
Extended Abstract

Motivation The paradigm of scaling language models has traditionally focused on increasing
parameter counts, dataset sizes, and training compute. A complementary fourth scaling axis, test-time
compute (TTC), has emerged, where methods like Self-Consistency demonstrate that expending more
computational effort at inference can significantly boost performance on complex reasoning tasks.
However, these techniques are typically applied as post-hoc wrappers on a frozen model, relying on
hand-tuned heuristics and incurring substantial overhead from redundant forward passes.

Method This work explores integrating TTC directly into the training loop. We propose an
extension to REINFORCE Leave-One-Out (RLOO), an online policy gradient algorithm, which
augments the reward function to explicitly model the trade-off between answer correctness and
computational cost, measured in the number of reasoning traces. By training with on-policy sam-
pling and a reward function that explicitly balances correctness and efficiency, our model learns
to internalize the decision of how much effort to expend. The augmented reward is formulated as
Raug(y, k, c) = Rbase(y) + λc · c− λk · k, where c is correctness and k is compute cost.

Implementation We use the Qwen/Qwen2.5-0.5B model as our foundation. After an initial
Supervised Fine-Tuning (SFT) phase on high-quality data, we train the model using our RLOO-Turbo
objective. During on-policy rollouts, each generated response is scored for correctness and cost to
compute the augmented reward, which then drives the policy update.

Results Our initial SFT experiments show successful convergence and provide a solid baseline
for online fine-tuning. For our main experiments, we hypothesize that the RLOO-Turbo model
will achieve a superior performance-compute trade-off compared to baselines using external TTC
wrappers. We will evaluate on the COUNTDOWN (mathematical reasoning) and ULTRAFEEDBACK
(instruction following) tasks, measuring accuracy against computational cost.

Discussion The primary challenges include the sample inefficiency of online RL and the need to
carefully tune the hyperparameters that balance policy improvement with correctness and compute
considerations. Success would point towards a new class of models that learn to manage their own
reasoning resources.

Conclusion RLOO-Turbo presents a promising path toward more efficient and autonomous LLMs.
By embedding computational awareness into the learning process, we aim to create models that
are not only powerful but also judicious in their application of resources, moving beyond static,
brute-force inference strategies.



Learning to Think: Integrating Test-Time Compute
into RL Fine-Tuning

André Natal
Stanford University

anatal@stanford.edu

Yacine Dolivet
Stanford University

yacine@stanford.edu

Thomas Huang
Stanford University

thhuang@stanford.edu

Abstract

The paradigm of scaling language models has traditionally focused on increasing
parameter counts, dataset sizes, and training compute. A complementary fourth
scaling axis, test-time compute (TTC), has emerged, where methods like Self-
Consistency demonstrate that expending more computational effort at inference
can significantly boost performance on complex reasoning tasks. However, these
techniques are typically applied as post-hoc wrappers on a frozen model, relying on
hand-tuned heuristics and incurring substantial overhead from redundant forward
passes. This work explores integrating TTC directly into the training loop. We
propose an extension to REINFORCE Leave-One-Out (RLOO), an online policy
gradient algorithm, which augments the reward function to explicitly model the
trade-off between answer correctness and computational cost. By training with
on-policy sampling and a reward that explicitly balances correctness and efficiency,
our model learns to internalize the decision of how much effort to expend. We
hypothesize that this approach will lead to a more efficient policy that achieves a
better performance-compute trade-off compared to baselines with external TTC
wrappers. We outline experiments on the COUNTDOWN (mathematical reasoning)
and ULTRAFEEDBACK (instruction following) tasks to validate our approach.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
tasks. A key factor in their success has been fine-tuning with reinforcement learning to align with
complex objectives (Ouyang et al., 2022). Online policy gradient methods like REINFORCE Leave-
One-Out (RLOO) (Ahmadian et al., 2024) are effective for aligning models to non-differentiable
reward signals, such as those from human feedback or external verifiers.

