
Extended Abstract

Motivation Imitation learning offers a powerful framework for training robot manipulation policies.
However, policies trained on a specific robot often fail to generalize across different morphologies.
For example, a policy trained on a 7-DoF arm may not work on a 6-DoF arm due to differences in
kinematics and control spaces. This limits scalability, as collecting new demonstrations for each
platform is labor-intensive. To address this, we explore morphology-aware imitation learning to
enable skill transfer across robots with varying structures—e.g., joint count, link length, actuation
types—without retraining from scratch. This capability is essential for deploying learning-based
policies in diverse, real-world robotic systems.

Method We investigate six approaches for generalizing imitation policies across different robot
morphologies. As a baseline, Per-Robot Policies (PRP) train separate policies for each robot. Direct
Transfer (DT) naively deploys a policy trained on one robot onto others without adaptation. In
Concatenated Morphology Vector (CMV), a fixed-length vector encoding robot morphology is
appended to the observation input. CMVM adds a binary mask indicating valid joints to help the
network distinguish padded dimensions. GNN Morphology Embedding (GNN-ME) uses a Graph
Neural Network to compute an embedding from a graph representation of the robot’s kinematic chain.
Finally, End-Effector Pose Policy + IK (EEPP) trains a policy to predict end-effector displacements
in task space, which are then converted into joint velocities using a robot-specific inverse kinematics
solver.

Implementation We use the RLBench simulator to evaluate these methods on three robot arms:
Franka Panda (7-DoF), UR5e (6-DoF), and KUKA iiwa-14 (7-DoF), across three tasks—Reach Target,
Door Opening, and Basketball in Hoop. Each robot-task pair includes 100 demonstrations, totaling
900. Policies (except EEPP) take as input RGB images, joint states, and optionally morphology
vectors, and output joint velocities using a Mixture Density Network (MDN). The MDN models a
multimodal distribution over actions. Unified policies are trained on combined data from all robots;
PRP and DT use data from one robot only. EEPP outputs end-effector deltas, converted via IK to
joint velocities.

Results Quantitative results show PRP policies achieve the highest success (90–95%) on their re-
spective robots. DT fails to generalize (5% success) due to mismatched control spaces. CMV enables
moderate generalization (50–60%), with CMVM offering marginal gains. GNN-ME performs poorly
(<10%), likely due to insufficient morphology diversity. EEPP achieves near-PRP performance across
all robots and tasks, solving even the most complex (Basketball in Hoop) scenario. Qualitatively,
EEPP and PRP consistently execute smooth, effective motions. CMV and CMVM occasionally
succeed in simpler tasks but fail on complex ones. DT outputs erratic or static commands on unseen
robots due to joint dimensional mismatch.

Discussion Our study highlights the effectiveness of morphology-aware conditioning. CMV
improves transfer by allowing the policy to adapt its output based on robot attributes. The marginal
impact of CMVM suggests the policy can ignore padded morphology entries without explicit masking.
GNN-ME underperforms, underscoring that expressive encodings require diverse training data. EEPP
succeeds by shifting control to end-effector space, avoiding direct dependence on robot-specific joint
configurations. However, EEPP assumes access to accurate kinematic models and solvers, and it may
struggle in tasks requiring dynamic interactions or contact forces not captured by pure kinematics.

Conclusion We present a comprehensive evaluation of morphology-aware imitation learning across
heterogeneous robot morphologies. Our results show that while directly transferring policies across
morphologically distinct robots fails, incorporating structural information (CMV) or delegating
control to IK (EEPP) enables strong generalization. EEPP in particular achieves performance near
that of per-robot experts. These findings point toward promising directions for scalable, transferable
robot learning. Future work could explore hybrid approaches combining morphology encoding and
task-space planning with online adaptation or fine-tuning, as well as expanding to more robots and
dynamic tasks to further stress-test generalization.
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Abstract

