Extended Abstract

Motivation Retrieval-Augmented Generation (RAG) is a popular method to improve factuality and
reasoning in language models by injecting external context. While it has been shown to be effective
for large-scale models, small models, with their limited capacity and shorter attention spans, often
perform worse when naively exposed to long retrieved documents. Motivated by this mismatch, we
investigate whether RAG strategies, when paired with effective prompt compression, can help small
instruction-tuned models perform better at test time.

Our key research question is whether test-time strategies, specifically retrieval and compression, can
be used to boost performance of small language models like Qwen2.5-0.5B-Instruct, a 0.5B parameter
open-source. We hypothesize that the compression of both prompts and retrieved content into shorter,
more focused inputs may allow small models to benefit from additional information without being
overwhelmed by verbosity.

Method We design and evaluate five different inference-time strategies:

1. Prompt-only baseline: The original user prompt is sent directly to the model.

2. Prompt + raw RAG: Retrieved passages from similar prompts are appended to the original
prompt.

3. Prompt + compressed RAG: Retrieved passages are first summarized using a large language
model (Gemma 12B), then appended to the prompt.

4. Compressed prompt only: The original prompt is rewritten by Gemma to make it shorter
and more focused.

5. Joint compression: Both the prompt and the retrieved context are compressed before being
passed to the small model.

To implement retrieval, we use the HuggingFaceH4 UltraFeedback dataset, containing 64K GPT-4
ranked prompts and completions. The retriever is a FAISS index built using MiniLM-L6-v2 sentence
embeddings over the train_prefs split. For summarization, we use Gemma 3 12B to rewrite the
prompt, context, or both using fixed prompt templates. Outputs are then scored using NVIDIA’s
LLaMA-3.1 Nemotron 70B Reward model, which estimates human preference with scalar scores.

Implementation The system includes a retriever (FAISS + MiniLM), a compressor (Gemma 12B),
and a generator (Qwen2.5-0.5B-Instruct). We use fixed summarization templates and score each
strategy on UltraFeedback’s test set using the Nemotron reward model.

Results Raw RAG degrades performance (46% win rate), while prompt-only achieves 50%. Com-
pressing the prompt improves performance to 50.7%, while compressed RAG and joint compression
reach 47.6% and 48.4% respectively. Compression is key; retrieval helps only if condensed.

Discussion Our study highlights several insights. First, retrieval alone is insufficient for small
models; in fact, it can hurt performance unless followed by compression. Second, prompt compression,
even in isolation, appears to be a powerful and lightweight test-time intervention for small LLMs.
Third, the combination of retrieval and summarization (joint compression) requires more careful
balancing, as it can remove useful signal or preserve noise.

Inspired by hierarchical RL, our architecture decomposes the task of context planning (Gemma) from
response generation (Qwen). This division enables us to leverage large models at inference time to
improve the performance of smaller models, without training. Such designs are useful in deployment
scenarios where large models are expensive to run end-to-end but can assist in preprocessing or
optimization.

Conclusion Effective use of RAG in small LLMs requires more than retrieval in that it demands
compression and planning. Our results show that inference-time prompt shaping via large model
compression can improve the performance of RAG for small models without retraining, offering a
practical pathway for improving test-time strategies under compute constraints.



Improving Small Language Models via Test-Time
Prompt Compression and Retrieval

Neha Balamurugan Keshav Patel Keval
Department of Computer Science Department of Management Science and Engineering
Stanford University Stanford University
nabalmur@stanford.edu keshavb@stanford.edu

Pranava Singhal
Department of Computer Science
Stanford University
psinghal@stanford.edu

Abstract

This work investigates whether retrieval-augmented generation (RAG), when com-
bined with test-time prompt compression, can improve the performance of small
instruction-tuned language models. Using Qwen2.5-0.5B-Instruct as our target
model, we evaluate multiple inference-time prompting strategies on the UltraFeed-
back dataset, including prompt-only, raw RAG, compressed RAG, compressed
prompt, and joint compression. We use a FAISS-based retriever over MiniLM
embeddings and larger models like Gemma 12B as a compression model. Outputs
are scored using NVIDIA’s Nemotron-70B reward model. Our findings show that
naive RAG degrades performance, while prompt compression alone yields the best
win rate (50.7%). Joint compression performs better than raw RAG but worse than
compressing just the prompt. These results suggest that careful input compression,
even without retrieval, is an effective strategy for small models, and that leveraging
large models as inference-time planners may offer practical benefits in low-resource
deployments.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in a wide range of
NLP tasks. However, their performance often comes at the cost of significant computational re-
quirements. In contrast, small language models (SLMs), while more efficient and deployable in
resource-constrained settings, lag behind in quality, especially in complex reasoning or fact-intensive
tasks. A common approach to mitigate this gap is Retrieval-Augmented Generation (RAG), where
retrieved external documents are appended to prompts to enrich the model’s context. While RAG has
shown clear benefits for large models such as GPT-4 and PalLM, its effectiveness for smaller models
remains underexplored.

