
Extended Abstract

Motivation Language models are seeing rapidly growing use across a wide range of everyday,
academic and professional applications. This widespread adoption has enabled the collection of large
datasets capturing direct user feedback on the quality and appropriateness of model outputs. Recent
work has shown the potential to leverage this user feedback data to improve language models via
reinforcement learning frameworks such as RLHF (Reinforcement Learning from Human Feedback).
As an extension to themes in this work, the emerging paradigm of Constitutional AI aims to constrain
model behavior to align with a set of pre-defined principles or values, helping to constrain uwanted
model behavior. By flipping the task inherent to Constitutional AI on its head, Inverse Constitutional
AI seeks to infer such latent principles from user feedback data. Here we present a novel framework
that combines elements of Constitutional and Inverse Constitutional AI to guide language model
outputs to better reflect human preferences. The combination of concepts from RLHF, Constitutional
AI, and Inverse Constitutional AI make possible a framework where-in language models can be
trained in a fashion that appropriately constrains behavior with minimal developer supervision.

Method In order to demonstrate this, we first apply Inverse Constitutional AI techniques to a dataset
of human-labeled response preference pairs to learn a set of guiding principles. We then provide
these learned principles as additional input during fine-tuning of a language model, with the goal of
steering the model to generate outputs more consistent with the preferences reflected in the source
data. Through experiments on both open-ended language generation and targeted reasoning tasks, we
validate that this Learned-Principles-Guided-Outputs approach quantitatively improves alignment of
model-generated text with the learned principles while preserving overall generation quality.

Implementation Using the Qwen2.5-0.5B model as base, a reference model was created by
performing supervised fine-tuning on HuggingFaceTB/smol-smoltalk, a dataset of user prompts
and model responses designed specifically for the training of smaller language models. Using the
algorithm provided in the authors’ paper, Inverse Constitutional AI was performed by querying Ope-
nAI’s gpt-4o-mini model for sets of principles explaining why a preferred response was chosen over
its paired rejected response for a subset of pairs in HuggingFaceH4/ultrafeedback_binarized,
a dataset containing preferred and dis-preferred preference pairs. To avoid redundant principles,
per-sample principles were then clustered using k-means clustering on text representations generated
by OpenAI’s text-embedding-ada-002 model, and one candidate principle was sampled from each
cluster. Candidate principles were evaluated for usefulness in explaining preference across samples in
the dataset by prompting gpt-4o-mini with the principle as well as the chosen and rejected responses
(unidentified). gpt-4o-mini was asked to identify, based solely on the provided principle, whether
response 1 was preferred, response 2 was preferred, or if the principle was largely inapplicable to
comparison of the two responses. Principles found to be inapplicable in over 90% of samples were
discarded, and the remaining principles were ranked based on the frequency of correct preferred
response selections using the principle. Finally, the top n principles were selected for the constitution.

Using a frozen and unfrozen version of the fine-tuned model as reference and trainable
policies (respectively), direct preference optimization was performed using the data from
HuggingFaceH4/ultrafeedback_binarized on two versions of the dataset: a standard imple-
mentation, and one where user prompts were augmented with the principles generated in the previous
state.

Results RUNNING NOW! include end eval loss, eval accuracy, and leaderboard score

Conclusion Our framework shows that a general use language model can be used to distill a set of
guiding principles from a human preference dataset, allowing for improved fine-tuning of a model
tailored to that dataset in an unsupervised fashion. This has wide reaching implications for improving
and constraining model behavior, especially in use cases for smaller models.
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Abstract

Language models are seeing rapidly growing use across a wide range of everyday,
academic and professional applications. This widespread adoption has enabled
the collection of large datasets capturing direct user feedback on the quality and
appropriateness of model outputs. Recent work has shown the potential to leverage
this user feedback data to improve language models via reinforcement learning
frameworks such as RLHF (Reinforcement Learning from Human Feedback). As
an extension to themes in this work, the emerging paradigm of Constitutional AI
aims to constrain model behavior to align with a set of pre-defined principles or
values, helping to constrain uwanted model behavior. By flipping the task inherent
to Constitutional AI on its head, Inverse Constitutional AI seeks to infer such
latent principles from user feedback data. Here we present a novel framework
that combines elements of Constitutional and Inverse Constitutional AI to guide
language model outputs to better reflect human preferences. The combination
of concepts from RLHF, Constitutional AI, and Inverse Constitutional AI make
possible a framework where-in language models can be trained in a fashion that
appropriately constrains behavior with minimal developer supervision. In order to
demonstrate this, we first apply Inverse Constitutional AI techniques to a dataset
of human-labeled response preference pairs to learn a set of guiding principles.
We then provide these learned principles as additional input during fine-tuning of
a language model, with the goal of steering the model to generate outputs more
consistent with the preferences reflected in the source data. Through experiments
on both open-ended language generation and targeted reasoning tasks, we validate
that this Learned-Principles-Guided-Outputs approach quantitatively improves
alignment of model-generated text with the learned principles while preserving
overall generation quality. Our work illustrates the potential for data-driven learning
of human preferences to guide development of beneficial AI systems that are more
value aligned with user expectations.