Learning robot manipulation via imitation is often hindered by poor cross-robot
generalization, as policies trained on one robot fail to transfer to others with
different morphologies. We address this challenge by developing and evaluating
morphology-aware imitation learning methods that enable policy transfer across
robots with varying degrees of freedom and kinematic structures. Using a Mixture
Density Network, we train a base policy on the 7-DoF Franka Panda robot and
compare six transfer approaches—including morphology-conditioned networks and
end-effector–based control via inverse kinematics—on three tasks (Reach, Door
Opening, Basketball) and three robots (Panda, UR5e, KUKA iiwa). Results show
that directly transferring policies fails, while conditioning on morphology improves
generalization. Notably, our End-Effector Pose Policy approach achieves near-
expert performance on all robots without retraining. This work demonstrates that
morphology-aware designs, particularly task-space abstraction, can significantly
reduce the need for per-robot data, enabling more scalable and flexible deployment
of learned robotic skills.

1 Introduction

Robotic manipulation skills learned by imitation tend to be narrowly specialized to the robot on
which they were trained. If a policy is trained (via behavior cloning or other imitation learning)
to perform a task with one robot arm, it will often fail when deployed on a different robot arm
that has even slight differences in morphology – for instance, a different number of joints, link
lengths, or joint actuation limits. This problem severely limits the scalability of robot learning, as
new morphologies are common in real-world scenarios and retraining a policy from scratch for each
robot is time-consuming and costly. The goal of this project is to develop methods for cross-robot
generalization in imitation learning, enabling a policy to transfer across embodiments. In other words,
we aim to answer: How can we train robot manipulation policies that generalize across different
robot morphologies and tasks, using only imitation learning?

There are several challenges in this setting. Robots with different kinematic structures will produce
different joint trajectories to achieve the same end-effector behavior, so a policy conditioned only
on raw observations (images, joint states) might not know how to adjust its outputs for a new robot.
Moreover, a policy trained on demonstrations for one robot might output invalid or suboptimal actions
on another robot (for example, controlling a non-existent joint). Naively transferring policies can
result in catastrophic failures, as we confirm in our experiments. Our key insight is that providing
the policy with explicit information about the robot’s morphology (or otherwise designing the policy
to be morphology-agnostic) can enable generalization without retraining from scratch. We explore
this insight through multiple approaches, from simple feature augmentation to more structured
representations.
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2 Related Work

Adapting control policies across robot morphologies has been studied through both online and offline
approaches. Online adaptation methods like DEFT fine-tune policies on new tasks or environments
using human demonstrations and rapid reinforcement learning. However, DEFT focuses on adapting
within a fixed morphology (a dexterous five-fingered hand) and does not address cross-morphology
generalization.

In contrast, RoboMorph uses large language models and evolutionary algorithms to optimize robot
designs for tasks. While it generates novel morphologies, it assumes simulators for evaluation and
does not enable policy reuse across different robots.

Closer to our goal, MetaMorph trains a universal Transformer-based controller conditioned on
morphology tokens, achieving zero-shot transfer across modular robots. However, it relies on massive
offline training and lacks online adaptability. Our work explores simpler, lightweight alternatives
including morphology concatenation, graph-based embeddings, and task-space decomposition.

Other related methods in multi-task and multi-agent learning incorporate morphology or dynamics
parameters into the policy input. Our CMV method follows this conditioning approach. Inspired by
physical systems modeling, our GNN approach encodes the kinematic structure as a graph, though
we find that such methods may require greater morphological diversity to generalize effectively.

In summary, while prior work has explored morphology optimization, universal control, or fine-tuning,
our contribution lies in directly comparing several morphology-aware imitation learning strategies
under a unified setup, evaluating their ability to generalize across real structural differences with
moderate data.

3 Method

We aim to generalize imitation policies across robot morphologies. Our pipeline begins with training
a base policy on a single robot, and extends to multi-robot training via various morphology-aware
strategies. All policies are trained via Behavior Cloning (BC) using a neural network with a Mixture
Density Network (MDN) output that predicts joint velocities.