In this work, we investigate the potential of test-time RAG strategies for improving small instruction-
tuned models, specifically Qwen2.5-0.5B-Instruct. Prior studies (e.g., Barnett et al.| (2024))) caution
that naively appending retrieved documents can overwhelm low-capacity models, leading to perfor-
mance degradation. To address this, we explore whether compressing both the prompt and retrieved
context can improve outcomes. Our hypothesis is that small models may benefit from additional
information—but only if that information is distilled and focused.
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To evaluate this idea, we design a modular inference pipeline involving (i) retrieval of similar prompt-
response examples using FAISS over UltraFeedback, (ii) compression of raw retrieved text using a
larger model (Gemma 12B), and (iii) execution by the small model (Qwen2.5-0.5B-Instruct). We
compare several prompting strategies, from baseline prompt-only to joint compression of prompt and
context. For evaluation, we use the Nemotron 70B reward model as a proxy for human preference.

Our results suggest that retrieval, when applied naively, harms performance in small models. However,
simple compression techniques (particularly rewriting the prompt) can improve response quality.
These findings have implications for real-world deployments of small models, where inference-time
optimizations may serve as practical alternatives to expensive training or finetuning. Our architecture
also draws inspiration from hierarchical planning in reinforcement learning: the large model (Gemma)
plans the input structure while the small model (Qwen) executes, offering a lightweight and modular
design that is both effective and scalable.

2 Related Work

Prior work has explored compressing input prompts to reduce inference costs or improve alignment.
LLMlingualJiang et al.|(2023)) proposes learning to compress user prompts using a small model before
passing them into a larger one. Similarly, Style-Compress |Pu et al.|(2024) examines compressing text
into a semantically rich but compact form to preserve style or instruction intent across generations.
Unlike these approaches, which typically compress inputs to optimize large model inference, our
work studies compression for the inverse setting: using large models to help small models perform
better at inference time.

We also relate to recent research in retrieval-augmented generation, which has proven effective for
large-scale models like GPT and PaLM. However, small models may suffer from exposure to irrelevant
or excessive context. Recent work by Barnett et al.|(2024)) highlights that unfiltered retrieval often
degrades performance in low-capacity settings. Our work contributes to this discussion by showing
that summarizing retrieved context—especially in combination with prompt rewriting—offers a
lightweight, inference-time alternative to training or finetuning.

Finally, hierarchical prompting frameworks, such as Toolformer |Schick et al.[(2023) or ReAct|Yao
et al.| (2023)), explore chaining model outputs across tasks. Our method is conceptually similar: we
use a larger model (Gemma 12B) as a high-level planner that reshapes the task prompt to fit the small
model’s reasoning budget.

3 Method

We design five inference-time strategies that modify or enhance the input prompt before passing it to
a small model. Each strategy manipulates the prompt via compression, retrieval, or both. Our goal is
to assess whether these test-time augmentations can help a small model like Qwen2.5-0.5B-Instruct
produce higher-quality completions, without requiring additional training.

3.1 Test-Time Strategies

We define and evaluate the following five strategies:

1. Prompt-only baseline: The original user prompt is sent unchanged to Qwen2.5-0.5B-
Instruct.

2. Prompt + raw RAG: We retrieve similar prompt-response examples from UltraFeedback
using a FAISS index built over MiniLM-L6-v2 sentence embeddings. Retrieved examples
(prompt, chosen response, rejected response) are directly appended to the original prompt as
in-context references.

3. Prompt + compressed RAG: The retrieved examples are summarized using a larger teacher
model (Gemma 12B). We evaluate two types of compression: (i) behavioral hints, where
Gemma identifies what makes the chosen responses helpful and appends guidance lines, and
(ii) rewritten prompts, where Gemma modifies the user prompt based on retrieved examples.
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Figure 1: Intuitive visualization of the tradeoff in instruction length and the amount of "useful
information" in the prompt needed to give a good response. We define useful information as that
which would be preserved under an ideal compressor such as a powerful language model which can
remove any information in the prompt that does not help in writing a better response. The goal is to
maximize information while reducing length so that smaller models are able to more effectively use
their limited context.