1 Motivation

The rapid advancement and widespread adoption of large language models (LLMs) have rev-
olutionized the field of natural language processing and transformed the way we interact with
AI systems. OpenAI’s GPT-3 and its subsequent iterations, along with models like Anthropic’s
Claude and DeepMind’s Chinchilla, have showcased remarkable capabilities in various tasks, from
question-answering and content generation to code completion and creative writing. The popularity
of these models is evident in the massive user base they have amassed. For instance, ChatGPT, one
of the most prominent LLM-based chatbots, surpassed 100 million monthly active users within
just two months of its launch Milmo (2023). This surge in demand has led to significant revenue
growth for companies in the LLM space. OpenAI recently completed a deal value the company at
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$300 billion Metz (2025), while Anthropic has recently raised $3.5 billion in funding, valuing the
company at $61.5 billion Anthropic (2025). User opinions on LLMs are at a notable high, with 76%
of experts claiming that they expect advancements in AI to benefit them personally Smith et al. (2025).

To further enhance the performance and align the behavior of LLMs with human values and
preferences, researchers have increasingly turned to human feedback datasets, employing principles
from Reinforcement Learning from Human Feedback (RLHF) Ouyang et al. (2022a). These
datasets consist of pairwise comparisons, where annotators select the preferred output between two
model-generated responses for a given prompt. Notable examples include the Anthropic helpfulness
and harmlessness dataset Bai et al. (2022a), which comprises over 160,000 annotations to mitigate
harmful model outputs, and the Stanford Human Preferences Dataset Ethayarajh et al. (2022) with
more than 380,000 comparisons across various tasks. Other prominent datasets in this space are
the OpenAI WebGPT dataset Nakano et al. (2021) and UC Berkeley’s Nectar dataset Zhu et al. (2023).

Mentioned briefly earlier, RLHF frameworks have emerged as a powerful approach to leverage
these human preference datasets for fine-tuning LLMs. By formulating the alignment problem
as a reward modeling task, RLHF allows models to optimize their outputs based on human
preferences. Christiano et al. Christiano et al. (2023) introduced one of the earliest RLHF
implementations in 2017, demonstrating its effectiveness in aligning model behavior with human
preferences in Atari game tasks. Stiennon et al. further extended this approach by combining
supervised fine-tuning with RLHF, resulting in improved summarization performance Stiennon
et al. (2022). In 2022, Ouyang et al. applied RLHF to InstructGPT, providing a framework
for the use of RLHF principles in finetuning language models Ouyang et al. (2022b). Since
then, RLHF has been an integral part of the language model fine-tuning tool-kit Chaudhari et al. (2024)

Despite the proven efficacy of RLHF in aligning LLMs with human preferences, understanding
the learned behavior remains a significant challenge. The complex nature of human preferences
and the difficulty in interpreting model-based reward models make it difficult to determine what
is learned by RLHF trained language models, leading to concerns regarding accuracy and learned bias.

2 Related Work

As mentioned earlier, a key flaw in traditional RLHF frameworks is their lack of interpretability and
oversight. Implicit preference learning directly from data subjects learned models to the same errors
and biases present amongst the annotators of the data they are fed, potentially creating hard-to-detect
problems in scenarios when said annotators are systematically wrong, or otherwise preferring behavior
misaligned with the model’s objective. Constitutional AI addresses this problem by guiding model
outputs with a developer-defined set of guiding principles called a constitution Bai et al. (2022b).
The constitutional AI approach works in two stages. During the learning stage, the model generates
responses to user prompts, and critiques its own responses based on the constitutional principles.
Using this critiques, the model revises its original responses to better align with the principles, and is
fine-tuned on the revised responses. In the reinforcement learning stage, the model generates response
pairs, evaluates them according to the constitutional principles, and trains a preference model on
these AI-generated preference labels to further optimize its behavior. The use of this constitution
helps prevent model outputs from deviating too far from expected output relative to the principles
in the constitution. Its use in this manner demonstrates the ability for language models to supervise
themselves effectively, needing minimal user intervention. In addition to avoidance of the costs
inherent to manual human annotation, in their work the authors at Anthropic found that their models
trained within the Constitutional AI framework outperformed models trained using traditional RLHF
frameworks, providing powerful motivation for utilization of their method.

