep was drawn Uniformly from (0, 0.01). An example
coin movement is shown below.

Our model was allowed to buy and sell once, just as it does on our real historical data. Since this
problem was more complex than the previous two, it took nearly 1, 000, 000 time steps to converge.

2

Figure 1: Simulated Predictable Data

Calculating the expected reward of the best strategy is more complex in this scenario, but we observed
the action of the agent over dozens of trial coins. It learned to buy immediately after the coin began
to increase, and sell immediately after it started decreasing, which is one optimal strategy.

Training this model on our full dataset, however, we found that we were unable to replicate the
success on our simplified tests. Observing the steep increase in time steps to convergence as difficulty
increased, we hypothesize that with more data and compute, this method of training may be feasible.
However, we decided after these experiments to alter our architecture in acknowledgment of our
limitations in both compute and data. Rather than training the price prediction and trading policy
jointly, we separated them to simplify training.

4 Data

We our training data consists of over 9 million transactions across 8482 coins. We decided to use
transaction data instead of OHLCV (Open, High, Low, Close and Volume) data used for most
time series models that work with markets. This was because transactions can recreate OHLCV
data, making it contain strictly more information that OHLCV data. Because we are working with
cryptocurrencies, we have the opportunity to collect all transaction data.

To procure this data set, we went through extensive data cleaning and data collection efforts. After
deciding on Solana Tracker API, we started to collect coin mints (unique ID associated with each
coin). To optimize our API usage and have noisy training data, we opted to only collect the mints of
coins with over 100 transactions with in the first 15 minute of their life time. We had various options
for the types of filters we could use, like max market cap, trade volume, holder information, and
more. We ultimately decided to only filter on transaction count as it captures almost all high-potential
coins without excluding too many. Importantly, because transaction count is observable in real
time, applying this filter at deployment introduces no look-ahead bias. Due to the API having
more and more unreliable information as the coin ages, something we discovered after testing
the search function on coins created at various points in time, we needed to live grab the mints.
This is to mimick the distribution of coins the agent would grab at live trading time as close as possible.

After collecting the mints, we allocated a maximum of 100 API calls to each mint to collect
transaction data. Each API call can collect 200 transactions. This is important because some popular
coins would perform extremely well and have over 100,000 transactions, which would quickly
exhaust our API calls and create huge class imbalance.

The transaction data, upon further inspect, were noisy with trivial transactions with volumes less than
$0.01. These are clearly not human traders, as the fees would never make such small transactions
profitable. Even though we are unsure what these transactions are, it is adding unnecessary noise into
an already volatile system, and thus we decided to remove them. However, in case these transactions
might hold some information, we decided to keep track of the number of these trivial transactions,

3

see Table 1 for example.

There were numerous additional data-wrangling challenges. For instance, after filtering out trivial
transactions, several coins fell below our 100-transaction threshold, forcing us to decide whether to
discard them or adjust our sampling strategy. We also uncovered metadata anomalies: some mints
corresponded to tokens created months earlier, which conflicted with our assumption that all coins
were newly launched and led to misaligned “grab times.” To address many such issues, we devoted a
significant portion of the project to cleaning and normalizing the transaction data while continuously
debating and refining the desired structure and quality of our final dataset.

5 Trading Environment

We implement a custom Gym environment, PPOEnv, that simulates sequential trading of a single
small-cap cryptocurrency. At each time step t, the agent observes a 14-dimensional feature vector

st =
[
st,1, . . . , st,14

]⊤ ∈ R14,

where the components correspond to:

• Time, current on-chain price pt,
• Average buy/sell streak lengths,
• Lifetime and recent counts of total vs. trivial (“spam”) transactions,
• Lifetime and recent maximum prices,
• LSTM-predicted multipliers for +1 min, +5 min, +10 min returns,
• Number of coins held ht.

The discrete action space is
A = {BUY, SELL, HOLD}.

If the agent chooses BUY, it spends a fixed amount Q of SOL to acquire ∆h = Q/pt coins (unless
already holding coins, in which case a penalty fee is charged). If it chooses SELL, it liquidates all ht

coins for htpt SOL (or incurs a penalty if ht = 0). HOLD leaves the portfolio unchanged. We had
additional reward signals to guide the model’s behavior, outlined below in Figure 2 and its discussion,
but is omitted here for notational clarity.

Let ct denote the agent’s cash (in SOL) and ht its coin holdings at time t. We define a linear
transaction-fee function

f(v) = γ v,

where γ = 0.01 in our experiments. The portfolio evolves according to

ht+1 =


ht +

Q

pt
, at = BUY,

0, at = SELL,

ht, at = HOLD,

ct+1 =


ct −Q− f(Q), at = BUY,

ct + ht pt − f
(
ht pt

)
, at = SELL,

ct, at = HOLD.