Base Policy Architecture

Each demonstration consists of RGB images from a front and wrist-mounted camera, along with
joint angles and end-effector pose. The action is a vector of joint velocities. We collected 100 expert
demonstrations per task per robot.

The base policy πθ(at | st) comprises dual streams: CNN encoders process visual inputs, and fully
connected layers handle low-dimensional states. The fused feature vector is passed to an MDN head
that models a mixture of Gaussians over joint velocities, capturing multi-modality in demonstrations.
The model is trained via negative log-likelihood loss.

We first train the base policy on Panda robot data, using it in the Direct Transfer baseline. For unified
policies, we train on all robots jointly while adjusting input structure to incorporate morphology.

Baselines

Per-Robot Policies (PRP): Each robot is trained separately on its own data, offering an upper-
bound on task performance without generalization. This allows the policy to fully specialize to its
morphology.

Direct Transfer (DT): We directly deploy a Panda-trained policy on the UR5e and iiwa without
adaptation. Since UR5e has 6 DoF and the Panda policy expects 7, we truncate the output and
zero-pad the UR5e’s state input. This naive setup highlights the difficulty of ignoring morphology
differences.
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Figure 1: Task Overview.

Morphology-Aware Architectures

We explore four unified policy variants, all trained on the combined dataset from three robots. Each
integrates morphology information differently:

1. Concatenated Morphology Vector (CMV): We construct a fixed-length descriptor m containing
link lengths and DoF count. For robots with fewer joints (e.g., UR5e), the extra entries are padded
with zeros. This vector is concatenated with the observation vector (either with state or after visual-
state fusion) and passed to the network. The policy becomes π(at | st,m), allowing the network to
condition behavior on robot structure. However, zeros in m may be misinterpreted as valid inputs.

2. CMV with Mask (CMVM): To mitigate ambiguity, we add a binary mask b where bi = 1 if mi

is real, 0 if padded. The input becomes (st;m; b). This disambiguates padded versus meaningful
morphology values, helping the policy avoid learning from phantom joints. Architecturally, CMVM
mirrors CMV with a slightly longer input vector. In practice, the performance gain from masking
was marginal.

3. GNN-Based Morphology Embedding (GNN-ME): Rather than manually encoding morphology,
we use a Graph Neural Network (GNN) to learn an embedding from the robot’s kinematic graph.
Nodes represent joints/links, edges reflect connectivity. Node features include link lengths and joint
types. The GNN outputs an embedding ϕ(m) via message passing and pooling. This embedding is
concatenated with the observation input and fed into the MDN policy. We jointly train the GNN and
the policy. However, with only three robot morphologies, the GNN struggled to generalize and likely
overfit, showing poor transfer performance.

4. End-Effector Pose Policy + IK (EEPP): This method abstracts control to task space. The policy
outputs ∆pose, a 6D end-effector displacement (position + orientation deltas), rather than joint
velocities. A robot-specific inverse kinematics (IK) solver maps this into joint commands. The policy
observes RGB images and low-dimensional states (excluding joint angles), and includes the current
end-effector pose and target pose. The MDN output is translated via the IK solver for execution.

EEPP offers strong generalization because end-effector motion is largely robot-agnostic. It avoids
morphology embedding altogether and leverages existing robot models to solve joint mappings
analytically. However, this assumes the IK solver is available and accurate, and that tasks are defined
in end-effector space. It may fail if the robot lacks sufficient dexterity to match the desired pose (e.g.,
UR5e failing to achieve 7-DoF wrist orientations). Despite these constraints, EEPP achieved the
highest success in our experiments across all tasks and robots.