The gains brought about by the aforementioned Constitutional AI framework do have one caveat:
they require the knowledge of the desired constitution beforehand. In contexts such as withholding
harmful information in chatbot responses or prioritizing brevity in response to questions with yes or
no answers, such constitutions can be straightforward. Unfortunately however, human preferences
are often complicated, leading to a large number of contexts in which drafting an optimal constitution
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becomes a very difficult task. Findeis et. al. address this drawback by flipping the problem framework
of Constitutional AI on its head: given a dataset of human preference pairs, they aim to learn a
constitution from the data in a framework they call Inverse Constitutional AI Findeis et al. (2025).
To solve the ICAI problem, the authors propose the following algorithmic approach. First, an LLM
generates candidate principles for each pair of responses from the preference dataset. Second, k-
means clustering is performed on embeddings of the candidate principles, and a single principle
is sampled from each cluster to generate a diverse set of candidate principles. Then, the candidate
principles are evaluated based on their ability to help an LLM reconstruct the original preference
annotations. Finally, principles are filtered and sorted based on their testing performance, and the top
n principles are selected to form the final constitution.

In our work, we aim to build off of the insights provided by the development spearheaded by these
offers. Given a dataset of human preference pairs, our goal is to use the Inverse Constitutional AI
framework to learn a constitution explaining the preference decisions in the dataset, and investigate
the extent to which prompting a language model with that constitution improves learned behavior
during training.
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3 Implementation

The foundation for all language models trained in this project is the Qwen 2.5 0.5B Base model Team
(2024), which can be accessed through the Hugging Face model repository at "Qwen/Qwen2.5-0.5B".
The model and its associated tokenizer were instantiated using the Hugging Face Transformers API
Wolf et al. (2020), which provides a standardized interface for working with pre-trained language
models. The training setup for each model is detailed below.

3.1 Base Model Training

3.1.1 Supervised Fine Tuning (SFT)

For the supervised fine-tuning (SFT) of the Qwen model, the HuggingFaceTB/smol-smoltalk
dataset was used, which is subset of a collection of high-quality chat responses from GPT-4. The
data was loaded using the Hugging Face Datasets API Lhoest et al. (2021), which allows for efficient
access to a wide range of datasets. To prepare the data for SFT, only the first turn (user prompt and
model response) from each observation in the SmolTalk dataset was selected. This resulted in a
dataset consisting of paired prompts and responses. Fine-tuning was performed for a single epoch
on the first approximately 78,000 such pairs in the dataset. The standard SFT loss objective (with
no loss applied to query tokens) was implemented using PyTorch Paszke et al. (2019), which is the
same next-token prediction objective used in the model’s pre-training. The objective can be formally
written as:

max
θ

E(x,y∈D)

|y|∑
t=1

log πθ(yt|x, y<t)

where θ represents the model parameters,
D is the dataset,
x is the prompt,
y is the model response,
and πθ(yt|x, y<t) is the probability assigned by the model to the t-th token of the completion, given
the prompt and the previous tokens in the completion.

The AdamW optmizer Loshchilov and Hutter (2019) was used with a learning rate of 5E-7, weight
decay (regularization) of 1E-8, training batch size of 2, and evaluation batch size of 1024. The
training and evaluation loss curves from fine-tuning are shown below:

Figure 1: Loss Curves for SFT Training. Evaluation Loss curves are pictured at left, and Training
curves at right

Aside from runtime concerns, the plateau of the evaluation curve at the end of training served as
evidence that the utilized sample from the dataset was sufficient for full fine tuning.
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3.1.2 Direct Preference Optimization (DPO)

For the Direct Preference Optimization (DPO) stage, the SFT model trained in the previous step was
utilized. A frozen version of the SFT model served as the reference policy, while an unfrozen version
was used as the policy to be updated during training.