(1)

We define the portfolio value
Vt = ct + ht pt,

and assign the reward as the incremental change in value:

rt = Vt+1 − Vt. (2)

Thus the agent is directly incentivized to increase its portfolio value at each step.

At reset, the environment samples one coin’s full transaction history (past and future trades with
respect to when the coin’s mint was grabbed) and initializes c0 = 0, h0 = 0. On each step(), the
next transaction is replayed, and the above dynamics and reward are applied. An episode terminates
either when the agent executes a successful SELL or when all transactions have been consumed, at
which point any remaining coins are forcibly liquidated to realize the final portfolio value.

4

6 Methods

Instead of expecting our reinforcement learning agent to both implicitly predict price as well as
develop a trading strategy, we abstracted away the price prediction to LSTMs, which were trained
offline. We trained 3 LSTM models, whose goals were to predict the price 1 minute, 5 minutes, and
10 minutes from a given transaction, using the 100 transactions running up to that point. Our dataset
of 9, 025, 333 transactions provided a large training set for this, but there was a question as to how we
should sample from this dataset. Since in real time, we would not know whether any given transac-
tion was the last transaction for a coin, each one of these transactions was a valid data point to train on.

One way to sample would be simply to pick a transaction at random from the dataset. This
initially seems like the clear answer, yet since some coins have tens of thousands of transactions,
while others have barely over 100, this would strongly bias our LSTM model to focus its training
on larger coins, and it would predict worse on smaller coins at the time of deployment. An
alternative strategy would be to pick a coin at random, then select a transaction at random
from that coin’s set of transactions. However, we ultimately decided to pursue the first option,
where we sample a transaction at random, with two main reasons. Firstly, we only had 8482
coins, some of which had very few transactions after we started tracking them. At this size,
we would learn to overfit to the transactions in some coins, while never seeing transactions
in others. Secondly, the coins we ultimately wanted our agent to learn to trade were the high
potential coins, which would generally be very active and have a high number of transactions. For
these two reasons, we accepted some level of bias and chose to train on randomly selected transactions.

Once we selected a transaction t, we selected x to be the price and volume of the 100 transactions
up to and including transaction t, which had price p. Then, we found target price for one minute
prediction was the price pf of the last transaction before t+ 60 seconds. If no future transactions
were done during that time, we let pf = p, the current price. Our target, y is simply the price change
pf

p ∈ [0, inf).

Next, we wanted to train a reinforcement learning agent to train based on these predictions of price.
The agent would get the chance to buy or sell after each individual transaction. At that time, it would
receive a list of features, including the predictions of the LSTM for movement in the next 1, 5, and 10
minutes. Table 1 shows a sample data point (we normalized our data before training but we present a
pre-normalized version here to make comprehension easier).

Attribute Value Attribute Value
Time 470 Total Transactions 1240
Price 2.2e-07 Total Spam Trans 102

Avg Buy Streak 9.2 Max Price 8.4e-07
Avg Sell Streak 6.3 Recent Transaction 210

1 Min Prediction 1.1 Recent Spam Trans 12
5 Min Prediction 1.4 Recent Max Price 4.2e-07
10 Min Prediction 1.9 Coins Held 3.2e07

Table 1: Sample data point, price in Solana

We add a large number of additional features. Since our policy no longer has access to the historical
movement of the coin, we manually compiled a list of features derived from that which we believed
would be useful. The Avg Buy/Sell Streak is computed by first grouping the transaction history into
consecutive runs of buy orders and sell orders, and then taking the average length of those runs. Note
that the buy and sell streaks do not have the same average length usually; since Pump.Fun uses an
automatic market maker, there is only one person on the end of every trade. We also include the total
transactions, total spam transactions, and max price of the coin up until the current moment. We
categorize a transaction as spam if the quantity bought or sold is trivial (< $0.01). These transactions
are bots attempting to make the activity on a coin appear inflated. We also include each of these
figures in a "recent" time period, which is the last 5 minutes. Of course, this data point would only

5

intake transaction data up until the time of this transaction.

The reinforcement learning agent takes this information in after each transaction, and outputs a signal
to either buy, sell, or hold (not trade). For each coin, we hope to see it only buy once and sell once, as
we have determined during live trading that multiple trades is almost never profitable due to the fees
associated with each transaction. We wanted to encourage model convergence by trimming complex
behaviors, leaving the model to only learn when to buy and sell once. We implemented this soft "one
trade" restraint by enforcing a illegal action fee when it tries to buy again or sell again. //

When we first started training the agent, we found that it would refuse to buy; this is because it will
receive a large initial negative reward for buying a coin at random and failing to sell at the right point,
given that most of them end up going to zero. To encourage it to explore, we manually implemented
a dynamic reward function, whose values changed over the course of training. Figure 2 displays how
this changes over time.