Summary

We propose and evaluate four morphology-aware policy architectures. CMV and CMVM provide
explicit conditioning using robot parameters, while GNN-ME learns structure-aware embeddings.
EEPP shifts to a morphology-agnostic action space, enabling high transferability. The unified training
setup and MDN output enable all approaches to model multimodal expert behaviors. Our experiments
demonstrate that lightweight morphology-aware conditioning improves generalization, but the best
performance arises from factoring control into a morphology-invariant representation combined with
analytical tools like IK.
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4 Experimental Setup

We evaluate cross-robot generalization using three robot arms and three manipulation tasks in the
RLBench simulation suite, which provides diverse tasks and a physics-based simulator built on
CoppeliaSim.

Robots: We selected three robot models with varying morphologies:

• Franka Emika Panda: 7-DOF, torque-controlled, lightweight arm with wide motion range.

• UR5e: 6-DOF, position-controlled, lacking a spherical wrist joint, limiting its dexterity.

• KUKA iiwa-14: 7-DOF, torque-controlled industrial arm, with similar DoF to Panda but
different link lengths and dynamics.

These robots span structural variations in DoF, scale, and control type.

Tasks: We chose three tasks of increasing complexity:

• Reach Target: Move the end-effector to a point in space—simple and contact-free.

• Door Opening: Grasp, rotate, and pull a door handle—requires multi-phase coordination.

• Basketball in Hoop: Pick up a ball and place it in a hoop—requires precision and height
control.

Data Collection: For each task-robot pair, we collected 100 scripted expert demonstrations using
RLBench’s API, totaling 900 demos. Each demo includes synchronized RGB images (128×128) from
front and wrist cameras, joint states, and joint velocities. State features and actions were normalized
for training. We split data into 90% train and 10% validation sets.

Training: Policies were trained using Behavior Cloning with an MDN output, on a single GPU
workstation using the Adam optimizer. Each trajectory contained 50–200 timesteps, yielding 150k
data points across all robots and tasks. Unified policies were trained on the entire dataset; PRP and
DT used only a single robot’s data.

Evaluation: Each policy was evaluated in 20 randomized rollouts per task per robot. A trial is
successful if the robot completes the task within a fixed time and meets the RLBench-defined success
condition. For example, the basketball must land in the hoop, or the door must open past a threshold.
For stochastic MDN outputs, we use the mean of the most probable Gaussian during evaluation.
Success rates are averaged over 60 trials per robot (3 tasks × 20 trials), and we also report per-task
results to assess task difficulty.

5 Results

We report success rates (fraction of successful rollouts) for each method across three manipulation
tasks and three robot arms. Each task was evaluated with 20 randomized trials per robot. The full
breakdown is shown in Tables 1, 2, and 3.

Table 1: Success rates on Reach Target task.

Robot PRP DT CMV CMVM GNN-ME EEPP
Panda 1.00 1.00 – – – –
UR5e 1.00 0.00 0.10 0.20 0.05 0.95
iiwa 0.95 0.05 0.55 0.45 0.05 0.95

Table 2: Success rates on Door Opening task.

Robot PRP DT CMV CMVM GNN-ME EEPP
Panda 0.95 0.95 – – – –
UR5e 0.90 0.00 0.00 0.05 0.00 0.95
iiwa 0.95 0.00 0.40 0.45 0.00 0.80
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Table 3: Success rates on Basketball in Hoop task.

Robot PRP DT CMV CMVM GNN-ME EEPP
Panda 0.75 0.75 – – – –
UR5e 0.60 0.00 0.00 0.00 0.00 0.65
iiwa 0.65 0.00 0.00 0.45 0.00 0.50

Qualitative Analysis and Discussion

Beyond quantitative success rates, we analyze how each method behaves and why.

Why Did Morphology Vectors Help?