The HuggingFaceH4/ultrafeedback_binarized dataset available on the Hugging Face datasets
repository, was used for DPO. This dataset is a preference dataset designed to study the instruction-
following abilities of large language models. It consists of prompts, preferred and rejected responses
to those prompts, and scores assigned to each response.

DPO was performed for a single epoch on the full UltraFeedback dataset. The standard DPO loss
objective, as described by Rafailov et al. Rafailov et al. (2024), was implemented. This loss function
reformulates the constrained reinforcement learning problem as a supervised preference classification
problem on human preference data. The DPO loss is defined as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
Where β is a constant for scaling,
πref is the reference policy,
πθ is the policy to be learned,
yw is the preferred response,
and yl is the rejected response.

The AdamW optimizer Loshchilov and Hutter (2019) was used with a learning rate of 1E-7, β = 0.1,
training batch size of 128, and evaluation batch size of 1024. The training and evaluation loss curves
from DPO are shown below:

Figure 2: Loss Curves for DPO Training. Evaluation Loss curves are pictured at left, and Training
curves at right.

Additionally, because the DPO objective is formulated as a quasi-classification objective, we can
also report model "accuracy" which corresponds to the proportion of observations where the policy
model’s log probability ratio for the preferred response is higher than its log probability ratio for the
dispreferred response, with the reference model’s probabilities as a baseline. Then, the "accuracy"
represents the frequency with which the policy exceeds the baseline. Those accuracy curves are
shown below:
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Figure 3: Accuracy Curves for DPO Training. Evaluation Loss curves are pictured at right, and
Training curves at left

In both the loss and accuracy curves, we observe that we don’t quite reach asymptotic behavior at the
end of training, indicating that additional optimization could further improve model performance.
This was not done due to time and resource constraints.
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3.2 DPO with Constitutions

For DPO with constitutions, the same SFT model as DPO was used as reference and initial policy.
Prior to training however, constitutions were obtained by using the Inverse Constitutional AI algorithm
Findeis et al. (2025). The primary objective of the algorithm is to generate the set of principles (AKA
a constitution) that maximizes the ability of the constitution to align with the preference decisions
present in the provided dataset.

argmax
c

agreement(po, pM (c)) s.t. |c| ≤ n

Where c is the learned constitution,
po are the original preferences in the dataset,
pM (c) are preferences determined using the learned constitution,
and n is a hyperparameter controlling the number of principles to be included in the learned constitu-
tion.

In our experimental setup, we ran the algorithm with n = |c| = 1.

3.2.1 Constitution Generation

Using a 2,000 pair sample from the UltraFeedback dataset, we prompted gpt-4o-mini to produce
three principles for each pair of preferred and rejected responses, aiming to explain the reasoning
behind the preference. This process yielded a total of 6,000 principles. To reduce redundancy and
identify common themes, we applied k-means clustering with k=3 to semantic embeddings of the
generated principles. These semantic embeddings were generated using text-embedding-ada-002
OpenAI et al. (2024). Subsequently, we downsampled the principle list by selecting a single
representative principle from each cluster, with the goal of ensuring that the final set of principles
was diverse and non-repetitive.

The selected set of principles were:

• Select the response that focuses on a specific government action.

• Select the response that explicitly mentions the job posting.

• Select the response that maintains focus on relevant subjects.

The plot below illustrates the clusters and the selected principles within each cluster:

Figure 4: Clustered Embeddings for Generated Principles. The principles selected from sampling are
shown in red.
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Subsequently, each down-sampled principle was tested against all preference pairs in the feedback
dataset. For each sample in the preference dataset we prompted gpt-4o-mini with the prompt,
response pairs, and every candidate principle. The task for the model was, for each principle, to pick
which of the two responses should be preferred based on the given principle, or declare that principle
was of no relevance in judging the available responses. While providing all principles at once for
judgement runs the risk of unwanted biased behavior based on the order in which principles are
presented, this bias is likely limited in scale, and worth the reduction in number of API calls needed.
(from a principles × b preference pairs calls to b preference pairs calls

Figure 5: Results from testing down-sampled principles against the dataset. The proprtion of correct
response selections is shown in green, incorrect selections in red, and instances where the principle
was deemed irrelevant in blue.

From this step, principles were filtered such that those deemed irrelevant greater than 90% of the time
were dropped, and the top n remaining principles were selected to be in the final constitution. As
is clear from the figures above, the only principle to make it into our constitution was the principle
stating "Select the response that maintains focus on relevant subjects."