Figure 2: Punishment Over Time For Different Scenarios

We constantly have the fixed reward of profit and loss over trading each coin. However, we initially
have a large punishment for the agent never buying, to encourage it to explore more. The punishment
for buying but not selling starts out relatively small compared to this (we found that if it became too
large, the bot would learn to simply buy than instantly sell). If the agent never sells, we automatically
sell it at the last price seen in the transaction data, which is usually very low. We slowly raised this
punishment over time, with it peaking at 1, 000, 000 time steps at which point we expected the agent
to consistently. After it had learned this, we didn’t want it to be forced to trade every coin, so both of
these punishments eventually dropped away later in our trading. Our final punishment is for an illegal
action, such as trying to sell when it didn’t have any of the coin, or trying to buy a second time.

7 Results

7.1 LSTM Forecasting Performance

We found that the LSTM models began to converge after relatively few epochs of gradient descent.
After this time period, they began to overfit, and validation accuracy would decrease. To combat this,
we kept a hidden size of only 30. The results are displayed below.

1 Minute 5 Minutes 10 Minutes
Only Movement Data 0.062 0.110 0.278

Including Extra Features 0.067 0.098 0.227
Table 2: LSTM Performance (MSE)

It achieved relatively strong performance on each of the tasks. While this appears to be a short period
of time it’s predicting over, often coins only last 15 minutes and have massive amounts of volatility
during this time, so making any predictions is hard.

6

As the table demonstrates, the LSTM was able to predict accurate returns one minute out with only
the movement data from the past 100 transactions. We initially got weaker returns over the longer
horizon predictions, so we included the extra features derived from the time series data (a similar set
to Table 1.). This helped for the predictions 5 and 10 minutes out, lowering MSE by 11% and 18%
respectively.

7.2 Reinforcement Learning Algorithm Trading Performance

The graph below displays our reward by number of time steps. For scale, a reward of 0.10 is equivalent
to a 10% return, on average, per coin.

Figure 3: Reward Vs Number of Time Steps

At the end of training (10M times steps), the agent’s average per-coin return on the training set
was 0.08 (8%). We then evaluated on the hold-out coins, achieving an average return of 0.07 (7%).
Notably, the agent trained to a slightly higher average return of nearly 0.1 for a million time steps,
before returning to 0.08. Despite our attempts to steer the training by dynamically updating the
reward, training was still very unstable, and it likely converged to a local loss minimum, rather than an
absolute minimum. In the future, we hope to encourage more stable training by using and ensemble
of PPO models.

7.3 Qualitative Analysis

After training the model, we took a look at the coins the agent would actually trade. We found that it
would buy very few coins, and the coins that it would buy are nearly all coins with high volume. This
both poses a problem as well as reveals a hidden benefit.

Problem: We increase variance by trading on few coins

The agent appears to never buy these smaller coins. While there are a few large coins in our data
(which our model does trade), the majority of our nearly 9000 coins do not trade with high transaction
volume. Because of this, our model is making very few investments. In trading, the goal is to
maximize expected return while minimize variance. Having a guaranteed net 0 return on the majority
of coins with large expected value on a few of them exposes you to risk. If none of the few coins we
trade are successful, we run at a lost. Instead, if we invested in thousands of coins with small edges
in each investment, we would have a high likelihood of profiting. This is why many modern quant
firms prioritize ensuring high trade counts, since it reduces risk due to variance.

Upside: We reduce our exposure to scams.

Some of the coins in our dataset appear to go straight up then suddenly fall. However, if you had
bought at the moment it started going up (well before the historical data shows it falling) you would

7

have lost all your money. These coins, known as "honeypots", have their prices artificially inflated
by bot traders, which proceed to synchronously sell the coin after someone buys it. However, this
is only true for smaller coins. There’s a tiny fee for each purchase, and faking trading in a coin
of the volume we’re trading would be prohibitively expensive. Before seeing our results, we were
anticipating having to update the model live to avoid trading into these traps. By only trading high
volume coins, we can be confident our historical data would match the real price movement of a coin
had we put our money into it.

8 Discussion

Our experiments confirm that decoupling short-term price prediction from policy learning greatly
stabilizes training in high-volatility, short-lifespan markets. Training an end-to-end RL agent on raw
transaction sequences resulted in persistent instability: the agent could not distinguish noise from
genuine price trends while simultaneously learning appropriate trading behaviors. By offloading
this prediction task to an LSTM, we provided the RL agent with a more informative and less noisy
observation space.