4. Compressed prompt only: The original prompt is rewritten by Gemma 12B using a fixed
template to improve clarity and brevity without removing task-critical information. No
retrieval is performed.

5. Joint compression: Both the prompt and the retrieved examples are compressed. Retrieved
examples are distilled into behavioral hints by Gemma and appended to a rewritten version
of the prompt.

3.2 Retrieval-Augmented Generation (RAG)

For RAG-based strategies, we construct a vector index using the train_prefs split of HuggingFace’s
UltraFeedback dataset. Each entry in the index includes a prompt and its associated chosen and
rejected completions. We use the al1-MiniLM-L6-v2 encoder to produce normalized embeddings
and build a FAISS IndexFlatIP for fast top-k retrieval.

At inference time, we retrieve £ = 3 nearest neighbors based on the current prompt. Retrieved entries
are formatted into structured references with the following template:

Example 1:

Retrieved prompt: ...
Chosen response (good): ...
Rejected response (bad): ...

These references are either appended directly (in raw RAG) or passed through the compression
module before being combined with the prompt.

3.3 Prompt Compression

Compression is performed using Gemma 12B with nearly deterministic decoding
(temperature=0.01). We employ two templates for different purposes:



Prompt rewriting: Gemma rewrites the prompt to be clearer and more concise while preserving
all task-relevant details. The prompt is framed as an instruction to a prompt editor that emphasizes
retention of meaning over brevity.

Behavioral hint extraction: Given retrieved examples, Gemma outputs 1-2 guiding sentences that
encourage the target model to mimic the desirable qualities of chosen responses. This encourages
alignment with high-quality behavior without copying content.

3.4 Execution and Scoring

Final prompts—after applying compression, retrieval, or both—are sent to Qwen2.5-0.5B-Instruct
hosted via vLLM. For evaluation, we generate completions for each strategy and compare them
pairwise against the baseline using NVIDIA’s Nemotron 70B Reward Model. This reward model
takes the original user prompt and candidate response as input and outputs a scalar preference score.

We compute win-rate by comparing the strategy response to the baseline for each prompt in the
test_prefs split. A strategy receives a full point if its score is higher, half a point if equal, and zero
if lower.

3.5 System Architecture
Our pipeline includes three components:

* Retriever: FAISS index over UltraFeedback prompts with MiniLM embeddings.
* Compressor: Gemma 12B used for rewriting prompts and summarizing retrieved examples.

* Generator: Qwen2.5-0.5B-Instruct model queried via vLLM.

Evaluation is parallelized across 32 threads to accelerate response generation and reward scoring.

4 Experimental Setup

We evaluate each test-time strategy on the test_prefs split of the HuggingFaceH4 UltraFeedback
dataset. This dataset contains human-aligned preferences over model completions for diverse user
prompts. We use 64K prompts from the train_prefs split to build the retrieval index and evaluate
on the held-out test_prefs set.

4.1 Scoring with Nemotron

To assess output quality, we use NVIDIA’s 11ama-3.1-nemotron-70b-reward model, which
produces a scalar reward score reflecting human preference. For each prompt, we compare the
baseline prompt-only response to the response from a candidate strategy. The two responses are
independently scored using Nemotron, each in the context of the original user prompt.

Let s4 and sp denote the Nemotron scores for the baseline and strategy outputs, respectively. We
compute win-rate as follows:

e 1pointif sgp > sy

* 0.5 points if sp = s4

* Opointsif sp < sy

The final win-rate is the average over all test prompts.

4.2 Retrieval Configuration

We encode prompts from the training set using the all1-MiniLM-L6-v2 model from SentenceTrans-
formers. A FAISS IndexFlatIP is used to enable efficient top-k similarity search. For each test
prompt, we retrieve k = 3 neighbors and include both the chosen and rejected responses from each
example.



4.3 Compression Setup

For strategies involving compression, we query Gemma 12B (hosted via vLLM) with fixed prompt
templates. Prompt rewriting uses a template that instructs Gemma to produce a shorter but equally
informative version of the original prompt. Behavioral hint extraction uses a different prompt that
summarizes what makes the chosen completions better than the rejected ones.

All generations from Gemma use nearly deterministic decoding (temperature=0.01) to ensure
consistency across reruns.