Concurrently, another line of research has focused on improving LLM performance not by changing
model weights, but by increasing computational effort at inference time. This concept, often called
Test-Time Compute (TTC) (Snell et al., 2024), encompasses techniques like Self-Consistency (Wang
et al., 2023), where multiple reasoning paths are sampled and the most frequent answer is chosen.
While effective, these methods are extrinsic to the model; they are applied as wrappers around a
pre-trained policy, often requiring inefficient, brute-force sampling and heuristic-based aggregation.
The model itself remains unaware of the computational budget or the reasoning process it is part of.

This project bridges the gap between these two areas. We seek to move TTC from an external
heuristic into the core of the learning algorithm. Our central hypothesis is that an LLM can learn
to manage its own computational budget. To this end, we introduce a novel extension to RLOO
that makes the policy aware of its own reasoning cost. By explicitly rewarding correctness while
penalizing computational effort (i.e., the number of generated reasoning traces), we aim to train
a policy that dynamically allocates its "thinking" resources. The goal is to produce a model that

Stanford CS224R 2025 Final Report



not only solves problems accurately but does so efficiently, achieving a superior efficiency frontier
between performance and FLOPs compared to models that rely on external TTC mechanisms.

2 Related Work

Our work builds on decades of research into search and inference-time computation, recently re-
contextualized for large language models.

Classical search. The trade-off between model complexity and deeper search at inference predates
modern deep RL by decades. Kocsis and Szepesvári (2006) introduced the UCT algorithm, showing
that allocating additional roll-outs at decision time systematically improves performance in large
MDPs. Soon after, Gelly and Silver (2007) scaled this principle in MoGo, the first strong Monte-Carlo
Tree-Search (MCTS) Go engine. Earlier still, Deep Blue demonstrated the power of massive test-time
search in chess (Campbell et al., 2002), although the term "test-time compute" was not used at the
time.

Deep-learning era. With the rise of deep neural networks, the importance of test-time compute
became unmistakable. In perfect-information games, AlphaGo and AlphaGo Zero combined CNN
policy/value nets with large-scale MCTS to surpass human experts (Silver et al., 2016, 2017). In
imperfect-information settings, Libratus defeated professional poker players by nesting sub-game
re-solving during play (Brown and Sandholm, 2018). These successes made clear that "thinking
longer" at inference can outweigh simply enlarging the network.

Large-language models. For LLMs, extra FLOPs at inference have recently been cast as a fourth
scaling axis. The idea crystallised with Self-Consistency (Wang et al., 2023), which samples many
chain-of-thought traces and majority-votes the final answer, yielding double-digit accuracy gains
without weight updates. Subsequent work split into two strands: (i) Generative Verifiers (Zhang et al.,
2024) move the scoring step inside the model by fine-tuning it to produce self-contained proofs, letting
a single LM both generate and critique solutions; and (ii) Adaptive Test-Time Budgets (Snell et al.,
2024) learn to spend more sampling and re-ranking only on hard prompts, maximising performance
per FLOP. Collectively, these results establish test-time compute—not parameter count—as a potent
lever for boosting LLM accuracy.

Limitations of current approaches. Despite these gains, test-time compute remains an inference-
only add-on. Self-Consistency and adaptive budgeting leave the backbone weights frozen, and
Generative Verifiers merely fine-tune the model to explain its answers. None of these methods update
the policy online in response to the extra reasoning they perform. Thus test-time compute currently
functions as an external toolkit rather than an ingredient integrated into the training loop. Our work
aims to address this limitation directly.

3 Method

Our approach modifies the REINFORCE Leave-One-Out (RLOO) algorithm to incorporate awareness
of computational cost. We first review the standard RLOO algorithm and then introduce our proposed
extension.

3.1 REINFORCE Leave-One-Out (RLOO)

RLOO is an online policy gradient algorithm designed to reduce the high variance typically associated
with REINFORCE. It achieves this by using a specific baseline: for each sample in a batch, its baseline
is the average reward of all other samples in that batch. This "leave-one-out" estimate is unbiased and
effective at variance reduction.