3.2.2 Constitutional DPO

In order to investigate the performance of learned constitution provision on model training, we again
performed DPO, using the following altered objective:

LDPO(πθ;πref) = −E(x,yw,yl)∼D̂

[
log σ

(
β log

πθ(yw|x̂)
πref(yw|x̂)

− β log
πθ(yl|x̂)
πref(yl|x̂)

)]
x̂ = concatenate(x, ĉ)

Where x̂ is the prompt with a reworded version of the learned constitution ĉ appended to it. Because
of its placement as a part of the user prompt, the constitution c was reworded to ĉ from

"Select the response that..." to
"When generating a response, make sure to formulate a response that..."

The decision to incorporate the constitution as a part of the user prompt was in large part driven by
documented problems with augmented system prompts, both for the Qwen models specifically and
smaller models (<1 Billion parameters) in general.

For training of the Constitutional DPO model, the AdamW optimizer was used with a learning rate of
1E-7, β = 0.1, a training batch size of 128, and an evaluation batch size of 1024. The training and
evaluation loss curves, as well as the training and evaluation accuracy curves from Constitutional
DPO are shown below:
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Figure 6: Accuracy Curves for Constitutional DPO Training. Evaluation Loss curves are pictured at
left, and Training curves at right

Figure 7: Accuracy Curves for Constitutional DPO Training. Evaluation accuracy curves are pictured
at right, and Training curves at left

(Note: This model was trained for substantially less steps than the other DPO model (time constraints))
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4 Results

Looking solely at the Evaluation accuracies and losses between the base and Constitutional DPO
models (SFT not fit for comparison here because of its different objective), it would seem that the
Constitutional DPO model approves upon the standard implementation, exhibiting lower loss and
greater accuracy at the end of training. Unfortunately however, a more thorough analysis reveals that
this is not the case.

4.1 Quantitative Evaluation

As part of the standard evaluation framework, we demonstrate rewards obtained by each model as
judged by the nvidia/llama-3.1-nemotron-70b-reward model Nvidia et al. (2024).

Table 1: Nemotron Reward Comparison

Method Mean Reward 1 Reward STD 2 Improvement over SFT Win Rate v. SFT

SFT -24.25 3.90 – –
DPO -23.53 4.05 0.72 .565
Constitutional DPO -25.73 3.53 -1.49 .3725

The results of this table show us that the Constitutional DPO model not only does not outperform the
standard DPO implementation, but actually performs worse than the SFT model baseline. It’s of note
that the Constiutional DPO model does have lesser reward variance across prompts. To an extent this
is expected, as the presence of the constitution is meant to guide the model and curtail unexpected/high
variance behavior, which could have otherwise propagated forward as reward variance.

Additionally, we see that the standard DPO model only outperforms the standard SFT model 57% of
the time.

Figure 8: Reward Distributions (final 400 prompts)

4.2 Qualitative Analysis

To qualitatively analyze the models, we can look at example prompts and examine each model’s
response.

For the prompt:

"How is augmented reality being used to enhance museum experiences and engage visitors with
interactive exhibits?"
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SFT model: "Augmented Reality (AR) is transforming the way museums experience their collections,
allowing visitors to interact directly with digital content in immersive environments that blur the lines
between art, history, and technology. In many cases, AR provides visitors with an unprecedented
level of engagement by incorporating multimedia elements into everyday objects or spaces within
the museum. For instance, visitors can learn about historical artifacts through 360-degree videos
that overlay detailed descriptions and context on physical objects like ceramics, sculptures, or even
clothing items from different eras.Another innovative use case involves integrating AR with virtual
reality experiences, where users can explore three-dimensional models of artifacts, artwork, or
installations virtually before visiting them in person. This allows for more nuanced exploration and
deeper understanding of specific works. Additionally,.." (continues rambling for full 1024 response
limit)

DPO model: "Augmented Reality (AR) technology is revolutionizing the way museums present
their collections, engaging visitors in immersive ways that were once impossible. By integrating AR
into existing exhibit setups or creating entirely new ones, museums can create dynamic, experiential
learning environments.One example of how this works is through "interactive art installations"
where visitors can interact with digital elements within an object itself, such as rotating props or 3D
models. This allows them to explore objects from multiple angles while also experiencing different
interpretations of their content. Another approach involves using AR to simulate real-world events,
like historical battles or scientific experiments, by overlaying virtual artifacts onto physical displays.
Visitors can learn about these scenarios firsthand without having to physically participate in the
experience. In addition..." (continues rambling for full 1024 response limit)