4.4 Generation and Infrastructure

Final prompts are passed to Qwen2.5-0.5B-Instruct, served via a local vVLLM server. Generation
uses temperature=0.01, top_p=0.95, and a maximum output length of 1024 tokens. We execute
all generations using a multi-threaded pipeline with 32 concurrent threads to parallelize prompt
construction, inference, and scoring.

4.5 Implementation Details

All experiments are run on eight A100 GPU machines. Code is modular, with each strategy imple-
mented as a closure over a message formatting function. Strategies can be swapped without changing
core evaluation logic.

5 Results

We evaluate each strategy by computing its win-rate against the prompt-only baseline using the
Nemotron-70B Reward Model. A higher win-rate indicates that a given strategy produces outputs
preferred more often than the baseline. We also conduct a quantitative and qualitative analysis to
understand the factors contributing to performance gains or degradations.

5.1 Quantitative Evaluation

Table (1| shows the win-rates of all five strategies compared to the prompt-only baseline on the
test_prefs split. Each strategy is evaluated across the same set of prompts, with reward scores
computed independently using Nemotron.

Table 1: Win-rates against the prompt-only baseline (Qwen2.5-0.5B-Instruct). A win-rate above 50%
indicates the strategy outperformed the baseline.

Strategy Win-Rate (%) Description

Prompt-only baseline 50.0 Direct prompt, no augmentation
Prompt + raw RAG 46.0 Retrieved examples appended verbatim
Compressed prompt only 50.7 Rewritten prompt using Gemma
Prompt + compressed RAG 47.6 Retrieved examples summarized by Gemma
Joint compression 48.4 Prompt and retrieved context compressed

Our results highlight several key takeaways:

* Naive retrieval hurts: The raw RAG strategy underperforms the baseline (46.0%), suggest-
ing that appending full retrieved examples without filtering or summarization overwhelms
the small model.

* Compression helps: Rewriting the prompt alone yields the best performance (50.7%),
indicating that focused and concise prompts allow small models to better align with user
intent.

* Joint compression offers a moderate boost: While not outperforming prompt-only com-
pression, combining behavioral hints with a rewritten prompt (48.4%) performs better than
raw RAG and shows that retrieved content is helpful if appropriately summarized.



5.2 Qualitative Analysis

To better understand these trends, we examine a random subset of test cases where strategy perfor-
mance diverged. We observe the following patterns:

Failure cases for raw RAG: In many instances, appending long or tangential retrieved examples
distracted the model, leading to generic or off-topic completions. The small model often copied
irrelevant patterns from the retrieved completions.

Success cases for compression: Rewritten prompts tended to remove ambiguity, reduce verbosity,
and surface the core task. This clarity helped the model provide more structured and relevant
responses, even in the absence of additional context.

Joint compression tradeoffs: While combining compression and retrieval helped on some exam-
ples (especially where the retrieved context provided relevant patterns), overly aggressive summariza-
tion occasionally removed useful task-specific detail, leading to neutral or vague responses.

5.3 Error Analysis

We identify three main sources of degradation in performance:

* Context overload: Small models are sensitive to long prompts. RAG often exceeds the
effective context window, leading to truncation of the user query.

¢ Compression loss: While compression reduces input length, it can also obscure task
constraints or introduce ambiguity if the summarization prompt is too generic.

* Prompt-template mismatch: Certain prompt types (e.g., creative writing or multi-step
reasoning) are more sensitive to prompt rewording and lose fidelity when rewritten.

5.4 Compression vs. Retrieval

Our results support the hypothesis that compression is the dominant contributor to performance
gains. When retrieval is used without compression, performance drops. However, compressing just
the prompt (without retrieval) already improves win-rate, suggesting that prompt clarity is more
important than external context in many cases.

We conclude that retrieval is only beneficial when it provides examples that are relevant, concise, and
easy to abstract into behavioral guidance for small models.

6 Discussion

Our study was motivated by a key question: Can small language models be improved at test time
through better prompting—without retraining—by leveraging the capabilities of larger models? In
large LLMs, retrieval has been instrumental in improving performance by supplementing context.
However, for small models, naive retrieval often fails due to limited capacity and attention span. Our
results confirm this: RAG degrades performance, while prompt rewriting alone leads to the largest
gains.