The CMV and CMVM results show that conditioning the policy on a morphology vector m enables
basic adaptation across robot structures. The policy likely learned distinct behavior modes based on
m, adjusting outputs depending on robot-specific features (e.g., 7-DOF vs 6-DOF). This is analogous
to multi-task learning where context variables modulate the policy. Without morphology input, the
policy cannot distinguish why UR5e behaves differently, but with m, it learns this implicitly during
training. Although CMV improved generalization, its performance remained below PRP, possibly
due to network capacity limits or the challenge of encoding multiple optimal policies in one set of
weights. More data or larger models might help, but full generalization may still fall short of PRP in
high-complexity tasks.

Why Did the Mask Not Matter?

We hypothesized that a binary mask b would help disambiguate padded zeros in m. However, CMVM
did not consistently outperform CMV. This suggests the network either inferred joint validity from
the values in m or learned to down-weight the impact of padded entries. The mask might become
more relevant with greater variation in morphology, but for our setup, its benefit was marginal. Thus,
future implementations can omit the mask without significant loss, simplifying the architecture.

What Went Wrong with GNN-ME?

Despite its expressive power, GNN-ME performed poorly. With only three robot morphologies,
the GNN likely memorized the graphs instead of learning generalizable embeddings. Since Panda
and iiwa share the same topology and UR5e differs only in joint count, there was little structural
diversity. The embeddings may have converged to near-constant vectors, offering no useful signal.
Furthermore, the GNN architecture and node features (e.g., joint type, link length) may not have been
optimal. Future work should explore pretraining the GNN or expanding the dataset with more diverse
morphologies to fully leverage graph-based representations.

Why Was EEPP So Effective?

EEPP avoids direct morphology encoding by operating in task space. The policy outputs end-effector
pose deltas, which are mapped to joint velocities using a robot-specific inverse kinematics (IK)
solver. Since all robots share the same end-effector “language,” EEPP generalizes naturally across
morphologies. The IK solver handles the mapping to joint space, offloading complexity from the
policy. Interestingly, EEPP matched or outperformed learned joint-space policies despite using a
lower-dimensional output (6D pose vs 7D joint velocities), suggesting that this abstraction simplifies
learning and improves sample efficiency. EEPP assumes access to accurate robot models and IK
solvers, but for standard arms, this is a reasonable trade-off.

Task Difficulty and Performance Trends

Across methods, Reach Target was the easiest task, followed by Door Opening, with Basketball being
the most difficult. Even PRP sometimes failed in Basketball due to minor placement errors. CMV-
based policies struggled with precise control, especially in Basketball. EEPP, however, maintained
high performance across tasks. Its ability to capture consistent end-effector strategies (e.g., position
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Figure 2: Visualization of results.

over hoop, then release) allowed for better generalization. In Door Opening, CMV and CMVM
sometimes failed to pull the door after turning the handle, especially on UR5e, which lacks a wrist
joint for fine orientation. These errors illustrate how morphology differences impact performance
more significantly in complex, multi-phase tasks. This reinforces the need for morphology-aware
policies or abstraction techniques like EEPP when deploying to new robots.

6 Discussion

Limitations

A limitation of our study is the relatively narrow set of robot morphologies: all three robots are serial
manipulators with a maximum of 7-DOF. Thus, our conclusions may not generalize to significantly
different systems, such as SCARA arms or humanoids. Our findings indicate that task-space policies
like EEPP generalize well as long as the robot can physically reach the required end-effector poses.
However, if a robot cannot execute the desired motion due to joint limits or reachability constraints,
the policy would fail unless task strategies are adapted or certain tasks are excluded.

Another limitation is the simplified simulation environment. We did not consider dynamics or control
delays, which are critical in real hardware. A kinematically sound end-effector policy might fail on a
real robot with different response characteristics. Our dataset size was modest (100 demonstrations
per task), and while sufficient for our analysis, some methods—particularly GNN-ME—might benefit
from more data. We also did not perform thorough hyperparameter sweeps, meaning further tuning
might improve results across all methods.