Constitutional DPO model: "Augmented Reality (AR) has been increasingly integrated into mu-
seums as an innovative way of engaging visitors with their collections. By using AR technology,
exhibitions can be enhanced by creating immersive environments where visitors can interact directly
with the artifacts they explore. For instance, virtual tours can bring historical sites to life through 3D
models or animations that transport viewers back in time. AR also allows for hands-on exploration,
enabling visitors to touch and manipulate objects without physically interacting with them. This
tactile experience not only makes learning more enjoyable but also helps preserve cultural heritage by
providing access to rare items that may otherwise remain off-limits due to safety concerns or logistical
challenges. Additionally, ... (RAMBLING)...#MuseumLearningAndExploration #AugmentedReality
#Collaboration #CommunityCultures Thank you so much for the thorough review. It was really
insightful. One thing though: could you add"

Looking at these responses we can clearly see that all three models have trouble determining when it
is appropriate for them to terminate their responses, as the prompt at hand did not warrant the the
length of repsonses provided. In the Constiutional DPO model however, we note that at the very tail
end of the model’s response it goes wildly off topic, using hashtags and mentioning a review that
does not exist. This is greatly unexpected, given that the model’s constitution explicitly stated that
it’s task was to remain relevant to the prompt.

Interestingly, this was not an isolated phenomenon, and manual inspection of the prompt responses
led to discovery that the Constitutional DPO model used a unbelievably higher number of hashtags in
responding, similar to those in the response above.

Table 2: Number of Appearances of the ’#’ character in 400 responses

Method Number of Appearances

SFT 1217
DPO 2116
Constitutional DPO 4956

As reported in the table the ’#’ character appeared almost 5000 times in the Constiutional DPO
model’s responses, more than double than for the next most frequent. Given that some of the prompts
ask the model to generate code in which this character would be used for comments, a certain
threshold of appearances is understandable. However, the Constitutional DPO model likely exceeds
this threshold by a good margin.

A potential hypothesis for this is the use of the phrase "relevant subjects" in the constitution. In
context of a larger conversation, relevant subjects can be understood (by a human) to be subjects
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related to the ongoing discussion. Without this context however, "relevant subjects" could reasonably
be interpreted as subjects that are relevant/trending in media at large. Given that social media data
likely made up a significant portion of the training data for Qwen/LLAMA, it’s plausible to imagine
that the use of this phrase exactly as written primed the model to output token prediction distributions
more aligned with what would be expected in social media based writing, leading the heavy use of
hashtags in responses.

5 Conclusion

Evaluating performance across the three available models shows that the Constitutional DPO model
performed the worst, contradicting expectations of the experiment. Additionally, while the standard
DPO model performed better than the SFT model, it didn’t quite reach the targeted improvement
threshold. Despite not achieving the desired results relative to each other, the DPO and constitutional
DPO models do seem to perform well relative to the other models created for the course, ranking 5th
and 7th in the entire course respectively.

Future iterations of this experiment could likely see greatly improved performance of the Constitu-
tional DPO model by creating more clusters among the per-pair principle sets. While not performed
due to time constraints and runtime issues, clustering with a larger value of k would provide a larger,
more comprehensive set of candidate principles during the principle testing phase, increasing the
chance that the ultimately chosen principles are relevant across all of the different prompt types
present in the preference dataset.

6 Team Contributions

• Justin Adjasu: Justin completed the entire project, including Dataloader initialization and
processing, SFT of the base Qwen model using the smoltalk dataset, DPO (standard and
with constiutional/inverse constitutional ai) using the ultrafeedback dataset, and the writing
of this report. While not included in the paper as it could not be brought to work, a complete
Bradley Terry reward model training (both standard and using the length controlled margin
framework, where a margin is applied based on the exact scores assigned to the preferred
and dispreferred response)(https://arxiv.org/pdf/2502.14643?), and imcomplete RLOO

Changes from Proposal The project extension was reduced in scope compared to the original, but
otherwise addresses the same core task.
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Figure 10: Trained Reward Model Accuracy (Training) j

Figure 11: Trained Reward Model Loss (Training)

While not included in the report due to the fact it repeatedly ran into memory issues preventing
training, the code to implement RLOO training is present in the code submission,
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