6.1 Why Does Prompt Compression Work?

Prompt compression improves outcomes by reducing noise and focusing the model’s attention on the
core task. Small models, due to their restricted context windows and lower capacity, are especially
sensitive to verbosity, ambiguity, and irrelevance. Rewriting the prompt helps in the following ways:

* It makes the task more explicit by removing unnecessary linguistic complexity.
* It reduces cognitive load on the model by shortening the prompt.
* It aligns the structure of the input with the style of instruction-following models.

This aligns with observations in prior work where minimal and well-structured prompts outperform
verbose ones for small models.



6.2 Why Does Raw RAG Hurt?

Unlike large models that can effectively integrate and reason over long retrieved passages, small
models lack the capacity to filter, rank, or ignore irrelevant context. The RA strategy introduces
additional sequences—some loosely related—that may dilute or even conflict with the original user
intent. Without any filtering or summarization, these examples often distract more than they help.
This highlights a critical limitation in reusing large-model techniques in low-capacity settings without
adaptation.

6.3 Rethinking the Role of Retrieval

Our findings suggest that retrieval remains useful for small models—but only when used judiciously.
Compressing retrieved examples into high-level behavioral hints avoids overwhelming the model
while still transmitting helpful patterns. Retrieval should be seen less as a way to inject content
verbatim and more as a signal to shape how the model behaves.

An alternative framing is that retrieval serves as a form of weak supervision or regularization at test
time. By conditioning on past examples—but only through abstracted or compressed forms—we can
guide small models toward higher-quality completions without increasing the effective input length
too much.

6.4 Hierarchical Planning as a Design Principle

Our approach implicitly follows a hierarchical planning paradigm. The large model (Gemma 12B)
acts as a high-level planner: it chooses what parts of the input matter and how to phrase them. The
small model (Qwen2.5-0.5B-Instruct) acts as the executor, generating a response based on the distilled
input. This separation of roles reflects patterns in cognitive science and RL, where planners and
actors operate at different levels of abstraction.

This design has practical implications:

* It enables deployment-time improvements for small models without retraining.

* It allows flexible division of compute: the large model can be used once or periodically,
while the small model handles all real-time interaction.

* It sets the stage for test-time adaptation pipelines, where the compressor can be optimized
(or learned) independently of the generator.

6.5 Challenges Faced

During implementation, we encountered several practical challenges. We observed that minor changes
in summarization templates significantly influenced output quality, which made iterative debugging
more involved. Moreover, it was difficult to choose the best template for RAG examples. An
automated optimization pipeline using a framework such as DSPy could have improved performance
further.

7 Conclusion
We discuss limitations and broader impact of our work as well as future directions of research.

7.1 Limitations and Future Work
While our results demonstrate the promise of compression, several limitations remain:
* Compression quality depends on template design. Poorly constructed summarization

prompts can remove important task-specific details.

* Retrieval relevance is not guaranteed. FAISS-based retrieval depends on embedding
similarity, which does not always correlate with functional similarity.

* Evaluation via reward models has bias. The Nemotron reward model is a strong proxy
but may not reflect all dimensions of human preference (e.g., creativity, politeness).



Future work could address these by:

* Learning task-specific compression modules via distillation or imitation learning.

* Incorporating more sophisticated retrievers that optimize for downstream utility, not just
similarity.

* Evaluating with human annotators or multi-dimensional feedback models.

7.2 Broader Impacts

As small models become increasingly attractive for edge deployment, our findings open a new
direction: using large models as test-time optimizers rather than end-to-end generators. This hybrid
approach balances quality and efficiency, and could benefit applications in mobile assistants, on-
device summarizers, or chatbots running under resource constraints. It also encourages a shift in
perspective—from training bigger models to using existing ones more intelligently.

8 Team Contributions

* Keshav Patel Keval: Implemented and tested RAG pipeline. Initial SFT implementation

* Pranava Singhal: Setup efficient inference and prompt compression. Initial DPO imple-
mentation

* Neha Balamurugan: Evaluation setup, poster write-up, integrating RAG with inference
pipeline

Changes from Proposal We initially proposed a custom project focused on system-level bench-
marking and optimization of reinforcement learning training. However, due to the complexities
involved in setting up and conducting a systems analysis within Isaac Gym, we pivoted to the
default project. Maintaining our interest in test-time methods, we proposed implementing Retrieval-
Augmented Generation (RAG) and evaluating its performance with the Qwen model. Early ex-
periments, however, highlighted the limitations of applying test-time techniques such as RAG and
self-reflection to smaller models. This prompted us to explore a related direction: prompt and RAG
compression, with the goal of enabling effective test-time improvements for lightweight models like
Qwen.
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