Implementation Insights

Developing and maintaining consistent pipelines across policy architectures required several engi-
neering decisions. A key challenge was normalizing observations. Since joint ranges differ across
robots (and UR5e has only 6 joints), we normalized joint angles to the range [0, 1] based on each
robot’s configuration and used a padded dummy value for missing joints. Similarly, morphology
descriptors like link lengths were normalized relative to a nominal scale to prevent input dominance
from raw value magnitudes.

We also encountered instability in MDN training. In early stages, the network sometimes collapsed
to a single mode. To address this, we initialized MDN output biases to encourage broad variance,
which stabilized convergence. Although a deterministic regressor might suffice in some tasks, MDNs
provided flexibility for modeling multimodal actions observed in demonstrations.

For EEPP, IK integration required fine-tuning. We used a resolved-rate control scheme where each
policy output was translated into joint velocities via Jacobian-based IK. If IK failed due to singularities
or large displacements, we applied step-size capping to ensure feasible motions. This worked well
in our relatively unconstrained tasks, but future applications may require more robust solvers with
damping or null-space objectives for success under tighter constraints.
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7 Conclusion

This project explored morphology-aware imitation learning as a solution for generalizing manipulation
policies across different robot embodiments. We developed and evaluated several methods that
incorporate robot morphology into the policy network, ranging from simple feature concatenation
(CMV), to structured representations (CMVM and GNN-ME), and a morphology-agnostic approach
(EEPP) based on task-space control with robot-specific inverse kinematics.

Through experiments on three robot arms (Franka Panda, UR5e, KUKA iiwa) and three diverse tasks,
we found that conditioning on morphology can significantly improve cross-robot generalization.
The CMV approach demonstrated moderate success in transferring skills to unseen robots without
retraining, confirming the value of explicit morphology inputs. However, GNN-ME underperformed
in our setting, likely due to limited data and insufficient structural variation. This highlights the need
for either larger morphology datasets or auxiliary pretraining when using learned embeddings.

The most effective strategy was to reformulate the control problem altogether. Our EEPP
method—where the policy outputs end-effector pose changes and relies on an analytical IK solver
for joint control—achieved near-specialist performance on all robots and tasks. This suggests that
abstraction into a shared task-space representation, combined with known physical models, can yield
robust generalization even in zero-shot scenarios.

These findings offer practical guidance. For practitioners, incorporating task-space control and
leveraging existing robot models (e.g., via IK solvers) may be more effective than relying on purely
learned mappings. For researchers, our results indicate the promise of combining structural priors
with learning-based methods. Future directions include exploring meta-learning for fast morphology
adaptation, scaling to more varied robots, and deploying these techniques on real hardware.

In summary, we achieved our goal of improving policy generalization across different robot morpholo-
gies. While we initially aimed to explore online adaptation, our focus on zero-shot generalization
through morphology conditioning and task-space abstraction proved highly successful. This work
demonstrates the feasibility of cross-robot imitation learning and lays the groundwork for making
robot learning algorithms more general, data-efficient, and deployable across diverse platforms.

8 Team Contributions

Since this is an individual project, all tasks including literature review, environment setup, algorithm
implementation, experiments, and final report writing was completed independently by myself.

Changes from Proposal Our original proposal aimed to explore online adaptation—fine-tuning
imitation policies on new robots using limited reinforcement learning. However, we encountered chal-
lenges in applying RL to RLBench tasks, particularly balancing policy retention with exploration in
high-dimensional spaces. Given time constraints, we pivoted to comparing offline morphology-aware
methods using behavior cloning, which still addresses cross-robot generalization with minimal new
data. We also revised our task set to Reach, Door Opening, and Basketball for their reliable scripted
demonstrations and increasing difficulty. Additionally, we dropped the Kinova Gen3 robot from our
experiments due to integration challenges and redundancy with other 7-DOF arms. These adjustments
enabled us to conduct a focused, meaningful study. In hindsight, emphasizing offline generalization
proved effective and yielded valuable insights into morphology-aware learning. Incorporating online
adaptation remains a promising direction for future work, but was beyond the scope of this project.
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