Fee structure. We currently assume a fixed 0.1% fee per trade based on pump.fun’s advertised rate.
In live trading, however, users must also specify slippage tolerance, transaction speed, and a tip
amount (see Figure 4). Slippage tolerance defines the maximum acceptable price deviation between
order placement and execution—critical in volatile markets. The speed setting purportedly increases
execution priority at an unknown additional cost, and the tip (minimum 0.003 SOL, which is roughly
equivalent to 0.44 USD) further influences execution speed. These hidden “options” menu fees render
our simple fee model inaccurate and reflect a predatory service design.

Action constraints. Based on limited live experience, profitable strategies in this environment tend to
consist of a single buy–sell cycle per coin. Accordingly, we shaped our reward to favor one purchase
and one sale, and restricted the agent to a fixed buy quantity. While these constraints simplify training,
they should be relaxed in future work to allow multiple trade cycles and dynamic position sizing.

Adversarial behaviors. Our simulator replays historical transactions and does not capture how other
market participants react to the agent’s actions. This omission precludes scenarios such as “honeypot”
scams, where bots inflate a coin’s price and then collectively dump it, causing severe losses for real
traders. Since past data cannot reproduce these dynamics, live deployment will be necessary to
expose the agent to adversarial trading behaviors.

Future work will address these limitations by modeling realistic, variable transaction costs; removing
artificial trading restrictions; and integrating the agent into a live environment to learn from genuine
market interactions.

9 Conclusion

We have introduced a modular RL framework tailored to the rapid, noisy dynamics of small-cap
cryptocurrency markets. By abstracting away short-term price prediction into dedicated LSTM
models and feeding their outputs into a PPO agent augmented with handcrafted market features, we
achieve stable training and consistent profitability in simulation—8 % average return during training
and 7 % on unseen coins. Crucially, decoupling the forecasting task reduces observation noise and
accelerates policy convergence in environments where raw transaction data alone proves too erratic
for end-to-end learning.

Looking ahead, we plan to enrich our simulator with realistic, variable transaction costs such as
slippage, priority fees, and tipping mechanisms. We also hope to relax current trading constraints by
allowing multiple buy–sell cycles and dynamic volume selection. Finally, integrating the agent into a
live or paper-trading platform will expose it to genuine market feedback and adversarial behaviors,
such as honeypot scams, enabling further refinement and validation of its real-world performance.

10 Team Contributions

• Alex Bloom: Designed and implemented the data collection and preprocessing pipeline
using the Solana Tracker API, gathering and cleaning all coins and transactions. Created

8

Figure 4: Pump.fun Additional Fee Structure

simulated trading environment for testing MLP-LSTM model. Created LSTM models for
1-, 5-, and 10-minute return predictions. Designed dynamic reward functions. Wrote and
reviewed final report.

• Michael Liu: Created simple environments to test preliminary MLP-LSTM. Implemented
the trading environment in Gymnasium and Stable Baselines wrappers. Integrated LSTM
forecasts and handcrafted market features into a PPO-based RL policy, and managed end-to-
end training and evaluation for both in-sample and held-out test sets. Wrote and reviewed
final report.

Changes from Proposal No changes from proposal.

References

Deng, Y., Bao, F., Kong, Y., Ren, Z., & Dai, Q. (2016). Deep Direct Reinforcement Learning for
Financial Signal Representation and Trading. IEEE Transactions on Neural Networks and Learning
Systems, 28(3), 653–664. https://doi.org/10.1109/TNNLS.2016.2522401

Liu, F., Li, Y., Li, B., Li, J., & Xie, H. (2021). Bitcoin transaction strategy con-
struction based on deep reinforcement learning. Applied Soft Computing, 113, 107952.
https://doi.org/10.1016/j.asoc.2021.107952

Liu, Y., & Tsyvinski, A. (2021). Risks and Returns of Cryptocur-
rency. The Review of Financial Studies, 34(6), 2689–2727. Retrieved from
https://econpapers.repec.org/article/ouprfinst/v3a343ay3a20213ai3a63ap3a2689− 2727..htm

Moody, J., & Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE Transactions on
Neural Networks, 12(4), 875–889. https://doi.org/10.1109/72.935097

Sarlakifar, F., Mohammadzadeh Asl, M. R., Rezvani, K. S., & Salimi-Badr, A. (2025). A Deep
Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks. arXiv
preprint arXiv:2503.09655

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimiza-
tion Algorithms. arXiv preprint arXiv:1707.06347

9

	Introduction
	Related Work
	Preliminary Tests
	Data
	Trading Environment
	Methods
	Results
	LSTM Forecasting Performance
	Reinforcement Learning Algorithm Trading Performance
	Qualitative Analysis

	Discussion
	Conclusion
	Team Contributions