Given a policy πθ, a batch of prompts, and a reward function R(x, y), we first sample k responses for
each prompt from the current policy, {yj ∼ πθ(·|x)}kj=1. The policy gradient for a single response

2



yj is then estimated as:

gj =

R(x, yj)−
1

k − 1

∑
l ̸=j

R(x, yl)

∇θ log πθ(yj |x)

The total gradient is the average over all samples. This approach directly optimizes the policy to
maximize the expected reward signal.

3.2 RLOO with Test-Time Compute Awareness (RLOO-Turbo)

Our core contribution is to modify the RLOO objective to be aware of both answer correctness, c,
and the computational cost, measured by the number of Chain-of-Thought (CoT) traces, k, used for
generation.

We achieve this by defining an augmented reward function, Raug, which is used during on-policy
training. For a response y generated with k traces and evaluated to have correctness c ∈ {0, 1}, the
augmented reward is:

Raug(y, k, c) = max
1≤i≤k

R
(i)
base(y) + λc · c− λk · k

Here, Rbase(y) is an external reward signal (e.g., from a powerful reward model or a rule-based
verifier). The second term, weighted by hyperparameter λc, provides a direct bonus for generating
a correct answer. The third term, weighted by λk, imposes a penalty for computational cost. The
hyperparameters λc and λk control the trade-off between achieving correctness and conserving
compute.

In order to satisfy differentiability of the loss a modified version of the loss is1

Raug(y, k, c) = SoftmaxiR
(i)
base(y) + λc · c− λk · k

This augmented reward is then used within the RLOO framework. The policy gradient for a response
yj generated with kj traces and having correctness cj becomes:

gj =

Raug(yj , kj , cj)−
1

N − 1

∑
l ̸=j

Raug(yl, kl, cl)

∇θ log πθ(yj |x)

where N is the number of samples in the batch. By optimizing this objective, the policy πθ is trained
not just to maximize a base reward, but to do so in a way that is sensitive to the correctness and
computational cost inherent in generating its responses. It learns to find a balance, expending more
effort only when it is likely to lead to a correct answer that outweighs the computational penalty.

4 Experimental Setup

Model and Baselines. We use the Qwen/Qwen2.5-0.5B base model for all experiments. Our
primary baselines include: (1) A Supervised Fine-Tuned (SFT) model, which serves as the initial
policy for RL training. (2) A standard DPO-trained model (Rafailov et al., 2023). (3) The SFT model
enhanced with external TTC wrappers like Self-Consistency.

Datasets and Tasks. We evaluate our approach on two distinct tasks:

• Instruction Following: We use the UltraFeedback dataset, which contains pref-
erence pairs for general instruction-following. The SFT model is first trained on
the smol-smoltalk dataset. For RLOO, the base reward Rbase will come from the
Nemotron-70B-Reward model.

1Note that in the implementation we ran into difficulties with the softmax version so ran our experiments
with the the hard max rather than softmax version of Raug

3



Figure 1: Performance comparison between vanilla RLOO and our TTC–aware extensions.

Table 1: Quantitative results for RLOO and TTC–RLOO variants.

Run Config Final AvgReward Final AvgReward (Adjusted) Peak Reward Time / Opt. Step
Baseline (N = 1, λ = 0) 0.2875 0.2875 0.3875 ∼36 s
TTC (N = 2, λ = 0.05) 0.4000 0.4000 0.4250 ∼72 s
TTC (N = 3, λ = 0.05) 0.4125 0.4125 0.5250 ∼104 s

• Mathematical Reasoning: We use the Countdown dataset, which requires multi-step
arithmetic reasoning. For RLOO, Rbase will be a rule-based verifier score.

For our RLOO-Turbo method, training proceeds via on-policy sampling. In each training step, we
sample multiple responses from the current policy, evaluate their correctness (c) and note the number
of traces (k) used. These values are used to compute the augmented reward Raug for the policy
gradient update.

Evaluation. For ULTRAFEEDBACK, we measure win-rate against the Qwen2.5-0.5B-Instruct
model, with responses scored by the Nemotron-70B-Reward model. For COUNTDOWN, we use a
rule-based reward function that verifies the correctness of the final numerical answer. Our central
evaluation will compare the performance-compute curves of RLOO-Turbo against baselines using
external TTC (i.e., vanilla Self-Consistency).

5 Results

As Table 1 shows, even a small TTC budget (λ = 0.05) delivers a 39%–43% boost in final AvgReward
at the cost of roughly doubled/tripled inference time, with N = 2 offering the best compute–quality
tradeoff.

6 Discussion

The primary challenge in this work lies in the on-policy nature of RLOO. The policy must explore
enough to find high-reward regions of the state space, which can be difficult when the reward signal
is sparse or complex. The sample efficiency of online RL is a well-known problem, and significant
computation will be required for the policy to converge.

Furthermore, tuning the hyperparameters β, λc, λk will be critical. These values implicitly define the
"value" of a correct answer versus the "cost" of one unit of computation, and finding the right balance
is key to training an effective policy.

If successful, our approach suggests a new direction for model fine-tuning, where computational
policies are learned rather than engineered. This could lead to more efficient and adaptable models
that can dynamically adjust their reasoning depth based on the perceived difficulty of a problem, a
capability that is currently missing from LLMs.

4



7 Conclusion

We have proposed RLOO-Turbo, a novel method for integrating test-time compute awareness directly
into the language model fine-tuning process. By augmenting the RLOO objective with terms for
correctness and computational cost, we train a policy to learn how to balance performance and
efficiency. Our ongoing experimental work on instruction-following and mathematical reasoning
tasks aims to demonstrate that this approach can yield models with a superior performance-compute
profile compared to traditional methods that rely on external, heuristic-based TTC wrappers. This
research represents a step towards building more autonomous and efficient reasoning agents.

8 Team Contributions
• André Natal: Led the conceptualization of the RLOO-Turbo framework, implemented the

core RL algorithms, and designed the evaluation pipeline.
• Yacine Dolivet: Developed the data processing pipelines for ULTRAFEEDBACK and COUNT-

DOWN, managed the SFT and RLOO training infrastructure, and conducted hyperparameter
tuning.

• Thomas Huang: Performed the related work survey, implemented the rule-based verifiers
for data annotation, and conducted the qualitative and quantitative analysis of model outputs.

Changes from Proposal The core research direction remained consistent with our proposal. The
main change was the formalization of the TTC-aware learning algorithm, which we concretized from
a general PPO-based idea in the proposal to the specific RLOO-Turbo formulation presented here,
based on findings from our initial experiments and literature review.

References
Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,

Ahmet Üstün, and Sara Hooker. 2024. Back to basics: Revisiting REINFORCE style optimization
for learning from human feedback in LLMs. arXiv preprint arXiv:2402.14740 (2024).

Noam Brown and Tuomas Sandholm. 2018. Superhuman AI for heads-up no-limit poker: Libratus
beats top professionals. Science 359, 6374 (2018), 418–424.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. 2002. Deep blue. Artificial intelligence
134, 1-2 (2002), 57–83.

Sylvain Gelly and David Silver. 2007. Combining online and offline knowledge in UCT. In Proceed-
ings of the 24th international conference on Machine learning. 273–280.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit based Monte-Carlo Planning. In European
conference on machine learning. Springer, 282–293.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. 2022. Training language models to follow instructions with human feedback. (2022).
arXiv:2203.02155 [cs.CL]

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. 2023. Direct preference optimization: Your language model is secretly a reward model.
arXiv preprint arXiv:2305.18290 (2023).

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. 2016.
Mastering the game of Go with deep neural networks and tree search. nature 529, 7587 (2016),
484–489.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. 2017. Mastering the game of go
without human knowledge. nature 550, 7676 (2017), 354–359.

5



Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling llm test-time compute
optimally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314
(2024).

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. 2023. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agar-
wal. 2024. Generative Verifiers: Reward Modeling as Next-Token Prediction. arXiv preprint
arXiv:2408.15240 (2024).

6


	Introduction
	Related Work
	Method
	REINFORCE Leave-One-Out (RLOO)
	RLOO with Test-Time Compute Awareness (RLOO-Turbo)

	Experimental Setup
	Results
	Discussion
	Conclusion
	Team Contributions

